Contents

Acknowledgments	ix
Introduction	xi
1.1 Why All the Excitement?	xi
1.2 Historical Perspective	xiv
1.3 Book Outline	xvii

1 Modeling: Understanding Metal-Nanoparticle Plasmons

1.1 Classical Picture: Solutions of Maxwell’s Equations
1.2 Discrete Plasmon Resonances in Particles
1.3 Overview of Numerical Methods
1.4 A Model System: Gold Nanorods
1.5 Size-Dependent Effects in Small Particles
References
46

2 Making: Synthesis and Fabrication of Metal Nanoparticles

2.1 Top-Down: Lithography
2.2 Bottom-Up: Colloidal Synthesis
2.3 Self-Assembly and Hybrid Methods
2.4 Chemical Assembly
References
92
Contents

3 **Measuring: Characterization of Plasmons in Metal Nanoparticles**
3.1 Ensemble Optical Measurements 97
3.2 Single-Particle Optical Measurements 102
3.3 Electron Microscopy 125
References 132

4 **Coupled Plasmons in Metal Nanoparticles**
4.1 Pairs of Metal Nanoparticles 136
4.2 Understanding Complex Nanostructures Using Coupled Plasmons 149
References 161

5 **Nonlinear Optical Response of Metal Nanoparticles**
5.1 Review of Optical Nonlinearities 166
5.2 Time-Resolved Spectroscopy 170
5.3 Harmonic Generation 187
References 191

6 **Coupling Plasmons in Metal Nanoparticles to Emitters**
6.1 Plasmon-Modified Emission 193
6.2 Plasmon–Emitter Interactions Beyond Emission Enhancement 210
References 225

7 **Some Potential Applications of Plasmonic Metal Nanoparticles**
7.1 Refractive-Index Sensing and Molecular Detection 229
7.2 Surface-Enhanced Raman Scattering 233
7.3 Near-Field Microscopy, Photolithography, and Data Storage 239
7.4 Photodetectors and Solar Cells 242
7.5 Optical Tweezers 249
7.6 Optical Metamaterials 254
References 266

Index 271