Index

A
AADs. See Antiarrhythmic drugs (AADs)
Ablation catheter (AB), 10, 25, 58, 63, 66, 81, 113, 122, 171, 222, 225, 252, 319, 364
deflectable, 365
degree of contact force, 362
novel force-sensing, 354
open-irrigated circular 10-electrode, 30
precise location, 58
Ablation lesion imaging, 85–87. See also Imaging modalities
Ablation success
definition of, 340
practical considerations, 339–341
Ablative isolation, of PV ostia, 10
ACT. See Activated clotting time (ACT)
Action potential duration (APD), 177, 304
Activated clotting time (ACT), 316
Activation frequency
PV–LA junction, 177
Activation mapping, 19, 89, 249, 323, 346. See also various mapping systems
AcuNav V 3D catheter, 50
ACUSON AcuNav V ultrasound catheter, 50
Adenosine-induced asystole, 41
Airway management, 23
Ambu bags, 23
Amiodarone, 7
Amiodarone, rhythm outcome, 374
Anemia, 33
Anesthesia management, 18
ANS. See Autonomic nervous system (ANS)
Anterior mitral isthmus ablation, 225
bidirectional block assessment, by means of differential pacing, 226
department and validation, 226
localization of conduction gaps, 226
trouble shooting, 226–227
Antiarrhythmic drugs (AADs), 4, 7, 8, 9, 18, 19, 303, 357, 361, 374
class I/III, 304, 132
dofetilide, efficacy of, 305
successful therapeutic concept, 374

