Index

*Note: page numbers in *italics* refer to figures or tables.*

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthylene</td>
<td>482–3</td>
</tr>
<tr>
<td>Acidity, see Surface acidity studies</td>
<td></td>
</tr>
<tr>
<td>Acylation reactions</td>
<td>75–6</td>
</tr>
<tr>
<td>Adsorption, see Molecular adsorption; Probe molecules</td>
<td></td>
</tr>
<tr>
<td>Alkoxy silanes</td>
<td>1–2</td>
</tr>
<tr>
<td>Alkylation reactions</td>
<td>75–6</td>
</tr>
<tr>
<td>Aluminium industries</td>
<td>205–11</td>
</tr>
<tr>
<td>Aluminium brazing, see Fluoroaluminate fluxes</td>
<td></td>
</tr>
<tr>
<td>Aluminium bromofluoride</td>
<td>158</td>
</tr>
<tr>
<td>Aluminium chlorofluoride</td>
<td>107, 109–10, 123, 158</td>
</tr>
<tr>
<td>Aluminium fluorides</td>
<td>2</td>
</tr>
<tr>
<td>crystallographic forms</td>
<td>42–3, 52–3, 369–70</td>
</tr>
<tr>
<td>NMR data</td>
<td>141–75</td>
</tr>
<tr>
<td>hydrate</td>
<td>44, 57–9, 58, 159–60</td>
</tr>
<tr>
<td>IR spectra</td>
<td>23</td>
</tr>
<tr>
<td>surface studies</td>
<td>51, 52</td>
</tr>
<tr>
<td>modelling/DFT calculations</td>
<td>180–5</td>
</tr>
<tr>
<td>synthesis via thermal decomposition</td>
<td>42</td>
</tr>
<tr>
<td>see also HS-AlF₃</td>
<td></td>
</tr>
<tr>
<td>Aluminium fluoride hydrate</td>
<td>44, 57–9, 58</td>
</tr>
<tr>
<td>NMR study</td>
<td>159–60</td>
</tr>
<tr>
<td>Aluminium hydroxyfluorides</td>
<td></td>
</tr>
<tr>
<td>HTB structure</td>
<td>43, 44, 47, 49, 50, 51–7</td>
</tr>
<tr>
<td>surface acidity study</td>
<td>117–21, 129–36</td>
</tr>
<tr>
<td>NMR study</td>
<td>146–7, 159–60</td>
</tr>
<tr>
<td>pyrochlore structure</td>
<td>44, 45–7, 48, 50, 51–7</td>
</tr>
<tr>
<td>ReO₂-type structure</td>
<td>44, 45, 48</td>
</tr>
<tr>
<td>synthesis, see Microwave-assisted synthesis</td>
<td></td>
</tr>
<tr>
<td>Aluminium isopropoxide</td>
<td>4, 5–6</td>
</tr>
<tr>
<td>NMR characterization</td>
<td>9–11</td>
</tr>
<tr>
<td>Aluminium silcon alloys</td>
<td>222–3</td>
</tr>
<tr>
<td>Amine cations</td>
<td>348</td>
</tr>
<tr>
<td>Ammonia, adsorption of</td>
<td>27, 28, 51, 70, 71</td>
</tr>
<tr>
<td>binding energies</td>
<td>185–8</td>
</tr>
<tr>
<td>Ammonium fluoride</td>
<td>385, 520</td>
</tr>
<tr>
<td>Ammonium hydrogenfluoride</td>
<td>210</td>
</tr>
<tr>
<td>Anhydrous hydrogen chloride</td>
<td>107, 112–17, 136</td>
</tr>
<tr>
<td>Anti-reflection coatings</td>
<td>34, 307, 314, 317–19</td>
</tr>
<tr>
<td>Antimony pentafluoride</td>
<td>109</td>
</tr>
<tr>
<td>Azobenzenes</td>
<td>483–4</td>
</tr>
<tr>
<td>Barium fluoride</td>
<td>213</td>
</tr>
<tr>
<td>HS-BaF₂</td>
<td>30</td>
</tr>
<tr>
<td>in oxide fluoride glasses</td>
<td>549–52</td>
</tr>
<tr>
<td>Benzoylation reactions</td>
<td>75</td>
</tr>
<tr>
<td>Binary metal fluorides</td>
<td>29–30</td>
</tr>
<tr>
<td>Bismuth oxyfluoride</td>
<td>432–3, 454</td>
</tr>
<tr>
<td>Bismuth-based cuprates</td>
<td>406–8</td>
</tr>
<tr>
<td>Brazing, see Fluoroaluminate fluxes</td>
<td></td>
</tr>
<tr>
<td>Brønsted acidity</td>
