INDEX

8B/10B encoding, 226
Aberrations, 79, 80, 81, 82, 86, 87
ACLV, 94, 98
Alexander phase detector, 227
Astigmatism, 80, 81
Asynchronous design, 323
Back end of line, 58–66
chemical mechanical planarization (CMP), 6, 10, 63, 79, 109, 359
copper resistivity, 62
FSG, 10
interconnect, dishing, 7
interconnect, erosion, 7
low-κ dielectric, 8, 10
pattern density, 350
wire density, 350
Back-side connection, 160
Bandgap reference, 146, 154
Bit-cell, 352
1T1C, 241, 244
3T1C, 241
8 f^2, 242–243, 247
design(s), 352, 352–360
layout, 354–360
misalignment, 355–358
Body bias
adaptive, 311
VBB, 247–248
Bragg’s condition, 74
BSIM3 models, 135
BSIM4
halo implant, 381
models, 138, 381
model specific issues, 384
pocket implant, 381
Bulk silicon, 161
Capacitor, 142, 143, 144
decoupling, 162, 163,164, 165, 166,
228–231, 348, 368
metal, 367
metal comb, 144
metal-insulator-metal (MIM), 144
storage, 242, 245
scaling, 245
stacked, 245–246
Ta2O5, 246
trench, 245–246
Carrier mobility, 139, 140
C_{eqy}, 369
Circuit delay variability, 344
Clock data recovery (CDR), 159
Clock distribution strategies, 347
 H-tree, 348
 layout-clock buffer, 349
 shielding, 349
Clock skew, 11
COG, 106
Common mode, 224, 225, 226
 feedback, 224
 level, 224
 voltage, 225, 226
Copper wire, 61
 low-κ dielectrics, 64
Critical dimension (CD), 6, 17, 79, 83–100,
 109–110, 118–119, 137, 147, 332–333,
 340–341
Current mirror, 146, 150–151, 225
Data converter, 147–148, 159, 180
 analog-to-digital converter (ADC), 180,
 227
 sigma-delta converter, 147
Data retention voltage, 319
Deep n-well, 161
Delay chain, 374–375
Delay locked loop (DLL), 167
Delay variation
 pulse flop, 373
 trip point, 373
Depth of focus (DOF), 83, 104, 113
Design for manufacturability (DFM), 331,
 342
 analog, 339
Design rule check (DRC), 136
Differential pair, 152
Differential signaling, 292
Diffusion, dogbone-shaped, 351
Diffusion, flaring, 336, 341, 351
Dynamic voltage scaling, 311
Electrostatic discharge (ESD), 157–158,
 172–173, 176–177, 180–186, 188–189,
 195, 200, 211–212, 220, 227
breakdown, 172, 195, 200
charged device model (CDM), 173, 176,
 212
human body model, 173, 176, 180,
 185–186, 195, 198, 211
implantation, 177
low-C, 180, 181–186, 188, 189
machine model (MM), 173, 176,
 185
pin-to-pin, 173
power-rail, 173
silicide block, 177, 180
Epitaxial, 161
Equalization, 237–238
Equivalent oxide thickness (EOT), 134
FinFET, 6, 25, 320
Focus, 79, 81, 82, 83
Folded-bit-line architecture, 243
FOM, 3
Forbidden zones (pitches), 109, 340
Front end of line 25, 41
carrier mobility, 42
CET, 14
dopant fluctuation, 15
drain-induced threshold voltage shift (DITS),
 18–19, 141, 367, 382
gate-induced drain leakage (GIDL), 1,
 17–20, 135, 248, 382
overlap capacitance, 353
parasitics capacitance, 52
poly depletion, 18
proximity effects, 17, 18, 341
rapid thermal processing, 34