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

therapy, 3, 315
Anticoagulation, 19, 352
with IV heparin, 24
standard protocol of, 363
therapy, 55, 146
withdrawal, 3
Aortic valve, 52
APD. See Action potential duration (APD)
Apixaban, 44
antifactor Xa assays, 352
periablation anticoagulation strategies, 352
prothrombin complex concentrate for, 352
Apixaban, 44
Apnea, steady-impedance fall
respirophasic impedance variation, 355
Arctic Front™ balloon catheters, 30
Arrhythmia, 66, 102, 119
asymptomatic episodes, 335
atrial (See Atrial arrhythmias)
cumulative incidence of recurrence, 104
experimental work in models of (See Renal artery denervation)
freedom, 373
-free survival, 264
long-term, 344
monitoring, 357
periprocedural, 357
recurrences, 338, 339
reducing recurrent, 104
-related symptoms, 340
Arrhythmogenic ectopy, 39
Arrhythmogenic veins, 125
Aspirin, 3, 43
Assessing Arrhythmia Burden after Catheter Ablation of Atrial Fibrillation Using an Implantable Loop Recorder (ABACUS), 338
trial, 338
Asymptomatic arrhythmia recurrences, 333
after catheter ablation, 334–336
long-term success, 338–339
Atrial appendage thrombus, 351
Atrial arrhythmias, 8, 81, 104, 177, 186, 187, 192, 199–201, 211, 241, 295, 298, 316, 338–339, 344
persistent, 345
reccurrence, 347
refractory organized, 346
Atrial CT images, from patients with atrial fibrillation, 40
Atrial dilation, left, 343
Atrial electroanatomic map, left
RF ablation of atrial fibrillation, 356
Atrial electrograms, 316
Atrial fibrillation (AF) ablation, 75, 373
ablation therapy, 358
black and white, 374
blanking period, 374
catheter ablation of, 296
cathetering, 371
clinical improvement, 375
complication rates over time, 352
cycle length, 308
assessment of, 294
mid-to-long-term clinical success, 295
detection algorithms
heart rate and variability of R–R intervals, 372
electrophysiological complications, 366
lesion-related inflammation, 374
modern wide-area circumferential, 346
nonrhythm end points of, 371
NYHA heart failure class, 371
outcome, 374
recurrence, 372
related bleeding, 362
rhythm end points, 371–373
side effects, 375
heart failure, 375
strategies, 311
unsolved problems, 375–376
follow-up, 376
results/complications, 376
small patients’ series, 376
Atrial flutter, left
atrial tachycardia mapping strategy, 324
case study, 328–331
coronary sinus, 329
chevron pattern, 326
cycle length variation, 324
ECG-based systems, 327
electroanatomic mapping
local activation time (LAT), 327
near-field versus far-field signals, 327
three-dimensional (3D), 327
linear ablation, 328–331
noninvasive mapping, 327–328
perimital flutter, 325
peritricuspid flutter, 325–326
principle, 323–325
roof-dependent flutter, 325
simultaneous macroreentrant tachycardia, 326
tachycardias, 326–327
Atrial instrumentation, 317
Atrial remodeling, 303
process, 373
Atrial rhythm, 249, 323
Atrial substrate imaging, 87
Atrial tachyarrhythmias, 8, 9, 366, 371
after AF ablation, 373
AF burden, 373
assessment of complete freedom, 372–373
clinical evaluation, 373
macroreentrant, 109, 221, 323, 326
rhythm end points, confounding variables, 371–373
additional medication, 374
blanking periods, 373–374
repeat ablations, 374–375
Atrial tachycardias (ATs), 221, 293, 344
focal reentrant and nonreentrant, 345
recurrence of, 296
Atrial tissue remodeling, 303
Atrio-esophageal fistulas, 24, 357, 364, 365
risk, 137
Atrioventricular (AV), nodal reentrant tachycardia
(AVNRT), 34
inducing AF, 245
Atrioventricular (AV) node, 7
Atrioventricular reentrant tachycardia (AVRT) inducing
AF, 245
ATs. See Atrial tachycardias (ATs)
Automation, of echocardiographic settings, 62
Autonomic nervous system (ANS), 229
adrenergic and cholinergic nerve densities, 230
hyperactivity, 230
role in initiation and maintenance of AF, 229–230
and substrate for atrial fibrillation, 283–284
synergistic actions, neurotransmitters, 230
vagal stimulation, 229
vein, premature stimuli to induce, 229–230
B
Benzodiazapines, 23
Beta-blockers, 7, 34, 246
Biatrial ablation, 9
Biatrial linear ablation, 8
Bidirectional AcuNav catheters, 50
Blanking period, 357
C
Calcium-channel blockers, 7
Cardiac ANS
efficacy of cardiac autonomic denervation for atrial fibrillation, 240–241
atrial fibrillation or other sustained atrial arrhythmia recurrence, 241
benefit of CFAE/GP plus PVI compared with PVI, 240
extrinsic and intrinsic components, 231
GP ablation
for AF, PVI plus, 238–240
for AF, strategies not involving PVI, 231–238
localization of left atrial, 231
GP identified and localized using endocardial HFS, patients undergoing, 231
Cardiac arrhythmias, 61, 109
Cardiac chambers, 38
Cardiac computed tomography (CT), 366
atrial CT images from three patients with atrial fibrillation, 40
axial CT images level of coronary sinus (CS), 42
CT images of esophagus and posterior LA at level of superior PVs, 42
position and relationship of esophagus with LA and CS, 38, 40
analysis of PV diameter, 40 from coronal and virtual endoscopic view of a pouch located in anterior roof of LA, 41
PV diameter, 40 relationship of esophagus to posterior wall 3-dimensional CT images, 43
Cardiac magnetic resonance imaging (cMRI), 65, 364
Cardiac mechanical function, poststepwise ablation, 297
Cardiac tamponade, 353, 362 and "popping", 362
Cardiac valves, 38
Cardiogenic shock, 366
Cardiomyocytes, 230
CARTO-guided ablation in atrial fibrillation, 66–68 geometry acquisition, 66
CARTO mapping system, 65–66
LA PA projection with circumferential ablation of PVs using, 67
LA postero-anterior (PA) view using, 66 localization of RIPV and its ablation tags for, 67
CartoSoun Image Integration Software, 66
CARTO SoundStar™ probe, 364
Catheter ablation, 226, 309, 311. See also various ablation approaches
CFAE. See Complex fractionated atrial electrograms (CFAE)
CGCI system. See Catheter Guidance Control and Imaging (CGCI) system
CHADS2 score, 3, 295, 340 CHADS2-VASc score, 351 CHA2DS2-VASc score, 3, 146, 352 Checklist, prior to atrial fibrillation ablation, 44 Chest discomfort, 355 Circular mapping catheters (CMC), 120 Circumferential ablation technique, for PV isolation, 145 complete PV isolation using 3D mapping and Lasso technique, 145 CCLs surrounding ipsilateral PVs, 148–151 LA reconstruction, 146–148 selective PV angiography, and identification of PV ostium, 146–149 single and double Lasso technique, 146–150 transseptal puncture, 146 inducibility of AF after CCL-based PV isolation, 165–174 circumferential PV isolation with single Lasso, 171 clinical outcome after CCLs in patients with paroxysmal AF, 174 complications, 171 contact force mapping of left atrium (LA) in posterior/ right lateral view, 173 septal pulmonary veins (RPVs) and lateral PVs (LPVs) divided segments, 173 single-Lasso approach performed in septal pulmonary veins (PVs), 172–173 Lasso catheter findings during CCLs, 151 complete PV isolation by CCLs, 151–165, 167–169 3D anatomical maps, 153, 166 fluoroscopic right and left anterior oblique views, 168–169 tracings, 155–164, 167–171 overview, 145 procedural end point, 149, 152 Circumferential lesions, 10 Circumferential pulmonary vein ablation approach (CPVA), 12, 183–185, 187, 188, 199 Circumferential techniques for AF ablation, 11 Johns Hopkins hospital clinical studies, 11–12 summary of studies for CPVA, 12
Circumferential vs. segmental pulmonary vein isolation/segmental PVI, 176–181
antral ablation, criticized by, 178
antral vs. ostial, outcome
AF recurrence after first procedure, 180
complications, 181
left atrial tachycardia recurrence, 181
recurrence AF only, 180
total atrial tachyarrhythmia recurrence, 179
benefit of box lesion in LA posterior wall, 178
carto 3D mapping, 177
cohort studies comparing segmental and ostial PVI, 179
electrical assessment, 180
factors explaining potential advantage of wide antral PVI, 178
findings supporting hypothesis, 178
meta-analysis and primary finding, 178
occurrence of left atrial tachycardia, 180
triggering activity of posterior LA wall and roof, 178
Circumferential vs. segmental pulmonary vein isolation/segmental PVI, 183–188
AF suppression after SOCA vs. CPVA for PVI, 183–185
atrial tachyarrhythmias after SOCA vs. CPVA for treatment of AF, 185–188
3D electroanatomical map, 185
incidence of mitral isthmus-dependent left atrial tachycardia, 188
NavX map showing method for SOCA with Lasso™catheter, 184
probability of developing any atrial arrhythmias, 187
atypical left AFL, 187
surface ECG and endocardial electrograms
 demonstrating right upper PVI by CPVA, 186
 recordings during SOCA for PVI, 184
Circumflex artery, 137
Clopidogrel, 43
CMC. See Circular mapping catheters (CMC)
Coagulopathy, 33
Colchicine, 357
Complete PV isolation, using 3D mapping, 145
CCLs surrounding ipsilateral PVs, 148–149
LA reconstruction, 146
selective PV angiography and identification of PV ostium, 146
 single and double Lasso technique, 146–148
transseptal puncture, 146
Complex fractionated atrial electrograms (CFAEs), 191, 229, 310
controversial aspects for technique, 206
ablation end points and AF termination by, 208
electrogram-guided ablation, to be ablated, 207–208
electrophysiologic mechanisms underlying, 206–207
relationship with rotor, 208–211
definition, 192–193
implementation in electrophysiology laboratory, 194–196
 clinical results of ablation, 196–197
 locations, spatiotemporal stability, 197
 as primary strategy/adjunctive to PVI, 194
 refining relevant subsets, 195
technical considerations, 194
techniques for automated identification, 194
limited contribution to successful outcome, 215
ablation after PVI increase likelihood of maintaining sinus rhythm, 215, 216
ablation not demonstrated, to be incremental to PVI, 215
automated detection not unequivocally demonstrated, 216
comparison of electrogram morphology/underlying pattern of activation as recorded during AF, 217
consensus upon definition and identification and, sensitivity and specificity, 217
electrograms with a short cycle length, 216
focal impulse and rotor modulation (FIRM) ablation, 218
identified visually using subjective criteria and operator-dependent, 215
role of right atrial ablation of, 217
variability in outcomes and heterogeneity of study populations, 215
locations, 193
mechanisms, 193–194
Complex fractionated atrial electrograms (CFAEs), 18, 112, 191, 216, 298, 310, 315, 316
ablation, 192–196, 240, 316
sites, 236
Complex fractionated electrograms (CFAEs), 42, 104, 145, 293, 294, 303, 312
Complex lesion, 9
Complications, during ablations, 361
early complications
death, 362
hemorrhagic complications, 362–363
phrenic nerve injury, 363–364
thromboembolic events, 363
early detection and treatment of, 59
inadvertent puncture of aorta during transseptal catheterization, 61
intra-atrial thrombus, 60–61
pericardial effusion, 59–60
preventative measures, 61
lung vein stenosis, 61
late complications, 364
delayed tamponade, 366
esophageal injury/atrio-esophageal fistula, 364–365
left atrial tachyarrhythmias, 366
PV stenosis, 365–366
of transseptal puncture, 55
Computerized tomography (CT)
angiography, with 3D-reconstruction of LA, 33, 40, 42–44, 45, 65, 67, 247, 248, 260
Concomitant surgical ablation, 1
Contact force
degree of, 362
-guided radiofrequency ablation, 72
benefits of, 72
large, phasic variations, 354
Contrast-induced nephropathy, 44
Coronary artery disease (CAD), 357
Coronary sinus (CS), 34, 245, 316
Corticosteroids, 357
Corticosteroid therapy, 57
Cox maze surgical ablation, 177, 178, 221
Cryoablation, 29
catheters, 137, 139
Cryoballoon ablation (CBA), 138, 139
oversizing of, 139
safe for treatment of patients with, 30
vs. Mesh ablation, 363
Cryo-energy ablation, 59
cryo-lesions, efficacy of, 137
Cryothermal energy, 365
Cryothermal lesions, 137
Dabigatran, 44, 352
case–control studies, 352
periprocedural safety, 44
DC cardioversion, 7, 296
Deep sedation, 23
Delayed cardiac tamponade (DCT), 366
Delayed cure, mechanisms of, 373
Delayed enhancement magnetic resonance imaging (DE-MRI), 86, 101, 343
ablation lesion, integration with EAM, 86
in atrial fibrillation, 101
3D lesion imaging, to direct catheter to a gap between atrial ablation lesions, 88
gap locations, 86
LA fibrosis and AF management
Utah classification and management algorithm, 103–106
LA fibrosis and stroke, 102–103
left atrial fibrosis and clinical AF, 102
lesion assessment, after ablation, 106
lesion location, 86
limitations of, 90
MRI EAM superimposed on 3D infarct imaging, 89
personalized treatment of atrial fibrillation
Utah classification, 105
post ablation evaluation
of scarring in pulmonary vein antral region, 106
preablation LA fibrosis quantification, 101
prior to ablation to assess atrial fibrosis, 87
relationship between LA fibrosis, LA enhancement, and AF, 101–102
segmented ablation lesion images, 93
stages of left atrial tissue fibrosis based on, 105
Dementia, 4
DE-MRI. See Delayed enhancement magnetic resonance imaging (DE-MRI)
Device visualization, and navigation, 90, 92
Direct ablation at sources (FIRM), and postprocedure management, 273
study end points, 273
Discerning symptomatic and asymptomatic episodes pre and post radiofrequency ablation of atrial fibrillation (DISCERNAF), 335
Dofetilide, 34, 357
Dominant frequency ablation, 196
dominant frequency analysis in AF, 196
impact of ablation at high DF sites, 198
limitations of analysis, 197–198
relationship of DF sites to CFAE, 197
spatiotemporal stability of DF locations, 197
techniques for dominant frequency analysis, in electrophysiology laboratory, 197
Dominant frequency (DF) mapping, 197
fast Fourier transform, retrospectively applied to bipolar EGMs, 196
fundamental concept, applied to, 196
Doppler echocardiography, 295
Doppler ultrasound, 28
Drug-refractory AF, 8
Drug-refractory paroxysmal AF, 9, 10
Drug-resistant hypertension (HTN), 283
Drug therapy, 3, 4, 183, 195
antiarrhythmic, 347
clinical study using preablation, 304–308
in preparation for ablation procedure, 42–45
preprocedural, considerations for patients undergoing trigger mapping, 246
Dyspnea, 10, 131
EAM. See Electroanatomical mapping (EAM)
ECG. See Electrocardiogram (ECG)
Effective refractory period (ERP), 304
EGM-guided approaches
AF termination, clinical importance of, 192
atrial fibrillation, mechanisms of, 191
cardiac electrical wave propagation in AF
theoretical mechanisms proposed to explain, 191
Electrical activation, 8
Electrical remodeling (ERP), 304
Electrical spiral waves (rotors), 271
Electroanatomical mapping (EAM), 28, 65, 68, 145, 346
benefits, 65
CARTO mapping system, 65–68
contact force-guided radiofrequency ablation, 72
definition of atra and esophagus using, 70
EnSite NaVX System, 68–70
groups based on technology employed for, 65
3D mapping systems, 57
noncontact mapping, 71
real-time position management (RPM) system, 71
rhythmia medical system, 70–71
three-dimensional, 19
and ambulatory ECG recordings, 34
Electrocardiogram (ECG) (Continued)
atrial ectopy/atrial tachycardia that degenerates to atrial fibrillation, 35
baseline sinus rate and QT interval, 34
loop recorders, 336
monitoring, 3
P-wave morphology
algorithm to determine PV origin, 37
during pacing at six sites in four pulmonary veins, 37
of tachycardia from, 36
right superior pulmonary vein tachycardia recorded from, 35
surface ECG distortion in MRI scanner, 88
transesophageal, 33
triggers of atrial fibrillation, 34
Electrocautery energy, 56
Electrogram-guided ablation, 206
clinical outcomes, 211–212
emerging techniques, 200–201
Shannon entropy (ShEn) mapping, 200–201
waveform coherence techniques, 201
results of selected studies utilizing DF ablation, 201
studies applying different approaches for, 199, 200
Electrograms, 92
cardiac, recording in MRI environment, 88
characteristics of AF driver regions, 112
full-featured, recording, 93
and pacing systems, 93–94
reconstructed, of posterior left atrium during persistent AF, 111
Electrolyte disturbance, 33
Endocarditis, 364
EnSite NavX System, 68, 347
benefits, 68
guided ablation of atrial fibrillation, 68–70
left atrial voltage mapping with, 69
PVI strategies guided by electroanatomic mapping with, 69
uni- or multipolar mapping catheter, movement, 68
EP recording systems, 25
Esophageal abnormalities, risk of thermal injury, 40
Esophageal damage, 41
Esophageal lesions, 24
Esophageal probe, 24
Esophageal temperature probes, 24
Esophagus, proximity to middle of posterior wall of LA transverse histological sections, 43
Esophagus, relationship to posterior wall, 43
2010 European Society of Cardiology guidelines, 2
indications for catheter ablation as defined by, 2
indications remain unchanged from 2010 document, 2
recommendations put forth in document concerning indications, 2
updated 2012 indications, 2
External defibrillator, 23
Extrapulmonary vein electrograms (EGMs), 119