<td>71</td>
</tr>
<tr>
<td>and bi-acidic catalysts</td>
<td>78, 82</td>
</tr>
<tr>
<td>versus Lewis acidity</td>
<td>74, 78, 82</td>
</tr>
<tr>
<td>molecular acids</td>
<td>101, 108–9</td>
</tr>
<tr>
<td>and oxidation catalysts</td>
<td>84, 86</td>
</tr>
<tr>
<td>C₃F-azo⁺ ion</td>
<td>472, 476</td>
</tr>
<tr>
<td>CAB process, see Fluoroaluminate fluxes</td>
<td></td>
</tr>
<tr>
<td>Cadmium fluoride</td>
<td>95, 96</td>
</tr>
<tr>
<td>and glass-ceramics</td>
<td>281–2</td>
</tr>
</tbody>
</table>
Calcium fluoride 32, 33, 35
films 319
fluorite structure 435
and glass-ceramics 281
HS-CaF₂ 30, 95, 96
single crystal and optical systems 313
synthetic 213
Carbon monoxide, adsorption of 27–8, 70–1, 82, 83, 131–5
hydroxylated surfaces characterized 193–6
host–guest metal fluoride systems 74–8
HS-AlF₃ 33–4, 69–74
β-AlF₃ active sites 196–7
dismutation of CCl₂F₂ 196–201
hydroxy(oxo)fluorides as bi-acidic catalysts 78–83
metal fluoride supported noble metals 32, 88–90
hydrodehalogenation reactions 90–5
Suzuki coupling reactions 95–7
oxidation catalysts 84–8
test reactions 28–9, 112
vanadium oxide 32, 84–8
Cation exchange capacity 472
Cerium-based oxyfluorides, see UV absorbing Ce and Ti-based oxyfluorides
CFCs 29, 90, 206
Chemical vapour deposition (CVD) 336
Chlorine-36 label, see Radiotracer studies
Citronellal 83
Clays 471, 506–7
Cluster model 435–7
Coatings, see Thin films
Colossal magnetoresistance, see Magnetoresistive materials
Commercial products, see Industrial materials and applications
Complex metal fluorides 30, 43
Complex transition metal oxides 383–4
Composite deposition technology 224
Controlled atmosphere brazing (CAB), see Fluoroaluminate fluxes
Copper-based oxyfluorides, see Superconducting cuprates
Correlation NMR techniques 148–52, 163
Cross polarization techniques (CP) 148, 150
Cryolite 211
structure 350–1
CRYSTAL code 176
Cuprate superconductors, see Superconducting cuprates
Defect clusters 435–9
Defect region model 443–6
Dehydrochlorination 112, 114
Dehydrofluorination 72–3
Dehydrogenation 84–5, 86
Devitrification 275–7, 287, 288
and optical properties 293–5
DFT calculations, see Modelling/DFT calculations
Dichloroacetic acid 94–5
Dichlorodifluoromethane 196–201
Dielectric heating 40–1
Differential thermal analysis 282–7
Dipolar polarization 40–1
Dismutation reactions 29, 72, 75–8, 93
mechanism for CCl₂F₂ 196–201
Doping ions 279, 299–301, 313–17
and ionic conductivity 431–4
Double resonance techniques 148–50
Electrolytes, fluoride 423–7
Electroplating 212
Elpasolite 351
Erbium
doping 314, 316
nucleation 284–6, 288–9
Etching processes 206, 210
rf plasma fluorination 571, 573–4
Europium
doping 314, 315, 316–17
and luminescence 322–6
Exfoliation 475
Fluorescence
dyes 479–82
glass-ceramics 295–8, 343, 344
oxide fluoride glasses 558, 564–5
pyrene 478–9
Fluoride glasses 307, 308–9, 331–3
nanocomposite/thin film materials reviewed 313–17
optical properties
interactions with light 313, 314
luminescence 322–6
sol-gel processes and fluorinating agents 309–13
