Contents

Foreword by C. P. Wong xiii
Foreword by Zhigang Suo xv
Preface xvii
Acknowledgments xix
About the Authors xxi

Part I Mechanics and Modeling 1

1 Constitutive Models and Finite Element Method 3
 1.1 Constitutive Models for Typical Materials 3
 1.1.1 Linear Elasticity 3
 1.1.2 Elastic-Visco-Plasticity 5
 1.2 Finite Element Method 9
 1.2.1 Basic Finite Element Equations 9
 1.2.2 Nonlinear Solution Methods 12
 1.2.3 Advanced Modeling Techniques in Finite
 Element Analysis 14
 1.2.4 Finite Element Applications in Semiconductor
 Packaging Modeling 17
 1.3 Chapter Summary 18
References 19

2 Material and Structural Testing for Small Samples 21
 2.1 Material Testing for Solder Joints 21
 2.1.1 Specimens 21
 2.1.2 A Thermo-Mechanical Fatigue Tester 23
 2.1.3 Tensile Test 24
 2.1.4 Creep Test 26
 2.1.5 Fatigue Test 31
 2.2 Scale Effect of Packaging Materials 32
 2.2.1 Specimens 33
 2.2.2 Experimental Results and Discussions 34
 2.2.3 Thin Film Scale Dependence for Polymer Thin Films 39
 2.3 Two-Ball Joint Specimen Fatigue Testing 41
 2.4 Chapter Summary 41
References 43
6 Modeling Validation Tools 109
6.1 Structural Mechanics Analysis 109
6.2 Requirements of Experimental Methods for Structural Mechanics Analysis 111
6.3 Whole Field Optical Techniques 112
6.4 Thermal Strains Measurements Using Moiré Interferometry 113
 6.4.1 Thermal Strains in a Plastic Ball Grid Array (PBGA) Interconnection 113
 6.4.2 Real-Time Thermal Deformation Measurements Using Moiré Interferometry 116
6.5 In-Situ Measurements on Micro-Machined Sensors 116
 6.5.1 Micro-Machined Membrane Structure in a Chemical Sensor 116
 6.5.2 In-Situ Measurement Using Twyman–Green Interferometry 118
 6.5.3 Membrane Deformations due to Power Cycles 118
6.6 Real-Time Measurements Using Speckle Interferometry 119
6.7 Image Processing and Computer Aided Optical Techniques 120
 6.7.1 Image Processing for Fringe Analysis 120
 6.7.2 Phase Shifting Technique for Increasing Displacement Resolution 120
6.8 Real-Time Thermal-Mechanical Loading Tools 123
 6.8.1 Micro-Mechanical Testing 123
 6.8.2 Environmental Chamber 124
6.9 Warpage Measurement Using PM-SM System 124
 6.9.1 Shadow Moiré and Project Moiré Setup 125
 6.9.2 Warpage Measurement of a BGA, Two Crowded PCBs 127
6.10 Chapter Summary 131
References 131

7 Application of Fracture Mechanics 135
7.1 Fundamental of Fracture Mechanics 135
 7.1.1 Energy Release Rate 136
 7.1.2 J Integral 138
 7.1.3 Interfacial Crack 139
7.2 Bulk Material Cracks in Electronic Packages 141
 7.2.1 Background 141
 7.2.2 Crack Propagation in Ceramic/Adhesive/Glass System 142
 7.2.3 Results 146
7.3 Interfacial Fracture Toughness 148
 7.3.1 Background 148
 7.3.2 Interfacial Fracture Toughness of Flip-Chip Package between Passivated Silicon Chip and Underfill 150
7.4 Three-Dimensional Energy Release Rate Calculation 159
 7.4.1 Fracture Analysis 160
 7.4.2 Results and Comparison 160
7.5 Chapter Summary 165
References 165

8 Concurrent Engineering for Microelectronics 169
8.1 Design Optimization 169
8.2 New Developments and Trends in Integrated Design Tools 179
8.3 Chapter Summary 183
References 183
Part II Modeling in Microelectronic Packaging and Assembly