F
Femoral pseudo-aneurysms, 361
Femoral vascular sheath, 354
pericardiocentesis and reinfusion, 354
Femoral venous puncture, 353
FIRM. See Focal impulse and rotor modulation (FIRM)
FIRM-guided ablation
acute results of, 275
clinical characteristics of patients in CONFIRM trial, 272
clinical implications, and perspectives, 279
limitations, 279
vs. conventional ablation
long-term efficacy of, 276
Flecainide, 357
Focal atrial tachycardias (ATs), 109
Focal impulse, and rotor mapping
analysis and interpretation, of computational maps, 272
localized electrical rotors (spiral waves) revealed by computational mapping, 274
spatial resolution analysis of human AF rotors, 274
clinical characteristics of patients, 272
CONFIRM trial, 272
clinical characteristics of patients, 272
location of focal sources and rotors in patients enrolled in, 277
location of rotors and focal sources in, 275
development of, 272
electrophysiological mapping, 272
FIRM-guided ablation (See FIRM-guided ablation)
FIRM mapping, 272, 273
limitations of studies, 279
localized sources, highly prevalent in human AF, 275
relationship between localized sources and CFAE sites, 275
of patient-specific sources to ablation lesions, 276
Focal impulse and rotor modulation (FIRM), 311
Follow-up principles, of rhythm monitoring, 19
Fully MRI-guided EP procedures, 87
ongoing work toward, 89