RSD, 3
short channel effects, 41
DIBL, 13, 367
RSC, 18, 367
velocity saturation, 344
STI, 13, 340
stress, 13, 17–18, 341
strain engineering (Strained Si), 6, 14, 33
Vth, 15
Gate dielectric
 alternative dielectrics, 29
equivalent thickness, 27, 41
quantum effects, 43
scaling, 26, 29
Gate-driven design, 176, 177
Gate leakage current, 135, 141. See also
 Tunneling
direct tunneling leakage, 49
gate direct tunneling, 18, 382
Gate-grounded NMOS, 178–180, 185, 191
Guard ring, 159, 160
I/O standards
 advanced graphics port (AGP), 221
current mode logic (CML), 221, 225–226,
 238
emitter-coupled logic (ECL), 221
gunning transceiver logic (GTL), 221
high-speed transceiver logic (HSTL), 221
hypertransport, 221
low-voltage differential signal (LVDS), 221, 223
low-voltage positive referenced emitter-coupled logic (LVPECL), 221
low-voltage CMOS (LVCMOS), 221
low-voltage transistor-transistor logic (LVTTL), 221
positive referenced emitter-coupled logic (PECL), 221
stub series terminated logic (SSTL), 221, 223
Illumination, 75, 78–79, 82, 87, 93–94, 108
annular, 75, 93, 102, 104, 108, 112
c conventional, 75, 93–94
dipole, 75, 93–94, 108
quadrupole, 75, 93, 108
Image fidelity, 82
Imaging performance, 75–76
Imaging theory, 73
Impedance matching, 234
Inductor, 144–145
Input stage, 152
Interconnect
 capacitance, 265
 circuit representation, 260
 driver sizing, 272, 285
 frequency dependent RL, 269
 inductance, 261, 267
 power consumption, 304
 resistance, 264
κ-Factor, 74, 76–78, 85, 87, 90
Layout
 bad practices, 363
 common centroid, 364
 good practices, 365
 Manhattan, 93, 108
 poly jumper, 365
 process interaction, 354, 364
 suboptimal, 332
Leakage suppression schemes, 323
Lens, 79–80, 82, 86, 121, 123
LER, 15–16
Level shift, 148
Low-noise amplifier, 185
Low-power DRAM design, 308, 319
Low-power SRAM design, 305, 316
Mask error enhancement factor (MEEF), 84–86, 119
Masks, 103. See also Resolution enhancement techniques
 alternating (PSM), 103–104, 106–107, 114–115, 119
 phase conflict, 116
 hard phase-shift masks, 103
Monte Carlo, 86
Moore’s law, 21, 77
MOSFET gate
 direct tunneling leakage, 49
 leakage suppression schemes, 323
 metal electrode, 48
 polysilicon depletion, 45
Multilevel pulse amplitude modulation, 226–227
Multiple supply and threshold voltages, 302, 314
Nitride capping, 6
Numerical aperture, 5, 73–74, 77, 84–85, 87, 90–91, 121–123
Outer diameter (OD), 140, 156
Output stage, 153–154
 class AB, 153
Parasitics, 155
 interconnect, 155
 layout extracted netlist, 156
 resistor capacitor extraction (RCE), 155
Phase locked loop (PLL), 10, 143, 148–149, 159, 168, 340, 366
Phase noise, 146
Photolithography, 73
 direct write electron beam, 126
 EUV, 5, 124, 125, 126
 immersion lithography, 5, 122–123
 particle beam, 126
Pitch, 83
Poly flaring, 351
Poly orientation, 20
Polysilicon depletion, 16, 45