and waveguides, see Waveguides, planar
Fluoride-ion mobility, see Ionic conductivity
Fluorinating reagents 309–13, 520, 573
Fluorine, elemental 207–8, 214
direct fluorination of silica 520–1
Fluorite, see Calcium fluoride
Fluorite structure 279, 280, 423–4, 426–7, 436
defect clusters/cluster models 435–9
Fluoroalkoxide precursors 311–12
Fluoroaluminate fluxes 210–11, 214
CAB technology 220–1, 224–5
steps in brazing process 220–1
cleaning and flux application 221–2
filler metal alloys 222–3
clad-less brazing 223–4
flux composition 214–16
flux particle size 217–18
hydrogen fluoride generation 216–17
Fluoroaluminates 30, 43, 214
crystallization of, see Polyonion
condensation, fluoroaluminate
industrial applications 211
see also Fluoroaluminate fluxes
for modelling NMR parameters 160–1
Fluoroboric acid 212
Fluorohectorites 508, 510
Fluorolytic sol-gel synthesis
coupled with microwave irradiation 47–8
preparation of HS-AlF₃ and HS-MgF₂
the fluoroalytic sol-gel route 4–5
mechanism of fluorination 7–8, 22
optimization of procedure 5–8
single crystal intermediates 13–15
stages in sol-gel fluorination 15–18
structural changes on fluorination 11–13
structures of wet/dry gels compared 18–19
network formation 19–21
properties and structure of HS-AlF₃ 7–8,
23–9, 69–71, 157–8
range of fluorides obtainable 29–30
see also under Catalysts, HS-metal
fluoride; Surface activity
suggested applications
bifunctional oxide fluorides 31–2
catalysis 32, 33
coatings 33, 34–5
nano-sized metal fluorides 31
optics 34
organically modified/hybrid materials 32–3
Fluorosilicic acid 312
Fluorozirconate glass, see ZBLA(N) glasses
Flux, see Fluoroaluminate fluxes
Friedel-Crafts reactions 75–6, 108
FTIR spectroscopy 103–7, 110–17, 527–9
Gas insulated switchgear/lines 209
Germanates
glass-ceramics 281
microporous materials 499–504

Glass, see Fluoride glasses; Oxide fluoride
glasses
Glass-ceramic systems, oxyfluoride 273–4,
301–2, 323–4
CaF₂ as crystalline phase 281
CdF₂/PbF₂ as crystalline phase 281–2
LaF₃ as crystalline phase 282
β-PbF₂ as crystalline phase 281, 316
differential thermal analysis 282–7
Thakur’s method 288–9
multi-doped systems 299–301
optical properties 293–5, 316–17,
322–4
glass-ceramics compared to single
crystals 297
absorption spectra 297–8
spectroscopic properties of Ln³⁺
excited state’s lifetime 294–6
fluorescence decay 295–6, 298
linewidth effects 294, 294–5
upconversion fluorescence 296–7
preparation and synthesis
glass-devitrification processes
275, 315
nucleation/growth 276–7
spinodal decomposition 275–6
sol-gel synthesis 309, 312–13,
315–17
transparency and particle size 277–8
waveguide developments 342–4
Glassy phases 279
Graphite 474
Guest–host, see Host–guest metal fluoride
systems

Heavy metal fluoride glasses 307, 309,
310–11, 313
Hexafluoroaluminates 2, 201
structures 350–2, 369–70
Hexagonal tungsten bronze structure 43, 51,
180–2, 231, 269, 366, 367
High surface area fluorides, see Aluminium
hydroxyfluorides; HS-AlF₃