G
Ganglionicplexi (GP)
ablation (See GP ablation technique)
cellular electrophysiological properties, 310
Gastroesophageal reflux, 357
General anesthesia, 23–24
cart(s), 24
esophageal damage, 24
and patients with high-risk airways, 24
risk of esophageal injury, 24
GENius™ Multi-Channel RF Generator, 30
GP ablation technique, 229
anatomical approach, 233, 235–238
anteroposterior (AP) and posteroanterior (PA) view of left atrium, 237
electroanatomic maps, RF ablation, 236
freedom from recurrent AF/flutter after selective ablation, 236
integration of computed tomography images and, 239
localization of left atrial GP, 231
left atrial autonomic ganglionated plexi in patients, 233
posterior atrial and ventricular GP, 232
selective approach, 231
sites of contact of areas of ablation with, 239
view of human heart and major vessels illustrating locations, 239

H
Hansen Robotic™ system, 29, 132
Headache, 355
Heart disease, antiarrhythmic choices, 357
Heart failure, 7
Heart rate, 23
Hemodynamic monitoring, 353
Hemoptysis, 10
Heparin
administration, 43, 56, 60, 320, 352, 363
LMW heparin vs. uninterrupted warfarin, 351
High-frequency stimulation (HFS), 229
Hilbert transformation, 218
His bundle, 8
Holter ECG recordings, 335, 336
2012 HRS/EHRA/ECAS consensus document, 1
Human atrial fibrillation (AF)
computational mapping, compared with prior mapping of, 276, 277, 279
demonstration of electrical rotors during, 275
localized sources, highly prevalent in, 275
Hybrid model, for catheter location, 65
Hypertension, 192, 212, 284, 307, 343, 345, 375
Hypotension, 60, 231, 246, 353, 354, 366

I
Ibutilide, 34
Icosapolar catheters, 120
ICUS. See Intracardiac ultrasound (ICUS)
Imaging equipment, 49
Imaging modalities, 18, 24, 28, 38, 39, 41, 49–51, 62, 87, 89, 92, 101, 246, 264, 343
atrial fibrosis, 87
contrast, 57
endoscopic, 39
esophageal, 364
intraprocedural, 250
magnetic resonance, 76
noninvasive, 40
PV stenosis, presence and severity of, 40
single-plane, 92
thin-slice real-time, 92
Implanted loop recorder (ILR), 334, 372
Incremental developments, future perspective
CABANA investigation, 13
cryoballoon ablation, 12
and disruptive approaches, 12–13
rotor-based AF ablation, 13
Inferior vena cava (IVC), 43, 49, 52, 70, 111, 232, 263, 328
implicated in initiation of AF in, 263
triggers, 263
Initial ablation attempts, 8
Intra-atrial thrombus, 60–61
Intracardiac echocardiography (ICE), 70, 75, 346, 351, 352, 353
Intracardiac electrograms (icEGM), 93
Intracardiac recordings, 70, 111, 246, 253, 259, 372
during posterior left atrium during persistent AF, 111
Intracardiac ultrasound (ICUS), 49, 85
advancement and future perspective, 62–63
batheter
advanced to junction of RA and SVC to confirm, 61
based ultrasound probe, usage, 49
positioned in the mid-RA, 56
characterization of target atrial tissue, 59
confirmation of ablation catheter on carina between left PV’s, 63
on distal CTI during, 63
confluence of femoral veins during ICE introduction, 62
cryoballoon ablation technique, 59
3D/4D mapping technologies, 61–62
detection of stenosis by, 61
esophagus, 53
Eustachian ridge and cavo-tricuspid isthmus, 55
fossa ovalis, 53, 56
hemodynamic detection of stenosis by, 61
to identify intracardiac thrombus, 60
images display tenting of atrial septum and the left PVs, 56
at the junction of RA/IVC, the RA, tricuspid valve, and RV visualized, 53–55
left atrial appendage, 52
probe manipulated to acquire different views, 52
pulmonary veins, 53
diameters on, 57
Doppler results obtained by, 57
quality and CartoSound integration, 59
radial, 27
success rate, 55
Intracardiac calcium loading, 310
Intraprocedure ablation lesion imaging, 89–90
Intrinsic cardiac ablation lesion imaging, 89–90
Intrinsic cardiac nervous system, ablation-induced modification, 372
Ipsilateral veins, 11
IV hydrocortisone, 357

