Contents

List of Figures
xiii
List of Tables
xix
List of Contributors
xxi
Series Preface
xxiii
Preface
xxv

1 Introduction to Quality by Design (QbD)

Bruce Davis and Walkiria S. Schlindwein

1.1 Introduction
1
1.2 Background
2
1.3 Science- and Risk-Based Approaches
4
1.4 ICH Q8–Q12
5
1.5 QbD Terminology
6
1.6 QbD Framework
7
1.7 QbD Application and Benefits
7
1.8 Regulatory Aspects
8
1.9 Summary
9
1.10 References
9

2 Quality Risk Management (QRM)

Noel Baker

2.1 Introduction
11
2.2 Overview of ICH Q9
13
2.2.1 Start QRM Process
15
2.2.2 Risk Assessment
15
2.2.3 Risk Control
16
2.2.4 Risk Review
16
2.3 Risk Management Tools
17
3 Quality Systems and Knowledge Management
Siegfried Schmitt
3.1 Introduction to Pharmaceutical Quality System
3.1.1 Knowledge Management – What Is It and Why Do We Need It? 47
3.2 The Regulatory Framework
3.2.1 Knowledge Management in the Context of Quality by Design (QbD) 48
3.2.2 Roles and Responsibilities for Quality System 49
3.2.3 Roles and Responsibilities for Knowledge Management 50
3.2.4 Implicit and Explicit Knowledge 50
3.3 The Documentation Challenge 51
3.4 From Data to Knowledge: An Example 56
3.5 Data Integrity 58
3.6 Quality Systems and Knowledge Management: Common Factors for Success 58
3.7 Summary 59
3.8 References 60

4 Quality by Design (QbD) and the Development and Manufacture of Drug Substance
Gerry Steele
4.1 Introduction 61
4.2 ICH Q11 and Drug Substance Quality
4.2.1 Enhanced Approach 63
4.2.2 Impurities 63
4.2.3 Physical Properties of Drug Substance 64
4.3 Linear and Convergent Synthetic Chemistry Routes 65
4.4 Registered Starting Materials (RSMs) 67
4.5 Definition of an Appropriate Manufacturing Process
4.5.1 Crystallization, Isolation and Drying of APIs 68
4.5.2 Types of Crystallization 69
4.5.3 Design of Robust Cooling Crystallization 70
4.6 In-Line Process Analytical Technology and Crystallization Processes
4.6.1 Other Unit Operations 80
4.7 Applying the QbD Process 82
 4.7.1 Quality Risk Assessment (QRA) 83
4.8 Design of Experiments (DoE) 87
4.9 Critical Process Parameters (CPPs) 88
4.10 Design Space 88
4.11 Control Strategy 89
4.12 References 91

5 The Role of Excipients in Quality by Design (QbD) 97
 Brian Carlin
 5.1 Introduction 97
 5.2 Quality of Design (QbD) 98
 5.3 Design of Experiments (DoE) 100
 5.4 Excipient Complexity 102
 5.5 Composition 105
 5.6 Drivers of Functionality or Performance 105
 5.7 Limited Utility of Pharmacopeial Attributes 106
 5.8 Other Unspecified Attributes 107
 5.9 Variability 107
 5.10 Criticalities or Latent Conditions in the Finished Product 108
 5.11 Direct or Indirect Impact of Excipient Variability 110
 5.12 Control Strategy 111
 5.13 Communication with Suppliers 112
 5.14 Build in Compensatory Flexibility 113
 5.15 Risk Assessment 113
 5.16 Contingencies 114
 5.17 References 114

6 Development and Manufacture of Drug Product 117
 Mark Gibson, Alan Carmody, and Roger Weaver
 6.1 Introduction 117
 6.2 Applying QbD to Pharmaceutical Drug Product Development 119
 6.3 Product Design Intent and the Target Product Profile (TPP) 120
 6.4 The Quality Target Product Profile (QTPP) 126
 6.5 Identifying the Critical Quality Attributes (CQAs) 128
 6.6 Product Design and Identifying the Critical Material Attributes (CMAs) 133
 6.7 Process Design and Identifying the Critical Process Parameters (CPPs) 136
 6.8 Product and Process Optimisation 139
 6.9 Design Space 145
 6.10 Control Strategy 150
 6.11 Continuous Improvement 153
 6.12 Acknowledgements 154
 6.13 References 154
Design of Experiments