High-temperature superconductors, see
Superconducting cuprates
Highly fluorinated silica
analysis and characterization techniques
521–3
elemental fluorine route 520
fluorination process 520–1, 522
FTIR analysis
silanol groups/grafted fluorine
correlation 527–9
pore size distribution 529–30
silicon–fluorine bonds 526–7
Highly fluorinated silica (Continued)
- water adsorption/hydroxylation 523–6
- D_2O exchange/silanol content 525–6
- mechanisms 540–1
- nuclear magnetic resonance studies 533
- ¹H-²⁹Si CP-MAS spectra 534–6, 539
- ¹⁹F-²⁹Si CP-MAS spectra 536–9
- thermogravimetric analysis/mass spectrometry 530–1
- hydrophobic characteristics 533
- thermal stability 530–3
Host–guest metal fluoride systems 30, 74–8
HS-AlF₃
- characterization
 - IR spectroscopy 23, 24
 - solid state NMR 24–7, 157–8
 - surface adsorption/desorption isotherms 7–8
 - X-ray/TEM 23–4, 25, 51
- properties
 - adsorption/Lewis acidity 27–8
 - catalytic properties 28–9, 69, 71–4, 196–201
 - surface acidity 27–9, 69–71, 117–21, 123–7
synthesis, see Fluorolytic sol-gel synthesis
HS-BaF₂ 30
HS-CaF₂ 30, 95, 96
HS-MgF₂ 5, 30, 69, 70
 - bi-acidic hydroxy(oxo)fluorides 78–83
 - host-guest systems 74, 75–8
 - surface acidity study 120–3
 - Suzuki coupling 95, 96
HTB hydroxyfluorides, see Aluminium hydroxyfluorides
Hybrid materials, see Organic-inorganic hybrid
Hydrodehalogenation 90–5
Hydrofluoric acid 205–6
Hydrofluorination 76, 77
Hydrogen chloride probe 107, 112–17, 134
Hydrogen fluoride, anhydrous 205–6
Hydrothermal synthesis 509–10
Hydroxylation, surface 193–6
Hydroxy(oxo)fluorides 78–83

Industrial materials and applications 205
 - ammonium hydrogenfluoride (bifluoride) 210
 - barium fluoride 213
 - calcium fluoride 213
 - cryolyte and related hexafluoroaluminates 211
 - fluorine gas 207–8
 - fluoroboric acid 212
 - hydrogen fluoride/hydrofluoric acid 205–6
 - iodine pentafluoride 208
 - potassium fluoroaluminate 214
 - sodium fluoride 213
 - sulfur hexafluoride 209–10
 - Intercalation compounds, perfluoroalkyl 469–70
 - compound preparation/synthesis routes 471–5
 - layered host materials 471, 474
 - photofunctional molecules 480–2
 - fluorine gas 207–8
 - introduction into layered materials 476–8
 - micro-environment study 478–80
 - photochemical properties 482–4
Intersalation 472
Iodine pentafluoride 208
Ionic conductivity 41, 423–7
 - cation doping of fluorides 432
 - heterovalent replacement 432
 - isovalent replacement 431–2
 - lone electron pair deformation 432–4
 - fluorite structure/nonstoichiometric phases 435–9
 - defect clusters 435–9
 - fluorite structure 435
 - micro-ordering/nanostructuring 447–9
 - ordered fluorite-like phases 39–40
 - phase diagrams 441, 442
 - proton transfer in fluoride-like phases 441, 443
 - defect region model 443–6
 - ion transfer in tysonite-like phases 454–5
 - concentration dependence 459–62
 - migration paths in LaF₃ structure 455–7
 - temperature dependence/anion defect positions 457–9
 - heterovalent oxygen substitution 428–9