J
Jet ventilation, 353

K
Kaplan–Meier curve, 187, 241, 278

L
Lactic acidosis, 44
Lasso catheter, 145
Left atrial (LA) dilatation, 140
fibrosis and AF management, 103–106
and clinical AF, 102
preablation quantification, 101
relationship between LA enhancement, and AF and, 101
and stroke, 102–103
lesion, 9, 131
mechanical function, 295
and pulmonary venous geometry
EnSite NavX vs. reconstructed CT, 68
reconstruction, 146
structural remodeling, MRI techniques, 295
lozalized reentry, 298
Left atrial linear ablation (LALA), 183, 185–188
Left atrial linear lesions, 221
anterior mitral isthmus ablation, 225
bidirectional block assessment, by means of differential pacing, 226
der point and validation, 226
localization of conduction gaps, 226
trouble shooting, 226–227
confirmation of complete bidirectional block, by differential pacing, 221
essential points observed during, 221–222
materials and ablation settings, 221
mitral isthmus ablation, 222–223
assessment of bidirectional conduction block, 224
der point and validation, 223
improving contact, 223
trouble shooting, 223
use of low power and high irrigation rates, 223
roof line ablation, 223–224
assessment of conduction block, 225
der point and validation, 224–225
looping the ablation catheter, 225
parallel alignment of ablation catheter, 224
trouble shooting, 225
Left superior pulmonary vein (LSPV), 9, 43, 70, 111, 123–124, 127, 150, 153, 163, 166, 233, 345, 346, 353
Left superior vena cava (LSVC), 245, 263
Left ventricle, 42, 51, 52, 60, 120, 146, 232
Left ventricular (LV) function, 357, 375
Lesions, 8, 9, 91, 93, 150, 159, 177, 178, 222, 263, 277, 288, 294, 298
ablation lesion imaging, 85–87
biatrrial, 9
clinically silent embolic, 363
contiguous transmural, 328
cryo-lesion, 138
esophageal, 24
-formation monitoring, 57–59
intraprocedure ablation lesion imaging, 89–90
left atrial linear, 222–227
linear ablation, 9, 12, 104, 116, 165, 221, 222, 293, 294, 298, 305, 310, 312, 132, 233, 236–238, 336, 344, 346, 374
size and depth, accurately predicted in vitro by ICUS characterization, 59
sizes, 137, 133
Ligament of Marshall (LOM) triggers, 262, 263
studies on catheter ablation of AF initiated by triggers from, 264
Linear ablation, 8, 9, 223, 294, 298, 328
confined to right atrium to cure AF, 8
limited efficacy, 9
at mitral isthmus, 223
Logbook, 20
Long-standing persistent atrial fibrillation (LSPAF) ablation, 315–317
atrial tachycardia (AT), 323
“BELIEF” study (NCT01362738), 320
cases of recurrences, 320
catheter placement, 318
circular mapping catheter, 318, 319
conflict of interest, 320
contact force (CF)
electrode-tissue interface, 133
coronary sinus (CS), 323
isolation of, 320
cryoablation catheters, 137
cryoballoon ablation
efficacy and safety end points, 141
medium-term outcomes, 140
cryo-energy, energy sources/use of, 137
acute procedural outcomes, 138–139
cryoballoon ablation, safety of, 140–141
energy delivery platform, importance of, 137–138
long-term clinical outcomes, 139–140
preclinical studies, 137
cryo-energy, histology of, 138
distal coronary sinus and progresses, 119
follow-up, 320
high-voltage pacing, 318
isolation of coronary sinus, 318
microdeformations, 134
preprocedural/periprocedural management, 316–320
ablation protocol, 317–320
COMPARE randomized trial, 316
SPECULATE study (NCT01173809), 316
radiofrequency energy, 131
absolute reduction in ablation, 135
arrhythmia mechanisms, 132
average contact force during ablation, 134
benefits of using, 131
efficacy, 132
integration with remote navigation systems, 132–133
integration with three-dimensional (3D) mapping, 132
mechanisms of action, 131–132
putative advantages, 132
research & development, 133–135
TactiCath contact force ablation catheter, 133
ThermoCool® SmartTouch™
contact force and clinical outcomes, 135
force-sensing ablation catheter, 134
“yin and yang” of catheter contact, 133
randomized controlled trials, 315
right hemi-diaphragmatic contractions, 141
tachycardia cycle length (TCL), 323
treatment of, 315–316
twenty-eighthmm cryoballoon, 138
typical lesion set, 317

