Index

amplitude ratio, 95, 98, 241, 243, 246, 267, 268, 338
anti-derivative kick, 141
anti-windup, 130
conditional integration, 131
back-calculation, 134
Autoregressive Exogenous Input (ARX) model, 317, 319
autotuning, 241

back-calculation, 134
biased-relay, 248, 250, 351
bisection method, 64, 98
Black-box model, 4–5
block diagram, 92
bode plot, 99, 203, 207
bode stability, 203
cascade control, 187, 215
design (tuning), 187
primary controller, 215
secondary controller, 215
critical frequency, 223
closed-loop
temperature control system, 57, 83, 201
temperature transfer function, 201
commercial PID controllers, 135
conditional integration, 131
continuous-cycling method, 154
continuous-time, 275, 337
controlled variables, 3
correlation theorem, 24
critical frequency, 203
critically damped process, 82
cyclic-steady-state, 5, 95, 240, 250, 346
damping factor, 82
decay ratio, 83
decoupled control structure, 220
derivative kick, 141
derivative time, 112
describing function analysis, 241, 377
development variable, 7
difference equation, 317
differential equation, 4, 20, 29, 31, 35, 45, 275
discrete-time, 317, 337
dynamic behaviors, 79
equivalent gain plus time delay, 220
equivalent time delay, 175
Euler formula, 88, 89, 96
Euler method, 47, 69, 113

first order plus time delay (FOPTD), 79, 84, 159, 161, 174, 339
amplitude ratio, 95, 98, 241, 243, 246, 267, 268, 338
phase angle, 95, 99, 174, 241, 243, 338, 368
frequency response analysis, 240, 261
Fourier analysis, 247
Fourier series, 235
gain crossover frequency, 203, 210
gain margin, 210
gain scheduling, 225
Hammerstein process, 382
IMC tuning rule, 159
implementation, 113
impulse function, 21
integral time, 112
integral transform, 275
integral windup, 129
integrating process, 91, 126, 197, 227
interacting PID controller, 137
internal feedback loop, 188, 215, 227
interval having method, 70, 321, 328
inverse Laplace transform, 16, 26
inverse response, 91
ITAE-1 tuning rule, 161
ITAE-2 tuning rule, 167

laplace transform, 16
least squares method, 59, 173, 176, 277, 281, 320, 338, 358
left-half-plane (LHP) pole, 90
Levenberg-Marquardt method, 72, 297, 326
linear process, 9
time-invariant, 9
time-variant, 9
linearization, 13
low order plus time delay process, 79
first order plus time delay (FOPTD), 79, 84, 159, 161, 174, 339
second order plus time delay (SOPTD), 82, 166, 169, 171, 175, 231

manipulating variables, 3–4
margin
phase, 210
gain, 210
marginally stable, 154, 203–204, 243
model conversion, 337
modeling error, 219
model reduction, 170, 338
modified Fourier transform, 250

Newton-Raphson method, 65
noise suppressing PID controller, 141
non-interacting PID controller, 135
numerical
analysis, 59
derivative, 45, 59, 68, 113, 301, 326
integration, 68, 112, 247, 253, 276

Nyquist plot, 99, 207
Nyquist stability, 207
offset, 124, 153, 219, 229
open-loop stable process, 91, 97, 122, 153, 230
open-loop transfer function, 201, 203, 207
open-loop unstable process, 91
optimal gain margin tuning rule, 169
optimization method, 69
interval having method, 70, 321, 328
Levenberg-Marquardt method, 72, 297, 326
output error (OE) model, 318, 325
overshoot, 83
Padé approximation, 25
parallel PID controllers, 138
partial fraction, 26
periodic function, 25, 235, 248, 254
phase angle, 95, 99, 174, 241, 243, 338, 368
phase crossover frequency, 204
phase margin, 210
PID controllers, 111
commercial PID, 135
derivative time, 112
implementation, 113
integral time, 112
interacting PID, 137
noise suppressing PID, 141
non-interacting PID, 135
parallel PID, 138
proportional band, 112
setpoint, 112
two-degree-of-freedom PID, 140
unified structure of PID, 145
PID controller tuning, 151
IMC tuning rule, 159
ITAE-1 tuning rule, 161
ITAE-2 tuning rule, 167
modeling error, 196
model reduction, 170
optimal gain margin tuning rule, 169
trial and error tuning, 151
Ziegler-Nichols tuning, 157
poles, 86
prediction error identification method, 291, 319, 325
prediction model
ARX model, 317
OE model, 318
primary controller, 215
process activation, 343, 373, 387, 400
process control, 3
controlled variables, 3–4
manipulating variables, 3–4
process input, 3–4
process output, 3–4
process identification, 4
black-box model, 4–5
methods, 154, 235, 275, 317
process input, 3
process output, 3
process reaction curve method, 84, 157
proportional band, 112
proportional gain, 112
pulse signals, 373
relay feedback, 157, 240, 243, 248, 250, 263, 287, 345, 351, 373, 405
biased, 248, 250, 287, 351
large range of operation, 365
modifications, 373
nonlinearity and disturbance, 357
static disturbance, 352
two-channel, 244
unbiased, 345
right-half-plane (RHP) pole, 90, 207
root-finding method, 63
bisection, 63
Newton-Raphson, 65
saturation, 129
secondary controller, 215
second order plus time delay (SOPTD), 82, 166, 169, 171, 175, 231, 339
setpoint, 112
settling time, 83
simulations, 45
sine signal, 387
Smith predictor, 217
stable poles, 90
state space, 32, 48, 114, 292
static gain, 79, 82, 97, 153
steady-state, 5, 7, 253, 275
step function, 21
step response, 81, 82, 85, 91
superposition rule, 11, 34, 94, 97, 202
Taylor series approximation, 13, 14, 25, 175
time constant, 79, 82
time delay, 10, 21, 25, 50, 79, 82, 85, 217, 245, 320, 325, 327
time delay compensator, 217
time-invariant linear process, 9
time-variant linear process, 9
transfer function, 33, 86, 92, 95, 113, 201, 241, 337
trial and error tuning, 151
two-degree-of-freedom PID controller, 140
two-channel-relay, 244
ultimate
amplitude ratio, 97, 156
frequency, 98, 154, 157, 174, 176, 241, 244, 264, 339, 347, 377
gain, 98, 154, 157, 188, 241, 244, 264, 377
unbiased-relay, 345
under-damped process, 83
unified structure of PID controller, 145
uniformly distributed random noise, 120, 287, 304, 358, 360
unstable poles, 90
unstable process, 91, 169, 175, 188, 197, 227
unsteady state, 278
virtual process, 104, 149, 198, 272, 273, 316, 336, 342, 371, 397, 398, 399
weight, 281, 283
Weiner process, 360
zeroes, 86, 91, 175
Ziegler-Nichols tuning, 157
z-transform, 337, 393