 - fluorine conductivity 429–31
 - pyrohydrolysis 427
 - tysonite structure/nonstoichiometric phases 449–50
 - hexagonal modification 450
 - ordered phases 454
 - trigonal modification 450–3
Ionic exchange processes 336
Ionic liquids 64
 - Ionic transfer activation energy 426
Ionothermal synthesis 504
Isomerization 29, 72, 73–4, 112
Isopolegol 83
ITQ-n zeolites 490, 491
Lanthanum cuprate 398, 400–3, 406
Lanthanum fluoride 82
and glass-ceramics 316
host crystal for luminescence 314
ionic conductivity 455–7
Lanthanum oxyfluorides 323–4
see also Glass-ceramic systems
Lanthanum strontium cuprates 408–10
Lanthanum strontium manganese oxide
Lasers 334–6, 341–2
Layered materials, see Intercalation
compounds, perfluoroalkyl
Lead fluoride 281, 316
Lead tin fluoride 433–5
Lewis acidity
of HS-AlF\(_3\) 27–9, 43, 69, 72
see also Surface acidity studies
Lithium hexafluoroaluminate 211
Lithographic methods, see Offset processing
Low refractive index films 320–2
Lutidine probe 131–5
Luminescence 307, 314, 315, 316, 317, 322–6
fluorescence
glass-ceramics 295–8, 343, 344
photofunctional molecules 478–84
ZELA waveguides 343, 344
Magic angle spinning, see Nuclear magnetic resonance
Magnesium fluoride 2, 32, 34
anti-reflective coatings 314
films 319–22
see also HS-MgF\(_2\)
Magnetoresistive materials 411–15
Manganese-based oxyfluorides 383–4
fluorination of manganites 411–15
MAS NMR, see Nuclear magnetic resonance
Mesoporous silica 520–1
Metal oxide acidity 102, 103–7
Metallurgy 209, 210–11, 214
see also Fluoroaluminate fluxes
MFI-type zeolite 486, 490–1
Micas 508
Michael addition reactions 78–80
Microporous materials 489–91
germanium-based 499–504
gallo- and aluminio-germanates 499–500
ionothermal synthesis 504
materials/OSDA/IZA codes 501–2
orienting role of Ge 502–3
pure germanates 500, 502
role of hexamethonium OSDA 503
phosphate-based 504–6
alumino- and gallophosphates 504
role of fluoride 504–6
silica-based 490–9
absence of connectivity defects 497–8
isomorphous aluminium substitution 498–9
ITQ-n zeolites 490, 491
materials/OSDA/IZA codes 492–3
mechanism studies 496–7
MFI-type 489, 490
synthetic clays 506–7
hydrothermal synthesis 509–10
semi-synthetic 507–8
solid state synthesis 508
Microwave-assisted synthesis
advantages and principles 39–41
ovens and procedures 41–2
aluminium-based fluorides/
hydroxyfluorides 42–4
reaction parameters/nature of product 44–9
sol-gel alkoxo-fluoride route 47–9
structural features
HTB and pyrochlore hydroxyfluorides 51–7
textural features 49–51
transition metal oxy-hydroxy-fluorides 61–3, 232–3
metal organic frameworks 64
tin titanium oxy-hydroxyfluoride 62–3
use of ionic liquids 64
Mixed metal fluoride systems 36, 74–8
Modelling/DFT calculations 175–6, 201–3
density functional theory 176–7
kinetic Monte Carlo simulations 179–80
molecular adsorption 178–9
surface free energies 177–8
characterization of AlF\(_3\) surfaces/NH\(_3\)
binding energies 185–8
geometric structure of \(\alpha\) - and \(\beta\)-AlF\(_3\)