9 Typical IC Packaging and Assembly Processes 187
9.1 Wafer Process and Thinning 188
9.1.1 Wafer Process Stress Models 188
9.1.2 Thin Film Deposition 189
9.1.3 Backside Grind for Thinning 191
9.2 Die Pick Up 193
9.3 Die Attach 198
9.3.1 Material Constitutive Relations 200
9.3.2 Modeling and Numerical Strategies 201
9.3.3 FEA Simulation Result of Flip-Chip Attach 204
9.4 Wire Bonding 206
9.4.1 Assumption, Material Properties and Method of Analysis 207
9.4.2 Wire Bonding Process with Different Parameters 208
9.4.3 Impact of Ultrasonic Amplitude 210
9.4.4 Impact of Ultrasonic Frequency 212
9.4.5 Impact of Friction Coefficients between Bond Pad and FAB 214
9.4.6 Impact of Different Bond Pad Thickness 217
9.4.7 Impact of Different Bond Pad Structures 217
9.4.8 Modeling Results and Discussion for Cooling Substrate Temperature after Wire Bonding 221
9.5 Molding 223
9.5.1 Molding Flow Simulation 223
9.5.2 Curing Stress Model 230
9.5.3 Molding Ejection and Clamping Simulation 236
9.6 Leadframe Forming/Singulation 241
9.6.1 Euler Forward versus Backward Solution Method 242
9.6.2 Punch Process Setup 242
9.6.3 Punch Simulation by ANSYS Implicit 244
9.6.4 Punch Simulation by LS-DYNA 246
9.6.5 Experimental Data 248
9.7 Chapter Summary 252
References 252

10 Opto Packaging and Assembly 255
10.1 Silicon Substrate Based Opto Package Assembly 255
10.1.1 State of the Technology 255
10.1.2 Monte Carlo Simulation of Bonding/Soldering Process 256
10.1.3 Effect of Matching Fluid 256
10.1.4 Effect of the Encapsulation 258
10.2 Welding of a Pump Laser Module 258
10.2.1 Module Description 258
10.2.2 Module Packaging Process Flow 258
10.2.3 Radiation Heat Transfer Modeling for Hermetic Sealing Process 259
10.2.4 Two-Dimensional FEA Modeling for Hermetic Sealing 260
10.2.5 Cavity Radiation Analyses Results and Discussions 262
10.3 Chapter Summary 264
References 264

11 MEMS and MEMS Package Assembly 267
11.1 A Pressure Sensor Packaging (Deformation and Stress) 267
11.1.1 Piezoresistance in Silicon 268
11.1.2 Finite Element Modeling and Geometry 270
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Material Properties</td>
<td>270</td>
</tr>
<tr>
<td>11.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1.4</td>
<td>Results and Discussion</td>
<td>271</td>
</tr>
<tr>
<td>11.2</td>
<td>Mounting of Pressure Sensor</td>
<td>273</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Mounting Process</td>
<td>273</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Modeling</td>
<td>274</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Results</td>
<td>276</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Experiments and Discussions</td>
<td>277</td>
</tr>
<tr>
<td>11.3</td>
<td>Thermo-Fluid Based Accelerometer Packaging</td>
<td>279</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Device Structure and Operation Principle</td>
<td>279</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Linearity Analysis</td>
<td>280</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Design Consideration</td>
<td>284</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Fabrication</td>
<td>285</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Experiment</td>
<td>285</td>
</tr>
<tr>
<td>11.4</td>
<td>Plastic Packaging for a Capacitance Based Accelerometer</td>
<td>288</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Micro-Machined Accelerometer</td>
<td>289</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Wafer-Level Packaging</td>
<td>290</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Packaging of Capped Accelerometer</td>
<td>296</td>
</tr>
<tr>
<td>11.5</td>
<td>Tire Pressure Monitoring System (TPMS) Antenna</td>
<td>303</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Test of TPMS System with Wheel Antenna</td>
<td>304</td>
</tr>
<tr>
<td>11.5.2</td>
<td>3D Electromagnetic Modeling of Wheel Antenna</td>
<td>306</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Stress Modeling of Installed TPMS</td>
<td>307</td>
</tr>
<tr>
<td>11.6</td>
<td>Thermo-Fluid Based Gyroscope Packaging</td>
<td>310</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Operating Principle and Design</td>
<td>312</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Analysis of Angular Acceleration Coupling</td>
<td>313</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Numerical Simulation and Analysis</td>
<td>314</td>
</tr>
<tr>
<td>11.7</td>
<td>Microjets for Radar and LED Cooling</td>
<td>316</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Microjet Array Cooling System</td>
<td>319</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Preliminary Experiments</td>
<td>320</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Simulation and Model Verification</td>
<td>322</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Comparison and Optimization of Three Microjet Devices</td>
<td>324</td>
</tr>
<tr>
<td>11.8</td>
<td>Air Flow Sensor</td>
<td>327</td>
</tr>
<tr>
<td>11.8.1</td>
<td>Operation Principle</td>
<td>329</td>
</tr>
<tr>
<td>11.8.2</td>
<td>Simulation of Flow Conditions</td>
<td>331</td>
</tr>
<tr>
<td>11.8.3</td>
<td>Simulation of Temperature Field on the Sensor Chip Surface</td>
<td>333</td>
</tr>
<tr>
<td>11.9</td>
<td>Direct Numerical Simulation of Particle Separation by Direct Current Dielectrophoresis</td>
<td>335</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Mathematical Model and Implementation</td>
<td>335</td>
</tr>
<tr>
<td>11.9.2</td>
<td>Results and Discussion</td>
<td>339</td>
</tr>
<tr>
<td>11.10</td>
<td>Modeling of Micro-Machine for Use in Gastrointestinal Endoscopy</td>
<td>341</td>
</tr>
<tr>
<td>11.10.1</td>
<td>Methods</td>
<td>343</td>
</tr>
<tr>
<td>11.10.2</td>
<td>Results and Discussion</td>
<td>348</td>
</tr>
<tr>
<td>11.11</td>
<td>Chapter Summary</td>
<td>353</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>354</td>
</tr>
</tbody>
</table>