M
Macreentrant atrial tachycardias, 19, 75, 115, 150, 221, 239, 294, 295, 323–329
Macreentrant atypical flutters, 344
Magnetic resonance imaging (MRI), 33, 38, 76, 85, 87
acute ablation lesion imaging using, 91
3D angiography, 85
based electroanatomic mapping, 89
delayed enhancement (See Delayed enhancement magnetic resonance imaging (DE-MRI))
electroanatomic studies using mapping guidance, 88–89
endoluminal view of LA, 41
-guided procedures, development of integrated systems for, 93
importance of specific EP tools for use in the MRI scanner, 87
integration with electroanatomic (EAM) mapping, 86
left atrial wall structural remodeling (SRM) on delayed enhancement, 103
post ablation DE-MRI evaluation of scarring in the pulmonary vein antral region, 106
preprocedure for EP procedure guidance, 85
PV anatomy, 39
real-time MRI (rtMRI), 87
safety, 94
stepwise process of DE-MRI image acquisition, 102
Magneto-hydrodynamic effect (MHD), 94
MAZElke lesions, 8
MAZE procedure, 34, 310
Metformin, 44
Mitrales iskuhm ablation, 222–223
assessment of bidirectional conduction block, 224
end point and validation, 223
improving contact, 223
trouble shooting, 223
use of low power and high irrigation rates, 223
Mitral valve, 11, 51, 52, 55, 183, 227, 255, 274, 276, 326
Mixed ganglionated plexus, side effect, 372
Morbidity, 33, 375
-factors probably associated with increased, 34
-recurrent, 34
Mortality, 4, 7, 178, 185, 211, 212, 285, 362, 375
Multiarray ablation catheter (MAACTM), 30
Multiarray septal catheter (MASCTM), 30
Multiple wavelet model, 271
Multipolar ablation catheters, 12
Muscular paralysis, 316
Myocardial fibers, 8

N
NaviSTAR mapping, 66
NavX™ probe, 364
Neurologic status, 355
Neurotransmitters, 230, 236, 238, 283
Noncontact mapping, 71
Nonfluoroscopic access, 61
-positioning of reference catheter just prior to CS access, 63
Noninvasive mapping
- AF drivers
-ablation strategy for, 112, 113
-clinical outcomes, 112
cumulative driver-density maps
-demonstrating reentrant drivers concentrated around, 113
driver regions identified by, 115
-phase map, impulse from RIPV and initiates a couple of reentrant drivers, 111
-revealed by, 110–111
-varying f-wave morphology observed on, 114
-future areas of investigation, 116
-methodology of, 109–110
-noninvasive phase maps, posterior left atrium during persistent AF, 111
-persistent AF ablation guided by, 110–111
-of AT post-AF ablation, 115
-strengths and limitations, in AF, 115
-technical limitations of, 115–116
Non-PV ectopic activities, triggering AF, 245
-Novel oral anticoagulants (NOACs), 146, 363

O
Oral anticoagulants, 44, 352
Oral prednisone, 357

P
Pace mapping, 250, 253, 364
Pacing systems, 25, 89, 93
Palliative treatment, 8
Paroxysmal atrial fibrillation (AF), 2, 4, 9, 10, 11, 12, 119, 125, 150, 178, 183, 184, 187, 194–196, 198, 200, 208, 239, 253, 275, 285, 305, 307, 317, 334, 371, 375, 376
-catheter ablation of, 353
-ranomized clinical trial, 353
treatment of, 366
Percutaneous ablation procedures, 49
Pericardial effusion, 52
detection of, 60
Pericardiocentesis, 354
Periprocedural arrhythmia management
-antiarrhythmic medication (AADs), 357
-postablation inflammation, 357
-postprocedure arrhythmia monitoring, 357
-preprocedure arrhythmia monitoring, 357
Periprocedural care
anticoagulation, 351
cardiac tamponade, 353–354
general anesthesia vs. conscious sedation, 353
in-patient monitoring, 354–356
oral anticoagulants, management of, 352
uninterrupted warfarin, 351–352
vascular access, 353

Periprocedural complications
avoidance and management of, 356

Phrenic nerve injury, 185, 353, 355, 356, 363, 364
Phrenic nerve palsy (PNP), 30, 41, 140, 141, 318, 363, 364

Physicians’ training, in AF ablation recommendations, 20
PNP. See Phrenic nerve palsy (PNP)
Polymer materials, and composites, 94

Postablation rhythm monitoring, tools for, 336–337
Postdischarge follow-up, late complications, 357–358
Postinterventional observational, 19

Preprocedure arrhythmia monitoring, 357
Preprocedure preparation, 33

ideal setting under optimal conditions, 33
primary indication for ablation, 33

Preprocedure reverse remodeling
arrhythmia-free survival, after single catheter ablation intervention, 309
atrial remodeling, evidence, 304
cardioversion preablation, clinical study, 308–309
dofetilide, efficacy of, 305
limitations, 309
preablation antiarrhythmic drug therapy, clinical study, 304–305
PVI response, 305
P-wave duration, change, 305–308
electrical remodeling, 303–304
evidence for, 304
evidence supporting atrial remodeling, 303–304
first procedure, characteristics of, 308
long-term overall success rate, 310
persistent AF, selecting ablation strategies, 309–311
autonomic ganglia, 310
complex fractionated atrial electrograms, 310–311
linear lesions, 310
rotor mapping & ablation, 311
SELECT AF trial, 308
postpulmonary vein isolation, outcome, 306
P-wave duration, 306, 307
reverse remodeling concept, practical application, 311

Proinflammatory processes, 357
Propafenone, 34, 357
Propofol, 23
Protamine, 320, 352, 353, 356
Proton pump inhibitors (PPI), 357
Published guidelines for AF ablation, 2–4
Pulmonary artery, 37, 52, 53, 233, 247, 248, 259
Pulmonary hypertension, 10, 38, 375
Pulmonary vein (PV), 34, 49, 119, 131
anatomy, 56–57
branching pattern of, 39
CT or MRI, 57
ICUS protocol, 57
unusual, 39
antrum electrograms, 317
catheter ablation isolation, 305
connections, 305
ectopic activities, 245
electrogram interpretation (See Pulmonary vein-specific electrogram interpretation)
potentials, 119
role of, 119
stenosis, 10, 11, 40, 41, 57, 61, 146, 154, 183, 137, 346, 365, 366
optimal treatment, 366
risk of, 293
trigger mapping, 245

Pulmonary vein ablation catheter (PVACTM), 30, 365

anatomic approach, 366
antral vs. ostial, 180, 181
circumferential, 198
clinical outcomes and unintentional during, 211
cohort studies comparing segmental and ostial, 179
as initial approach to ablation of paroxysmal atrial fibrillation, 184
outcome, in patient, 306, 307, 310
segmental, 187
strategies guided by electroanatomic mapping with EnSite NavX, 69
use of EAM to facilitate, 28
Utah stages, ablation strategy for, 104