bulk phases 180
surfaces and surface energies 180–5
and high resolution NMR studies 160–7
surface catalysis 196–7
surface catalysis/CCl\(_2\)F\(_2\) dismutation 196–7
molecular adsorption 197–8
reaction kinetics 200–1
reaction mechanism and barriers 198–200
Index 587
Modelling/DFT calculations (Continued)
surface composition under reaction conditions 188
α-AlF₃ (0001) termination 192–3
α-AlF₃ₓ (01–12) termination 189–91
Molecular adsorption 197–8
calculations 178–9, 188–93
see also Probe molecules
Monochlorodifluoromethane 90–4
Monte Carlo simulations 179–80
Montmorillonite 509–10
MQ-MAS 145–6
Multi-doped glass-ceramics 299–301
Multiphonon relaxations 324, 333
Multiple-quantum MAS 145–6
Nano-particulate materials 69–70, 102–3
particle size and transparency 31, 277, 313
see also Aluminium hydroxyfluorides;
HS-AlF₃
Nanocomposite thin films 313–17
Nanosheet solutions 475
Neodymium cuprate 389–90, 404–5
Neodymium fluoride 384–5
Neodymium oxyfluoride 432–3
Noble metal catalysts, fluoride supported 32, 33, 88–90
NOCOLOK® flux, see Fluoroaluminate fluxes
Nuclear magnetic resonance 141–2
application of solid-state NMR
27Al NMR
MQ-MAS 145
SATRAS 145, 146
TOP spectra 146–7
19F NMR/fast MAS and high magnetic field 142–5
correlation
1D/2D double resonance 148–50
2D MAS CP-HECTOR 150–1
2D SLF 150
19F DQ-SQ MAS 151–2
CP-MAS 148
characterization
aluminium fluorides 153
chlorofluoride and bromofluoride 158
fluorinated aluminas and zeolites/
HS-AlF₃ 157–8
isotropic chemical shift data 153–7
pentahedral and tetrahedral species 158–9
cerium–calcium-based oxyfluorides 247–52
highly fluorinated silica 533–9
HS-aluminium fluoride hydrate 159–60
HS-aluminium hydroxyfluorides 159–60
intermediates in sol-gel synthesis 9–23
modelling/DFT calculations
model compounds/fluoroaluminates 160–1
19F NMR line assignments 161–3
27Al site assignments 164–7
Nucleation 276–7, 284–6, 288–9, 290
Octafluorocyclobutane 571
Offset processing
background to lithographic printing 571–3
fluorination and analysis methods
rf plasma fluorination of plates 573–4
wettability measurements 574
XPS analysis 574–5
surface modifications/plasma treatments
c-C₄F₈ plasma 578–81
CF₄ plasma 575–8, 580–1
switchable hydrophilic/hydrophobic surfaces 573, 580, 581–2
Optical amplifiers 314, 334–6, 340–1
Optical waveguides, see Waveguides, planar
Optics overview 2, 34, 307, 308–9
Organic structure-directing agents (OSDA)
490, 491, 492–3
Organic–inorganic hybrids 32–3, 64, 348–9
see also Intercalation compounds,
perfluoroalkyl
Oswald ripening 277
Oxidation catalysts 32, 84–8
Oxide fluoride glasses 545–6
composition and preparation
HoF₃-BaF₂-AlF₃-GeO₂ systems 549, 550, 551–2
NdF₃-AlF₃-GeO₂ system 546–7
NdF₃-SiO₂-Al₂O₃ system 546
TbF₃-AlF₃-GeO₂ system 547
TbF₃-BaF₂-GeO₂ system 547, 548, 549
density and refractive index 552–3
glass transition temperature 553–5
magnetic properties of TbF₃ containing glasses 566–8
optical properties
CeF₃-BaF₂-AlF₃-SiO₂ glasses 555–7, 557–63
HoF₃-BaF₂-AlF₃-GeO₂ glasses 555–7, 557–63
