Contents

Preface xvii
List of Contributors xxi

1 Sol-Gel Synthesis of Nano-Scaled Metal Fluorides – Mechanism and Properties 1
Erhard Kemnitz, Gudrun Scholz and Stephan Rüdiger

1.1 Introduction 1
1.1.1 Sol-Gel Syntheses of Oxides – An Intensively Studied and Widely Used Process 1
1.1.2 Sol-Gel Syntheses of Metal Fluorides – Overview of Methods 2

1.2 Fluorolytic Sol-Gel Synthesis 4
1.2.1 Mechanism and Properties 5
1.2.2 Insight into Mechanism by Analytical Methods 8
1.2.3 Exploring Properties 27
1.2.4 Possible Fields of Application 29

References 35

2 Microwave-Assisted Route Towards Fluorinated Nanomaterials 39
Damien Dambournet, Alain Demourgues and Alain Tressaud

2.1 Introduction 39
2.2 Introduction to Microwave Synthesis 40
2.2.1 A Brief History 40
2.2.2 Mechanisms to Generate Heat 40
2.2.3 Advantages of Microwave Synthesis 41
2.2.4 Examples of Microwave Experiments 41

2.3 Preparation of Nanosized Metal Fluorides 42
2.3.1 Aluminium-based Fluoride Materials 42
2.3.2 Microwave-assisted Synthesis of Transition Metal Oxy-Hydroxy-Fluorides 61
Contents

2.4 Concluding Remarks 64
Acknowledgements 64
References 65

3 High Surface Area Metal Fluorides as Catalysts 69
Erhard Kemnitz and Stephan Rüdiger

3.1 Introduction 69
3.2 High Surface Area Aluminium Fluoride as Catalyst 71
3.3 Host-Guest Metal Fluoride Systems 74
3.4 Hydroxy(oxo)fluorides as Bi-acidic Catalysts 78
3.5 Oxidation Catalysis 84
3.6 Metal Fluoride Supported Noble Metal Catalysts 88
3.6.1 Hydrodechlorination of Monochlorodifluoromethane 90
3.6.2 Hydrodechlorination of Dichloroacetic Acid (DCA) 94
3.6.3 Suzuki Coupling 95
References 97

4 Investigation of Surface Acidity using a Range of Probe Molecules 101
Alexandre Vimont, Marco Daturi and John M. Winfield

4.1 Introduction 101
4.1.1 Setting the Scene: Metal Fluorides versus Metal Oxides 102
4.1.2 Some Examples of the Application of FTIR Spectroscopy to the Study of Surface Acidity in Metal Oxides 103
4.1.3 A Preview 107
4.2 Characterization of Acidity on a Surface: Contrasts with Molecular Fluorides 108
4.2.1 Molecular Brønsted and Molecular Lewis Acids 108
4.2.2 A Possible Benchmark for Solid Metal Fluoride, Lewis Acids: Aluminium Chlorofluoride 109
4.3 Experimental Methodology 110
4.3.1 FTIR Spectroscopy 110
4.3.2 Characteristic Reactions and the Detection of Adsorbed Species by a Radiotracer Method 112
4.4 Experimental Studies of Surface Acidity 117
4.4.1 Using FTIR Spectroscopy 118
4.4.2 Using HCl as a Probe with Detection via $[^{36}\text{Cl}]$-Labelling 123
4.4.3 Metal Fluoride Surfaces that Contain Surface Hydroxyl Groups: Aluminium Hydroxy Fluorides with the Hexagonal Tungsten Bronze Structure 129
4.4.4 Possible Geometries for HCl Adsorbed at Metal Fluoride Surfaces: Relation to Oxide and Oxyfluoride Surfaces 135
4.5 Conclusions 136
References 137
5 Probing Short and Medium Range Order in Al-based Fluorides using High Resolution Solid State Nuclear Magnetic Resonance and Parameter Modelling