Martin Owen and Ian Cox

7.1 Introduction

7.2 Experimental Design in Action

7.3 The Curse of Variation

7.3.1 Signal-to-Noise Ratio

7.4 Fitting a Model

7.4.1 Summary of Fit

7.5 Parameter Estimates

7.6 Analysis of Variance

7.6.1 Reflection

7.7 ‘To Boldly Go’ – An Introduction to Managing Resource Constraints using DoE

7.8 The Motivation for DoE

7.8.1 How Does the Workshop Exercise Work?

7.8.2 DoE Saves the Day!

7.9 Classical Designs

7.9.1 How Do Resource Constraints Impact the Design Choice?

7.9.2 Resource Implications in Practice

7.10 Practical Workshop Design

7.10.1 Choice of Factors and Measurements

7.10.2 Data Collection and Choice of Design

7.10.3 Some Simple Data Visualization

7.10.4 Analysis of the Half Fraction

7.10.5 How to Interpret Prediction Profiles

7.10.6 Half Fraction and Alternate Half Fraction

7.10.7 Interaction Effects

7.10.8 Full Factorial

7.10.9 Central Composite Design

7.10.10 How Robust Is This DoE to Unexplained Variation?

7.11 How Does This Work? The Underpinning of Statistical Models for Variation

7.12 DoE and Cycles of Learning

7.13 Sequential Classical Designs and Definitive Screening Designs

7.14 Building a Simulation

7.14.1 Sequential design, Part I: Screening Design (10 Runs)

7.14.2 Sequential Design, Part II: Optimization Design (24 Runs)

7.14.3 Definitive Screening Design

7.14.4 Robustness Design

7.14.5 Additional Challenges

7.15 Conclusion

7.16 Acknowledgements

7.17 References
8 Multivariate Data Analysis (MVDA) 201
Claire Beckett, Lennart Eriksson, Erik Johansson, and Conny Wikström

8.1 Introduction 201
8.2 Principal Component Analysis (PCA) 202
8.3 PCA Case Study: Raw Material Characterization using Particle Size Distribution Curves 204
8.3.1 Dataset Description 204
8.3.2 Fitting a PCA Model to the 45 Training Set Batches 205
8.3.3 Classification of the 13 Test Set Batches 206
8.3.4 Added Value from DoE to Select Spanning Batches 208
8.4 Partial Least Squares Projections to Latent Structures (PLS) 208
8.5 PLS Case Study: A Process Optimization Model 210
8.5.1 Dataset Description 210
8.5.2 PLS Modeling of 85-Samples SOVRING Subset 211
8.5.3 Looking into Cause-and-Effect Relationships 212
8.5.4 Making a SweetSpot Plot to Summarize the PLS Results 213
8.5.5 Using the PLS-DoE Model as a Basis to Define a Design Space and PARs for the SOVRING Process 215
8.5.6 Summary of SOVRING Application 217
8.6 Orthogonal PLS (OPLS® Multivariate Software) 217
8.7 Orthogonal PLS (OPLS® Multivariate Software) Case Study – Batch Evolution Modeling of a Chemical Batch Reaction 218
8.7.1 Dataset Description 218
8.7.2 Batch Evolution Modeling 218
8.8 Discussion 220
8.8.1 The PAT Initiative 220
8.8.2 What Are the Benefits of Using DoE? 221
8.8.3 QbD and Design Space 222
8.8.4 MVDA/DoE Is Needed to Accomplish PAT/QbD in Pharma 223
8.8.5 MVDA: A Way to Power up the CPV Application 223
8.9 References 224

9 Process Analytical Technology (PAT) 227
Line Lundsberg-Nielsen, Walkiria S. Schlindwein, and Andreas Berghaus

9.1 Introduction 227
9.2 How PAT Enables Quality by Design (QbD) 229
9.3 The PAT Toolbox 229
9.4 Process Sensors and Process Analysers 229
9.4.1 Process Sensors – Univariate 233
9.4.2 Process Analysers – Multivariate 233
9.4.3 Infrared (IR) 233
9.4.4 Near Infrared (NIR) 238
9.4.5 Tunable Diode Laser Spectroscopy (TDLS) 239
9.4.6 Ultraviolet-Visible (UV-Vis) 239
9.4.7 Raman

9.4.8 Focused Beam Reflectance Measurements (FBRM) and Laser Diffraction

9.4.9 Particle Vision and Measurement (PVM)

9.4.10 X-Ray Fluorescence (XRF)

9.4.11 Imaging Technologies

9.5 Analyser Selection

9.6 Regulatory Requirements Related to PAT Applications

9.6.1 Europe

9.6.2 United States

9.7 PAT Used in Development

9.8 PAT Used in Manufacturing

9.9 PAT and Real Time Release Testing (RTRT)

9.10 PAT Implementation

9.11 Data Management

9.12 In-Line Process Monitoring with UV-Vis Spectroscopy: Case Study Example

9.13 References

10 Analytical Method Design, Development, and Lifecycle Management

Joe de Sousa, David Holt, and Paul A. Butterworth

10.1 Introduction

10.2 Comparison of the Traditional Approach and the Enhanced QbD Approach

10.3 Details of the Enhanced QbD Approach

10.4 Defining Method Requirements

10.5 Designing and Developing the Method

10.6 Understanding the Impact of Method Parameters on Performance

10.7 Defining the Method Control Strategy and Validating the Method

10.8 Monitoring Routine Method Performance for Continual Improvement

10.9 Summary

10.10 Example Case Studies

10.10.1 Case Study 1 – Establishment of Robust Operating Ranges during Routine Method Use and Justifying the Method Control Strategy (Including SST Criteria)

10.10.2 Risk Assessment and Definition of Ranges

10.10.3 Experimental Design

10.10.4 Evaluate the DoE

10.10.5 Documenting Method Performance

10.10.6 Case Study 2 – Evaluation of the Ruggedness of a Dissolution Method for a Commercial Immediate Release Tablet Product

10.10.7 Case Study Acknowledgements

10.11 References