Pulmonary vein-specific electrogram interpretation, 123–125
decremental pacing, 120–121
differential (CS) pacing, 121, 122
decremental pacing, 120–121
differential (CS) pacing, 121, 122
directional mapping, 122
end points of ablation, 125–128
entrance block, 127
exit block, 127–128
identifying arrhythmogenic veins, 125
left inferior pulmonary vein, 124
left superior pulmonary vein, 123–124
pacing maneuvers, 121–122
PVI during sustained AF, 128, 129
PV recordings during ablation, 125
PV recordings during ablation, 125
right inferior pulmonary vein, 125
right superior pulmonary vein, 124–125
simultaneous/combination pacing, 122–123
site-specific pacing, 122
PV. See Pulmonary vein (PV)
PVI. See Pulmonary vein isolation (PVI)
P-wave
duration, 261, 304–309
morphology, 34, 36, 159, 171, 250, 255, 259, 262, 263, 265

Q
Quadripolar catheter, 66
Quality of life (QOL), 375
clinical improvement and, 375
improved symptoms, and, 315
resulting from elimination of arrhythmia-related symptoms, 3
SF 36 questionnaire, 375
significant improvement in, 340

R
RAAS. See Renin-angiotensin-aldosterone system (RAAS)
Radiation protection, 25
external protective equipment, 25
steps recommended to minimize personnel exposure in, 25
Radiofrequency ablation (RFA), 58, 176, 229, 305, 308, 137
focal trigger points, 9
Radiofrequency (RF) energy, 75, 222, 362
Radiofrequency lesion formation, monitoring, 59
Radionuclide ventilation/perfusion imaging, 366
Rapid atrial pacing models, 303
RDN. See Renal artery denervation (RDN)
Real-time MRI (rtMRI), 87
device visualization by, 92
integrated visualization of, 92–93
studies using guidance, 87–88
Real-time position management (RPM) system, 71
disadvantages, 71
validated in, 71
Recurrent atrial fibrillation, 307
predictors of freedom, following ablation, 307–308
Redo ablation, 343
antiarrhythmic drug therapy, 347
benefit from redo ablation, 348
electrophysiologic issues to reablation procedure, 346–347
follow-up procedures, 346
left atrial voltage map, 347
multipolar left atrial voltage mapping, 347
multipolar mapping chronic reconnections, 347
non-AF recurrence, 344–345
patient selection, 345
postprocedural characteristics of recurrence, 344
preprocedural factors, with recurrence, 343–344
procedural factors and issues related to recurrence, 344
pulmonary veins, 346
stenosis, 346
radiation exposure, 346
timing reablation, 345–346
transseptal puncture, 346