Christophe Legein, Monique Body, Jean-Yves Buzaré, Charlotte Martineau and Gilles Silly

5.1 Introduction 141
5.2 High Resolution NMR Techniques 142
 5.2.1 Fast MAS and High Magnetic Field 142
 5.2.2 27Al NMR 145
 5.2.3 High Resolution Correlation NMR Techniques 148
5.3 Application to Functionalized Al-Based Fluorides with Catalytic Properties 153
 5.3.1 Crystalline Aluminium Fluoride Phases 153
 5.3.2 19F Isotropic Chemical Shift Scale in Octahedral Aluminium Environments with Oxygen and Fluorine in the First Coordination Sphere 153
 5.3.3 Fluorinated Aluminas and Zeolites, HS AlF$_3$ 157
 5.3.4 Aluminium Chlorofluoride and Bromofluoride 158
 5.3.5 Pentahedral and Tetrahedral Aluminium Fluoride Species 158
 5.3.6 Nanostructured Aluminium Hydroxyfluorides and Aluminium Fluoride Hydrate with Cationic Vacancies 159
 5.3.7 δ_{iso} Scale for 27Al and 19F in Octahedral Aluminium Environments with Hydroxyl and Fluorine in the First Coordination Sphere 160
5.4 Alkali and Alkaline-earth Fluoroaluminates: Model Compounds for Modelling of NMR Parameters 160
 5.4.1 19F NMR Line Assignments 161
 5.4.2 27Al Site assignments, Structural and Electronic Characterizations 164
5.5 Conclusion 167
References 168

6 Predictive Modelling of Aluminium Fluoride Surfaces 175

Christine L. Bailey, Sanghamitra Mukhopadhyay, Adrian Wander, Barry Searle and Nicholas Harrison

6.1 Introduction 175
6.2 Methodology 176
 6.2.1 Density Functional Theory 176
 6.2.2 Surface Free Energies 177
 6.2.3 Molecular Adsorption 178
 6.2.4 Kinetic Monte Carlo Simulations 179
6.3 Geometric Structure of α and β-AlF$_3$ 180
 6.3.1 Bulk Phases 180
 6.3.2 Surfaces 180
6.4 Characterization of AlF₃ Surfaces 185
6.5 Surface Composition under Reaction Conditions 188
 6.5.1 The α-AlF₃₋ₓ (01–12) Termination 189
 6.5.2 The α-AlF₃ (0001) Termination 192
6.6 Characterization of Hydroxylated Surfaces 193
6.7 Surface Catalysis 196
 6.7.1 Molecular Adsorption 197
 6.7.2 Reaction Mechanisms and Barriers 198
 6.7.3 Analysing the Kinetics of the Reaction 200
6.8 Conclusions 201
Acknowledgements 203
References 203

7 Inorganic Fluoride Materials from Solvay Fluor and their Industrial Applications 205
Placido Garcia Juan, Hans-Walter Swidersky, Thomas Schwarze and Johannes Eicher