Power busing, 166
Power consumption, 346
Power integrity, 20
Preemphasis, 235, 236, 237
Process sensitivities, 82
Process variation, 78–79, 82, 377
CD, 348
die-to-die, 344
random, 345
systematic, 345
within-die, 345
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity effects</td>
<td>17–18</td>
</tr>
<tr>
<td>pol</td>
<td>18, 367, 369</td>
</tr>
<tr>
<td>STI</td>
<td>18</td>
</tr>
<tr>
<td>transistor</td>
<td>358</td>
</tr>
<tr>
<td>well</td>
<td>18, 341, 367, 369</td>
</tr>
<tr>
<td>PSRR</td>
<td>367</td>
</tr>
<tr>
<td>Pulse generator</td>
<td>374</td>
</tr>
<tr>
<td>Radio frequency (RF)</td>
<td>157, 159</td>
</tr>
<tr>
<td>RC/RLC timing</td>
<td>274, 278</td>
</tr>
<tr>
<td>Reflectivity</td>
<td>78, 79</td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>MOSFET reliability</td>
<td></td>
</tr>
<tr>
<td>hot carrier, HCI</td>
<td>3, 57</td>
</tr>
<tr>
<td>negative bias temperature instability (NBTI)</td>
<td>15, 57, 135, 142, 332</td>
</tr>
<tr>
<td>time-dependent dielectric breakdown</td>
<td>56</td>
</tr>
<tr>
<td>TDBB</td>
<td>8, 249</td>
</tr>
<tr>
<td>Repeater insertion</td>
<td>288</td>
</tr>
<tr>
<td>Resist</td>
<td>78</td>
</tr>
<tr>
<td>Resistor</td>
<td>142</td>
</tr>
<tr>
<td>Resolution enhancement techniques</td>
<td>1, 5, 73, 91, 107, 111, 113, 117–119, 121, 331</td>
</tr>
<tr>
<td>optical proximity correction (OPC)</td>
<td>12, 16, 18, 73, 89, 91, 94–95, 97–98, 109–110, 111, 113, 120, 331, 338, 340–341, 359</td>
</tr>
<tr>
<td>rules-based (RBOPC)</td>
<td>98, 99</td>
</tr>
<tr>
<td>hammer head</td>
<td>96, 111, 359</td>
</tr>
<tr>
<td>model-based (MOPC)</td>
<td>98–101, 103, 111, 354, 360–361</td>
</tr>
<tr>
<td>overcorrection, 360</td>
<td></td>
</tr>
<tr>
<td>undercorrection, 360</td>
<td></td>
</tr>
<tr>
<td>phase shift</td>
<td>12, 81, 91, 338</td>
</tr>
<tr>
<td>asymmetric</td>
<td>81</td>
</tr>
<tr>
<td>Levenson phase shift</td>
<td>103</td>
</tr>
<tr>
<td>symmetric</td>
<td>81</td>
</tr>
<tr>
<td>subresolution assist features (SRAF)</td>
<td>73, 91, 101–102, 110, 112, 120, 340–341, 360</td>
</tr>
<tr>
<td>Scaling</td>
<td>59</td>
</tr>
<tr>
<td>array transistor</td>
<td>247</td>
</tr>
<tr>
<td>capacitor (DRAM storage)</td>
<td>245</td>
</tr>
<tr>
<td>sense amplifier</td>
<td>249</td>
</tr>
<tr>
<td>Self-timed delay margin</td>
<td>372</td>
</tr>
<tr>
<td>Sense amplifier</td>
<td>243–244, 249, 251, 253</td>
</tr>
<tr>
<td>Shallow trench isolation (STI)</td>
<td>135, 137–140, 156–157</td>
</tr>
<tr>
<td>Shot noise</td>
<td>141</td>
</tr>
<tr>
<td>Signal integrity analysis</td>
<td>256</td>
</tr>
<tr>
<td>capacitive coupling noise</td>
<td>276</td>
</tr>
<tr>
<td>inductive coupling noise</td>
<td>280</td>
</tr>
<tr>
<td>line-to-line coupling</td>
<td>11</td>
</tr>
<tr>
<td>noise-aware timing</td>
<td>281</td>
</tr>
<tr>
<td>noise-constrained routing</td>
