CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>xiii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 NANO-CMOS SCALING PROBLEMS AND IMPLICATIONS | 1 |
1.1 Design Methodology in the Nano-CMOS Era	1
1.2 Innovations Needed to Continue Performance Scaling	3
1.3 Overview of Sub-100-nm Scaling Challenges and Subwavelength Optical Lithography	6
1.3.1 Back-End-of-Line Challenges (Metallization)	6
1.3.2 Front-End-of-Line Challenges (Transistors)	12
1.4 Process Control and Reliability	15
1.5 Lithographic Issues and Mask Data Explosion	16
1.6 New Breed of Circuit and Physical Design Engineers	17
1.7 Modeling Challenges	17
1.8 Need for Design Methodology Changes	19
1.9 Summary	21
References	21
PART I PROCESS TECHNOLOGY AND SUBWAVELENGTH OPTICAL LITHOGRAPHY: PHYSICS, THEORY OF OPERATION, ISSUES, AND SOLUTIONS

2 CMOS DEVICE AND PROCESS TECHNOLOGY 24

2.1 Equipment Requirements for Front-End Processing 24
 2.1.1 Technical Background 24
 2.1.2 Gate Dielectric Scaling 26
 2.1.3 Strain Engineering 33
 2.1.4 Rapid Thermal Processing Technology 34
2.2 Front-End-Device Problems in CMOS Scaling 41
 2.2.1 CMOS Scaling Challenges 41
 2.2.2 Quantum Effects Model 43
 2.2.3 Polysilicon Gate Depletion Effects 45
 2.2.4 Metal Gate Electrodes 48
 2.2.5 Direct-Tunneling Gate Leakage 49
 2.2.6 Parasitic Capacitance 52
 2.2.7 Reliability Concerns 56
2.3 Back-End-of-Line Technology 58
 2.3.1 Interconnect Scaling 59
 2.3.2 Copper Wire Technology 61
 2.3.3 Low-\kappa Dielectric Challenges 64
 2.3.4 Future Global Interconnect Technology 65
References 66

3 THEORY AND PRACTICALITIES OF SUBWAVELENGTH OPTICAL LITHOGRAPHY 73

3.1 Introduction and Simple Imaging Theory 73
3.2 Challenges for the 100-nm Node 76
 3.2.1 \kappa-Factor for the 100-nm Node 77
 3.2.2 Significant Process Variations 78
 3.2.3 Impact of Low-\kappa Imaging on Process Sensitivities 82
 3.2.4 Low-\kappa Imaging and Impact on Depth of Focus 83
 3.2.5 Low-\kappa Imaging and Exposure Tolerance 84
 3.2.6 Low-\kappa Imaging and Impact on Mask Error Enhancement Factor 84
 3.2.7 Low-\kappa Imaging and Sensitivity to Aberrations 86
CONTENTS

4.8.1 Multiple-Supply Concerns 157
4.9 Noise Isolation 159
 4.9.1 Guard Ring Structures 159
 4.9.2 Isolated NMOS Devices 161
 4.9.3 Epitaxial Material versus Bulk Silicon 161
4.10 Decoupling 162
4.11 Power Busing 166
4.12 Integration Problems 167
 4.12.1 Corner Regions 167
 4.12.2 Neighboring Circuitry 167
4.13 Summary 168
References 168

5 ELECTROSTATIC DISCHARGE PROTECTION DESIGN 172

5.1 Introduction 172
5.2 ESD Standards and Models 173
5.3 ESD Protection Design 173
 5.3.1 ESD Protection Scheme 173
 5.3.2 Turn-on Uniformity of ESD Protection Devices 175
 5.3.3 ESD Implantation and Silicide Blocking 177
 5.3.4 ESD Protection Guidelines 178
5.4 Low-C ESD Protection Design for High-Speed I/O 178
 5.4.1 ESD Protection for High-Speed I/O or Analog Pins 178
 5.4.2 Low-C ESD Protection Design 180
 5.4.3 Input Capacitance Calculations 183
 5.4.4 ESD Robustness 185
 5.4.5 Turn-on Verification 186
5.5 ESD Protection Design for Mixed-Voltage I/O 190
 5.5.1 Mixed-Voltage I/O Interfaces 190
 5.5.2 ESD Concerns for Mixed-Voltage I/O Interfaces 191
 5.5.3 ESD Protection Device for a Mixed-Voltage I/O Interface 192
 5.5.4 ESD Protection Circuit Design for a Mixed-Voltage I/O Interface 195
 5.5.5 ESD Robustness 198
 5.5.6 Turn-on Verification 199
5.6 SCR Devices for ESD Protection 200
 5.6.1 Turn-on Mechanism of SCR Devices 201
5.6.2 SCR-Based Devices for CMOS On-Chip ESD Protection 202
5.6.3 SCR Latch-up Engineering 210
5.7 Summary 212
References 213

6 INPUT/OUTPUT DESIGN 220
6.1 Introduction 220
6.2 I/O Standards 221
6.3 Signal Transfer
 6.3.1 Single-Ended Buffers 223
 6.3.2 Differential Buffers 223
6.4 ESD Protection 227
6.5 I/O Switching Noise 228
6.6 Termination 232
6.7 Impedance Matching 234
6.8 Preemphasis 235
6.9 Equalization 237
6.10 Conclusion 238
References 239

7 DRAM 241
7.1 Introduction 241
7.2 DRAM Basics 241
7.3 Scaling the Capacitor 245
7.4 Scaling the Array Transistor 247
7.5 Scaling the Sense Amplifier 249
7.6 Summary 253
References 253

8 SIGNAL INTEGRITY PROBLEMS IN ON-CHIP INTERCONNECTS 255
8.1 Introduction 255
 8.1.1 Interconnect Figures of Merit 258
8.2 Interconnect Parasitics Extraction
 8.2.1 Circuit Representation of Interconnects 260
 8.2.2 RC Extraction 263
 8.2.3 Inductance Extraction 267
10.3 Global Route DFM 338
10.4 Analog DFM 339
10.5 Some Rules of Thumb 341
10.6 Summary 342
References 342

11 DESIGN FOR VARIABILITY 343

11.1 Impact of Variations on Future Design 343
11.1.1 Parametric Variations in Circuit Design 343
11.1.2 Impact on Circuit Performance 345
11.2 Strategies to Mitigate Impact Due to Variations 347
11.2.1 Clock Distribution Strategies to Minimize Skew 347
11.2.2 SRAM Techniques to Deal with Variations 351
11.2.3 Analog Strategies to Deal with Variations 361
11.2.4 Digital Circuit Strategies to Deal with Variations 370
11.3 Corner Modeling Methodology for Nano-CMOS Processes 376
11.3.1 Need for Statistical Models 376
11.3.2 Statistical Model Use 378
11.4 New Features of the BSIM4 Model 381
11.4.1 Halo/Pocket Implant 381
11.4.2 Gate-Induced Drain Leakage and Gate Direct Tunneling 382
11.4.3 Modeling Challenges 383
11.4.4 Model-Specific Issues 384
11.4.5 Model Summary 385
11.5 Summary 385
References 385

INDEX 389