7.1 Introduction 205
7.2 Hydrogen Fluoride 205
 7.2.1 Anhydrous Hydrogen Fluoride, AHF 206
 7.2.2 Hydrofluoric Acid 206
7.3 Elemental Fluorine, F₂ 207
 7.3.1 Fluorination of Plastic Fuel Tanks 207
 7.3.2 Finishing of Plastic Surfaces 207
 7.3.3 F₂ Mixtures as CVD-chamber Cleaning Gas 208
7.4 Iodine Pentafluoride, IF₅ 208
7.5 Sulfur Hexafluoride, SF₆ 209
 7.5.1 SF₆ as Insulating Gas for Electrical Equipment 209
 7.5.2 SF₆ Applications in Metallurgy 209
7.6 Ammonium Bifluoride, NH₄HF₂ 210
7.7 Potassium Fluorometalates, KZnF₃ and K₂SiF₆ 210
7.8 Cryolite and Related Hexafluoroaluminates, Na₃AlF₆, Li₃AlF₆, K₃AlF₆ 211
7.9 Potassium Fluoroborate, KBF₄ 212
7.10 Fluoboric Acid, HBF₄ 212
7.11 Barium Fluoride, BaF₂ 213
7.12 Synthetic Calcium Fluoride, CaF₂ 213
7.13 Sodium Fluoride, NaF 213
7.14 Sodium Bifluoride, NaHF₂ 213
7.15 Potassium Bifluoride, KHF₂ 214
7.16 Potassium Fluoroaluminate, KAlF₄ 214
7.17 Fluoroaluminate Fluxes in Aluminium Brazing 214
 7.17.1 Flux Composition 214
 7.17.2 Flux and HF 216
 7.17.3 Flux Particle Size 217
7.17.4 Flux Melting Range 219
7.17.5 Current Status of Aluminium Brazing Technology 220
7.17.6 Cleaning and Flux Application 221
7.17.7 Wet Flux Application 221
7.17.8 Dry/Electrostatic Flux Application 222
7.17.9 Post Braze Flux Residue 222
7.17.10 Filler Metal Alloys 222
7.17.11 Flux Precoated Brazing Sheet/Components 223
7.17.12 Clad-less Brazing 223
7.17.13 Furnace Conditions 224
7.18 Summary 224
References 225

8 New Nanostructured Fluorocompounds as UV Absorbers 229
Alain Demourgues, Laetitia Sronek and Nicolas Penin

8.1 Introduction 229
8.2 Synthesis of Tetravalent Ce and Ti-based Oxyfluorides 231
8.2.1 Preparation of Ce-Ca-based Oxyfluorides 231
8.2.2 Preparation of Ti-based Oxyfluorides 232
8.3 Chemical Compositions and Structural Features of Ce and Ti-based Oxyfluorides 233
8.3.1 Elemental Analysis 233
8.3.2 Magnetic Measurements 233
8.3.3 About the Chemical Composition of Ce$_{1-x}$Ca$_x$O$_{2-x}$ and Ce$_{1-x}$Ca$_x$O$_{2-x-y/2}$F$_y$ Series 234
8.3.4 About the Structure and Local Environment of Fluorine in Ce$_{1-x}$Ca$_x$O$_{2-x-y/2}$F$_y$ Series 237
8.3.5 Composition and Structure of Ti-based Hydroxyfluoride 252
8.4 UV Shielding Properties of Divided Oxyfluorides 263
8.4.1 The Ce-Ca-based Oxyfluorides Series and UV-shielding Properties 264
8.4.2 Ti Hydroxyfluoride and UV-shielding Properties 266
8.5 Conclusion 267
Acknowledgement 269
References 269

9 Oxyfluoride Transparent Glass Ceramics 273
Michel Mortier and Géraldine Dantelle

9.1 Introduction 273
9.2 Synthesis 274
9.2.1 Synthesis by Glass Devitrification 275
9.2.2 Transparency 277
9.3 Different Systems 279
9.3.1 Glass-Ceramics with CaF$_2$ as their Crystalline Phase 281
9.3.2 Glass-Ceramics with β-PbF$_2$ as their Crystalline Phase 281
9.3.3 Glass-Ceramics with CdF$_2$/PbF$_2$ as their Crystalline Phase 281
9.3.4 Glass-Ceramics with LaF$_3$ as their Crystalline Phase 282

9.4 Thermal Characterization 282
9.4.1 Kinetics of Phase-change/Devitrification 288
9.4.2 Thakur’s Method 288

9.5 Morphology of the Separated Phases 289

9.6 Optical Properties of Glass-Ceramics 293
9.6.1 Influence of the Devitrification on the Spectroscopic Properties of Ln$^{3+}$ 293
9.6.2 Effect of High Local Ln$^{3+}$ Concentration in Crystallites 295
9.6.3 Comparison of the Optical Properties of Glass-Ceramics and Single-Crystals 297
9.6.4 Multi-doped Glass-Ceramics 299