<td>284</td>
</tr>
<tr>
<td>Silicon controlled rectifier (SCR)</td>
<td>175, 178, 192–212, 227</td>
</tr>
<tr>
<td>double-triggered SCR (DTSCR)</td>
<td>207–208</td>
</tr>
<tr>
<td>dynamic-holding voltage SCR (DHVSCR)</td>
<td>211–212</td>
</tr>
<tr>
<td>grounded-gate triggered SCR (GGSCR)</td>
<td>203–205, 210</td>
</tr>
<tr>
<td>high-current NMOS-triggered SCR (HINTSCR)</td>
<td>210</td>
</tr>
<tr>
<td>high-holding-current SCR (HHI-SCR)</td>
<td>210</td>
</tr>
<tr>
<td>low-voltage triggering SCR (LVTSCR)</td>
<td>194, 202–203, 209, 210</td>
</tr>
<tr>
<td>native-NMOS triggered (NANSCR)</td>
<td>209–210, 212</td>
</tr>
<tr>
<td>NMOS-triggered low-voltage SCR (PTLSCL)</td>
<td>203</td>
</tr>
<tr>
<td>n-type substrate-triggered SCR (N_STSCR)</td>
<td>204, 206–207</td>
</tr>
<tr>
<td>PMOS-triggered low-voltage SCR (PTLSCL)</td>
<td>202</td>
</tr>
<tr>
<td>PMOS-triggered SCR (PTSCR)</td>
<td>202</td>
</tr>
<tr>
<td>p-type substrate-triggered SCR (P_STSCR)</td>
<td>204, 206–207</td>
</tr>
<tr>
<td>stacked NMOS-triggered SCR (SNTSCR)</td>
<td>192–199, 202</td>
</tr>
<tr>
<td>substrate-triggered SCR (STSCR)</td>
<td>211</td>
</tr>
<tr>
<td>SOI</td>
<td>6</td>
</tr>
<tr>
<td>SPICE modeling</td>
<td>19, 376</td>
</tr>
<tr>
<td>challenges</td>
<td>383</td>
</tr>
<tr>
<td>corner methodology</td>
<td>376</td>
</tr>
<tr>
<td>statistical methodology</td>
<td>19, 376, 378</td>
</tr>
<tr>
<td>Stack effect</td>
<td>300</td>
</tr>
<tr>
<td>Stacked diodes</td>
<td>175</td>
</tr>
<tr>
<td>Stacked I/O</td>
<td>223</td>
</tr>
<tr>
<td>Substrate triggered design</td>
<td>176</td>
</tr>
<tr>
<td>Subwavelength gap, 4–5, 77, 331</td>
<td></td>
</tr>
<tr>
<td>Supply noise</td>
<td>146</td>
</tr>
<tr>
<td>immunity</td>
<td>146</td>
</tr>
<tr>
<td>Termination</td>
<td>220, 232, 233, 234</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>146, 150</td>
</tr>
<tr>
<td>low threshold</td>
<td>147</td>
</tr>
<tr>
<td>Topography</td>
<td>79</td>
</tr>
<tr>
<td>Trim mask</td>
<td>105, 106</td>
</tr>
<tr>
<td>Tunneling</td>
<td>141</td>
</tr>
<tr>
<td>edge direct tunneling (EDT)</td>
<td>141</td>
</tr>
<tr>
<td>Fowler–Nordhelm tunneling</td>
<td>141</td>
</tr>
<tr>
<td>gate-to-channel tunneling</td>
<td>141</td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>Gate leakage current</td>
<td></td>
</tr>
<tr>
<td>Variation</td>
<td></td>
</tr>
<tr>
<td>contact resistance</td>
<td>366</td>
</tr>
<tr>
<td>design-related</td>
<td>361</td>
</tr>
</tbody>
</table>
device-related, 362
diffusion, dogbone-shaped, 366
electrical stress-related, 362
interdie, 379
intradie, 379
process-related, 362
self-timed delay, 370
Vertical access transistor, 250

Voltage controlled oscillator (VCO), 138, 146–148, 155–156
V\textit{signal}, 245
Wavelength, 45, 73–74, 77, 83, 86, 121, 123–124
Wire spread routes, 339
Zernike polynomials, 80