Refactory supraventricular tachycardias, 8
Remote catheter manipulation, 75
Remote magnetic catheter navigation, 75–78
advantages of RMN system, 79
“autoMap” feature, 77
Char formation, 77
contact force (CF), 77
disadvantages, 79
flexibility, 78
magnetic field strength factor, 79
occasional fixed rate (VOO) pacing, 79
performance, 78
power-on-reset behavior, 79
preprogrammed vectors, 77
remote vs. manual catheter manipulation clinical parameters, 78
RMN laboratory, 76
safety, 78
standard vs. RMN catheters, 76
system, VdriveTM, 77
Renal artery denervation (RDN), 283, 284
clinical experience, 285–288
change from baseline in, systolic/diastolic blood pressures, 286, 287
hazard ratio for AF recurrence, 288
3D reconstructions with sites of RF ablation, 289
experimental work in arrhythmia models, 285
MRI scans, after ablation, 289
technique of, 288
Renal denervation. See Renal artery denervation (RDN)
Renal failure, acute, 44
Renal insufficiency, 33
Renal nerves, 284–285
Renin-angiotensin–aldosterone system (RAAS), 284, 285
Resolution
of image, 50
at a specific frequency, 50
Resuscitation, 23
Reveal XT Performance Trial (XPECT), 337
Reverse atrial electrical remodeling hypothesis, 308
RFA. See Radiofrequency ablation (RFA)
RF-induced esophageal heating, 24
Rhythm control strategy, 4, 7
AFFIRM study, 4
Rhythmia medical system, 70–71
Rhythmol SR, 131
Right atrium (RA), 8, 28, 38, 42, 43, 49, 54, 56, 60, 87, 110, 111, 120, 124, 161, 171, 184, 208, 209, 217, 218, 235–238, 248, 252, 254, 272, 273, 275, 276, 318, 325, 329, 352
ablation, 294
Right superior PV (RSPV), 9, 40, 41, 53, 111, 121, 124, 159, 249, 250, 253, 257, 259, 318
Rivaroxaban, 44
antifactor Xa assays, 352
half-life of, 352
Periablation anticoagulation strategies, 352
prothrombin complex concentrate for, 352
Robotic catheter manipulation, 75, 79
 advantages, 81
 commercially available systems’ features, 81
 comparison of technologies
 for catheter manipulation during mapping and ablation of atrial arrhythmias, 81
 performance, 79–80
 safety, 80–81
 setup, 79
 system integrates with, 79
Roof line ablation, 223–224
 assessment of conduction block, 225
 endpoint and validation, 224–225
 looping the ablation catheter, 225
 parallel alignment of ablation catheter, 224
 troubleshooting, 225
rtMRI. See Real-time MRI (rtMRI)
S
 Scoring systems, apply to patients, 3
 Sedation, 23
Segmental ablation, 11
 complications, 11
Segmental isolation, 10
Segmental ostial catheter ablation (SOCA) approach, 183
 Segmental PV ablation, clinical studies, 11
Shannon entropy (ShEn) mapping, 200–201
Sheath removal, 355
Signal-averaged P wave (SAPW), 304
Sinus rhythm (SR), 3, 4, 7, 293, 320, 373
 cardioversion and maintenance of, 309
Sleep disordered, 343, 344
Sotalol, 34
Staffing, 17
 permanent and temporary, recommendations, 18
 and theoretical and anatomical knowledge, 18
Stand-alone surgical ablation, 2
Stepwise ablation, 293
 AF cycle length, monitoring of, 294
 atrial tachycardia, following stepwise ablation, 296–298
 cardiac function, following stepwise ablation, 295–296
 clinical outcome for, 297
 clinical outcomes, 295
 current limitations, 298
 electrogram-based ablation, 294
 limitations of, 298
 linear ablation, 294
 procedural endpoint, AF termination, 295
 right atrial ablation, 294
 successful clinical outcome, predictors of, 295
 thoracic/pulmonary vein isolation, 293
Stereotaxis Niobe™, 29, 132
Stereotaxis system, 79
Stiff left atrium syndrome, 375
Stimulation protocols, to elicit AF triggers, 246
Stroke, 11
 bridging strategy, 351
 risk, 7, 351
Structural heart disease, 212, 295, 297, 311, 140, 343, 344, 357
Superior vena cava (SVC), 34, 245
Supraventricular arrhythmias, 34, 37, 315, 365
Sustained treatment for paroxysmal AF (STOP AF), 139
Symptom-activated transtelephonic ECG transmissions, 334
Symptom-based follow-up strategies
 complaints table, schematic representation of, 334
 device-stored electrograms, 335
 ECG monitoring technologies, 337–338
 ABACUS trial, 338
 ablation success in clinical trials, 339
 diagnostic yield, 340
 follow-up period, 338–339
 follow-up strategy and arrhythmia detection, 338
 implantable loop recorders, 335
 limitations of, 333–334
 rhythm outcome, 337–338
Systolic contractions, 353
T
Tachyarrhythmia
 recurrent, 159
 ventricular, 284
Tachycardia, 34
 atrial, 34
 cycle length, 323
 induced cardiomyopathy, 340
Tamponade, 10, 11, 20, 43
Technical requirements, 49
 historical perspective, 49–50
Technical skills, for trainees, 18
TEE. See Transesophageal echocardiography (TEE)
Thermal injury, 24
ThermoCool™ SF Catheter, 318
Thrombocytopenia, 33
Thromboembolic risk, 38, 351, 363
Tip versatile ablation catheter (TVAC™), 30
Training, 17–48
 program supervisor, 20
Transducers, 49, 50
 high-frequency, 49
 in mid-right atrium, fluoroscopic image, 51
 pulsed Doppler velocity signals recorded with, 54
Transesophageal echocardiography (TEE), 28, 38, 49, 146, 316
 limitations, 38
 screening, 351
Transseptal catheterization, 55
 to access LA from the RA by crossing the fossa ovalis, 55
 confluence of the femoral veins, 62
 inadvertent puncture of aorta during, 61
 patient fully heparinized, 56
 puncture site visualized in, 55
 ICUS-guided, 55
 visualization of fossa tenting and microbubble spray, 62
Transseptal puncture, 19, 25, 146
 equipment for, 25–26
 ablation generators, 28–30
 brokenbrough needle, 26–27
 Carto® 3 mapping system, 29
 catheters, 28–30
 echocardiography, 27–28
 electroanatomic mapping, 28
 flat screen displaying, 26
 Lasso® NAV mapping catheter, 312
 non-RF systems, 30
 St Jude Swartz braided fixed curve transseptal sheaths, 26
VGLA catheter, 30
Transseptal technique, 55–56
 methodological variations, 56
Transsthoracic echocardiography (TTE), 37–38, 50, 353
Transverse CT scan, of left inferior PV, 44
Tricuspid valve, 38, 51, 53, 59
Triggers mapping, 245
 areas of uncertainty and future directions, 263–264
 clinical characteristics, of patients, 264
 genetic factors, 264
 pharmacological challenges, 263
 mapping of nonpulmonary vein triggers
 coronary sinus triggers, 255–256
 crista terminalis triggers, 259, 261
 general considerations, 253–263
 left atrial appendage triggers, 261–262
 ligament of marshall triggers, 262–263
 mitral annular triggers, 256–257
 prevalence and distribution, 254
 septal triggers, 261
 superior vena cava triggers, 257, 259
 pulmonary vein triggers, 249–253
 algorithm for localization of AF triggers, 251
 catheter positioning for trigger mapping, 249
 mean and standard deviation of the earliest coronary sinus to, 252
 surface ECG leads I, aVF, and V1, and intracardiac activation sequence, 252
 systematic approach, 249

U
Ultrasound
 catheter, 50
 esophagus, 53
 fluoroscopic image
 demonstrating transducer in mid-right atrium, 51
 fossa ovalis, 53
 image of esophagus, 55
independent left lower (LLPV) and left upper (LUPV) veins
 emptying into left atrium, 54
 intracardiac (See Intracardiac ultrasound (ICUS))
 left atrial appendage, 52
 principles and techniques, 50
 pulmonary veins, 53
V
 Vascular complications, risk of, 353
Ventilation, 23, 353, 366
Ventricular
 arrhythmias, 109
 hypertrophy, 285
 tachyarrhythmias, 284
 tachycardia, 20
Visualization
 of critical anatomic structures, technique for, 50–55
 device visualization and navigation, 90, 92
 of fossa ovalis and “catheter tenting,” 56
 integrated, of real-time imaging, 3D anatomy, electrograms, 92–93
 left atrium (LA), 33
 manipulation of probe, 52
 sensitivity and specificity of MRI, 40
 tricuspid valve and right ventricle, 51
 Visually guided laser ablation (VGLA) catheter, 30
Voltage mapping, 19, 344
Volume requirements, 19
 basic training, 19
 minimum recommended numbers for trainees involved in, 19
 training strategies, 20–21
W
 WACA. See Wide area circumferential ablation (WACA)
Warfarin, 3, 351–352
 anticoagulated, 351
 EHRA/ECAS guidelines, 43
 patients to switch, before ablation, 44
 restoration of, 363
 therapeutic levels of, 43
Waveform coherence techniques, 201
Wide area circumferential ablation (WACA), 145, 278
Wolff–Parkinson–White syndrome, 109
WPW ablation, 374
X
X-ray angiography, 41
X-ray computed tomography (CT), 85