9.7 Conclusion 301

References 302

10 Sol-Gel Route to Inorganic Fluoride Nanomaterials with Optical Properties 307
Shinobu Fujihara

10.1 Introduction 307
10.2 Principles of a Sol-Gel Method 308
10.2.1 Metal Oxide Materials 308
10.2.2 Metal Fluoride Materials 308
10.3 Fluorinating Reagents and Method of Fluorination 309
10.4 Control of Shapes and Microstructures 313
10.5 Optical Properties 317
10.5.1 Low Refractive Index and Anti-Reflection Effect 317
10.5.2 Luminescence 322
10.6 Concluding Remarks 326

References 326

11 Fluoride Glasses and Planar Optical Waveguides 331
Brigitte Boulard

11.1 Introduction 331
11.2 Rare Earth in Fluoride Glasses 332
11.2.1 Fundamentals 333
11.2.2 Applications: Laser and Optical Amplifiers 334
11.3 Fabrication of Waveguides: A Review 336
11.4 Performance of Active Waveguides 338
11.4.1 Optical Amplifier 340
11.4.2 Lasers 341
11.5 Fluoride Transparent Glass Ceramics: An Emerging Material 342
11.6 Conclusion 344

References 344
12 Polyanion Condensation in Inorganic and Hybrid Fluoroaluminates 347
Karim Adil, Amandine Cadiau, Annie Hémon-Ribaud,
Marc Leblanc and Vincent Maisonneuve

12.1 Introduction 347
12.2 Synthesis 348
12.3 Extended Finite Polyanions (0D)
 12.3.1 Isolated AlF$_4$ Tetrahedra 350
 12.3.2 Isolated AlF$_6$ Octahedra 350
 12.3.3 Al$_2$F$_{11}$ Dimers 353
 12.3.4 Al$_3$F$_{16}$ Trimers 353
 12.3.5 Al$_2$F$_{10}$ Dimers 353
 12.3.6 Al$_4$F$_{20}$ Tetramers 354
 12.3.7 Al$_4$F$_{18}$ Tetramers 354
 12.3.8 Al$_3$F$_{26}$ Pentamers 355
 12.3.9 Al$_7$F$_{30}$ Heptamers 355
 12.3.10 Al$_9$F$_{35}$ Octamers 356
 12.3.11 Mixed Polyanions 356
12.4 1D Networks 358
 12.4.1 AlF$_5$ Chains 358
 12.4.2 Al$_2$F$_9$ Chains 359
 12.4.3 Al$_7$F$_{29}$ Chains 360
 12.4.4 AlF$_4$ Chains 360
 12.4.5 Mixed Polyanions and/or Chains 361
12.5 2D Networks 365
 12.5.1 Al$_3$F$_{14}$ Layers 365
 12.5.2 AlF$_4$ Layers 365
 12.5.3 Al$_2$F$_7$ Layers 366
 12.5.4 Al$_3$F$_{17}$ Layers 366
 12.5.5 Al$_3$F$_{10}$ Layers 368
12.6 3D Networks 368
 12.6.1 Al$_7$F$_{33}$ Network 368
 12.6.2 Al$_3$F$_9$ Network 368
 12.6.3 AlF$_3$ Network 369
12.7 Evolution of the Condensation of Inorganic Polyanions 372
 12.7.1 Influence of Amine and Aluminum Concentrations 372
 12.7.2 Temperature 374
Acknowledgements 376
Supplementary Materials 376
References 376

13 Synthesis, Structure and Superconducting/Magnetic Properties of Cu- and Mn-based Oxyfluorides 383
Evgeny V. Antipov and Artem M. Abakumov