12 System in Package (SIP) Assembly | 361 |
12.1	Assembly Process of Side by Side Placed SIP	361
12.1.1	Multiple Die Attach Process	361
12.1.2	Cooling Stress and Warpage Simulation after Molding	365
12.1.3	Stress Simulation in Trim Process	366
12.2	Impact of the Nonlinear Materials Behaviors on the Flip-Chip Packaging Assembly Reliability	369
12.2.1	Finite Element Modeling and Effect of Material Models	371
12.2.2	Experiment	374
12.2.3	Results and Discussions	375
17 Electromigration 473
17.1 Basic Migration Formulation and Algorithm 473
17.2 Electromigration Examples from IC Device and Package 477
 17.2.1 A Sweat Structure 477
 17.2.2 A Flip-Chip CSP with Solder Bumps 480
17.3 Chapter Summary 496
References 497

18 Popcorning in Plastic Packages 499
18.1 Statement of Problem 499
18.2 Analysis 501
18.3 Results and Comparisons 503
 18.3.1 Behavior of a Delaminated Package due to Pulsed Heating-Verification 503
 18.3.2 Convergence of the Total Strain Energy Release Rate 504
 18.3.3 Effect of Delamination Size and Various Processes for a Thick Package 505
 18.3.4 Effect of Moisture Expansion Coefficient 514
18.4 Chapter Summary 515
References 516

Part IV Modern Modeling and Simulation Methodologies: Application to Nano Packaging 519
19 Classical Molecular Dynamics 521
19.1 General Description of Molecular Dynamics Method 521
19.2 Mechanism of Carbon Nanotube Welding onto the Metal 522
 19.2.1 Computational Methodology 522
 19.2.2 Results and Discussion 523
19.3 Applications of Car–Parrinello Molecular Dynamics 530
 19.3.1 Car–Parrinello Simulation of Initial Growth Stage of Gallium Nitride on Carbon Nanotube 530
 19.3.2 Effects of Mechanical Deformation on Outer Surface Reactivity of Carbon Nanotubes 534
 19.3.3 Adsorption Configuration of Magnesium on Wurtzite Gallium Nitride Surface Using First-Principles Calculations 539
19.4 Nano-Welding by RF Heating 544
19.5 Chapter Summary 548
References 548

Index 553