13.1 Introduction 383
13.2 Chemical Aspects of Fluorination of Complex Oxides 384
13.3 Structural Aspects of Fluorination of Complex Cuprates and Superconducting Properties 388
 13.3.1 Electron Doped Superconductors: Heterovalent Replacement \(1O^{2-} \rightarrow 1F^- \) 389
 13.3.2 Hole Doped Superconductors: Fluorine Insertion into Vacant Anion Sites 390
 13.3.3 Structural Rearrangements in Fluorinated Cuprates 398
 13.3.4 Fluorination of Nonsuperconducting Cuprates 408

13.4 Fluorination of Manganites 411

13.5 Conclusions 415

References 416

14 Doping Influence on the Defect Structure and Ionic Conductivity of Fluorine-containing Phases 423

Elena I. Ardashnikova, Vladimir A. Prituzhalov and Ilya B. Kutsenok

14.1 Introduction 423

14.2 Influence of Oxygen Ions on Fluoride Properties 427
 14.2.1 Pyrohydrolysis 427
 14.2.2 Heterovalent Oxygen Substitution for Fluoride Ions 428
 14.2.3 Ionic Conductivity of Oxyfluoride 429

14.3 Cation Doping of Fluorides 431
 14.3.1 Isovalent Replacement in the Cation Sublattice 431
 14.3.2 Heterovalent Replacement in the Cation Sublattice 432

14.4 Active Lone Electron Pair of Cations and Ionic Conductivity 432

14.5 Peculiarities of the Defect Structure of Nonstoichiometric Fluorite-like Phases 435
 14.5.1 Fluorite Structure 435
 14.5.2 Defect Clusters 435
 14.5.3 Ordered Fluorite-like Phases 439
 14.5.4 Phase Diagrams 441

14.6 Ionic Transfer in Fluorite-like Phases 441
 14.6.1 Defect Region Model 443
 14.6.2 Nonstoichiometric Fluorites as Examples of Nanostructured Materials 447

14.7 Peculiarities of the Defect Structure of Nonstoichiometric Tysonite-like Phases 449
 14.7.1 Tysonite Structure, Tysonite Modifications and Anion Defects 449
 14.7.2 Ordered Tysonite-like Phases 454

14.8 Ionic Transfer in Tysonite-like Phases 454
 14.8.1 Fluoride Ions’ Migration Paths in the \(LaF_3 \) Structure 455
 14.8.2 Temperature Dependences of Ionic Conductivity and Anion Defect Positions 457
 14.8.3 Concentration Dependences of Ionic Conductivity in Tysonite-like Solid Solutions 459
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.9</td>
<td>Conclusions</td>
<td>462</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>462</td>
</tr>
<tr>
<td>15</td>
<td>Hybrid Intercalation Compounds Containing Perfluoroalkyl Groups</td>
<td>469</td>
</tr>
<tr>
<td>Yoshiaki Matsuo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>469</td>
</tr>
<tr>
<td>15.2</td>
<td>Preparation and Properties of Intercalation Compounds Containing Perfluoroalkyl Groups</td>
<td>471</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Preparation</td>
<td>471</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Exfoliation and Film Preparation</td>
<td>475</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Introduction of Photofunctional Molecules</td>
<td>476</td>
</tr>
<tr>
<td>15.3</td>
<td>Photophysical and Photochemical Properties of Dyes in Intercalation Compounds Containing Perfluoroalkyl Groups</td>
<td>478</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Microenvironment Estimated by using Probe Molecules Showing Photophysical Responses</td>
<td>478</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Photophysical Properties</td>
<td>480</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Photochemical Properties</td>
<td>482</td>
</tr>
<tr>
<td>15.4</td>
<td>Conclusion and Future Perspectives</td>
<td>484</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>484</td>
</tr>
<tr>
<td>16</td>
<td>The Fluoride Route: A Good Opportunity for the Preparation of 2D and 3D Inorganic Microporous Frameworks</td>
<td>489</td>
</tr>
<tr>
<td>Jean-Louis Paillaud, Philippe Cauller, Jocelyne Brendlé, Angélique Simon-Masseron and Joël Patarin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>489</td>
</tr>
<tr>
<td>16.2</td>
<td>Silica-based Microporous Materials</td>
<td>490</td>
</tr>
<tr>
<td>16.3</td>
<td>Germanium-based Microporous Materials</td>
<td>499</td>
</tr>
<tr>
<td>16.4</td>
<td>Phosphate-based Microporous Materials</td>
<td>504</td>
</tr>
<tr>
<td>16.5</td>
<td>Synthetic Clays</td>
<td>506</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Semi-Synthesis</td>
<td>507</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Solid State Synthesis</td>
<td>508</td>
</tr>
<tr>
<td>16.5.3</td>
<td>Hydrothermal Synthesis</td>
<td>509</td>
</tr>
<tr>
<td>16.6</td>
<td>Conclusion</td>
<td>510</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>511</td>
</tr>
<tr>
<td>17</td>
<td>Access to Highly Fluorinated Silica by Direct F_2 Fluorination</td>
<td>519</td>
</tr>
<tr>
<td>Alain Demourgues, Emilie Lastate, Etienne Durand and Alain Tressaud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>519</td>
</tr>
<tr>
<td>17.2</td>
<td>Mesoporous Silica and Fluorination Procedures</td>
<td>520</td>
</tr>
<tr>
<td>17.3</td>
<td>About the Chemical Composition and Morphology of Highly Fluorinated Silica</td>
<td>521</td>
</tr>
<tr>
<td>17.4</td>
<td>FTIR Analysis</td>
<td>523</td>
</tr>
<tr>
<td>17.4.1</td>
<td>About the Content and Nature of OH/Water Groups in Highly Fluorinated Silica</td>
<td>523</td>
</tr>
</tbody>
</table>
18 Preparation and Properties of Rare-earth-Containing Oxide Fluoride Glasses
Susumu Yonezawa, Jae-ho Kim and Masayuki Takashima

18.1 Introduction 545
18.2 Preparation and Basic Characteristics of Oxide Fluoride Glasses Containing LnF₃ 546
 18.2.1 Preparation of Oxide Fluoride Glasses Containing LnF₃ 546
 18.2.2 Density and Refractive Index 552
 18.2.3 Glass Transition Temperature 553
18.3 Optical and Magnetic Properties of LnF₃·BaF₂·AlF₃·GeO₂ (SiO₂) Glasses 555
 18.3.1 Optical Properties of HoF₃·BaF₂·AlF₃·GeO₂ Glasses 555
 18.3.2 Optical Properties of CeF₃·BaF₂·AlF₃·SiO₂ Glasses 557
 18.3.3 Optical Properties of the Glasses Co-doped with TbF₃ and SmF₃ 564
 18.3.4 Magnetic Property of TbF₃ Containing Oxide Fluoride Glasses 566
18.4 Conclusion 568
References 569

19 Switchable Hydrophobic-hydrophilic Fluorinated Layer for Offset Processing
Alain Tressaud, Christine Labrugère, Etienne Durand

19.1 Introduction 571
19.2 The Principles of the Lithographic Printing Process 572
19.3 Experimental Part
 19.3.1 Fluorination by Cold rf Plasmas 573
 19.3.2 Wettability Measurements 574
 19.3.3 Surface Analyses 574
19.4 Various Types of Surface Modifications using Fluorinated rf Plasmas 575
 19.4.1 Reactive Etching of Porous Alumina using CF₄-Plasma Treatment 575
Acknowledgements 541
References 542
19.4.2 Switchable Hydrophilic/Hydrophobic Fluorocarbon Layer Obtained on Porous Alumina using c-C₄F₈ Plasma Treatment

19.5 Comparison of Surface Modifications of Porous Alumina using Various Fluorinated Media: CF₄, C₃F₈ and c-C₄F₈

19.6 Conclusion

Acknowledgements

References

Index