TbF₃ and SmF₃ co-doped glasses 564–6
Oxyfluorides
Ce and Ti-based, see UV absorbing Ce and Ti-based oxyfluorides
ionic conductivity 29–31
superconducting, see Superconducting cuprates
transparent systems, see Glass-ceramic systems, oxyfluoride

Palladium catalysts 32, 33, 89–94
Suzuki coupling 95–6
Perfluoroalkyls 208
intercalation compounds, see Intercalation compounds, perfluoroalkyl
Photofunctional molecules 469, 476–8
photochemical properties 482–4
photophysical responses/properties 478–82

Photoisomerization 483
Photolithography 338
Photoluminescence, see Luminescence
Phyllosilicates 506–7, 509
Physical vapour deposition (PVD) 337
Planar waveguides, see Waveguides, planar
Plastic fuel/gas tanks 207
Platinum catalysts 32, 89–94
Polyanion condensation, fluoroaluminate background 347
amine cation templates 348
synthesis 348–9
concentration of amine 372–4
temperature 374–5
extended finite polyanions (0D) 350
Al_2F_9 dimers 353–4
Al_2F_{11} dimers 353
Al_2F_{16} trimers 353
Al_2F_{18} tetramers 354–5
Al_2F_{20} tetramers 354
Al_2F_{26} pentamers 355
Al_2F_{30} heptamers 355–6
Al_2F_{35} octamers 356
isolated AlF_4 tetrahedra 350
isolated AlF_6 octahedra 350–2
mixed polyanions 356–8
1D networks
Al_2F_8 double chains 360
Al_2F_9 chains 359
Al_2F_{12} triple chains 361
Al_2F_{13} ramified chains 361
Al_2F_{29} chains 360
AlF_3 chains 358–9
mixed polyanions and/or chains 361–4
2D networks
Al_2F_2 layers 366–7
Al_2F_{10} layers 368
Al_2F_{14} layers 365
AlF_4 layers 365–6

3D networks
Al_2F_9 368–9
Al_2F_{13} 368, 369
AlF_3 369–71
Porous metal fluoride coatings 319
Potassium fluoroaluminate 211, 214
see also Fluoroaluminate fluxes
Potassium fluoroborate 212
Potassium fluorosilicate 210–11
Potassium fluorozincate 210–11
Potassium hydrogenfluoride 214
Predictive modelling, see Modelling/DFT calculations
Probe molecules 27–8, 78, 131–6
anhydrous hydrogen chloride 107, 112–17
Propane, dehydrogenation of 84–5, 86
Protective coatings 34–5
Pulsed laser deposition (PLD) 337
Pyrene 476, 478–9
Pyridine, adsorption of fluorides 27, 28, 70, 81, 131
metal oxides 103–7
Pyrochlore hydroxyfluorides, see Aluminium hydroxyfluorides
Pyrohydrolysis 427
Radiotracer studies 110–17
Rare-earths
doping 279
emissions and energy levels 334
see also Oxide fluoride glasses
REAPDOR technique 148–50
REDO techniqe 148–50
Refractive index 34, 320–2
ReO$_3$-type hydroxyfluorides, see Aluminium hydroxyfluorides
Rhodamine B 480–2
Rose bengal dye 479–80, 483
Ruddlesden-Popper series 384, 403–4

Satellite transition spectroscopy (SATRAS) 145, 146
Silica-based materials, see Highly fluorinated silica; Microporous materials
Silicon oxyfluoride 312–13
Single crystals 297–8
Sodium fluoride 213
Sodium hexafluoroaluminate 211
Sodium hydrogenfluoride 213–14
Sol-gel synthesis, overviews of 1
fluoride glasses 309–13
metal fluorides 2–4, 47–8, 308–9
metal oxides 1–2, 308
see also Fluorolytic sol-gel synthesis
Solid electrolytes, see Electrolytes, fluoride
Solid solutions 441, 442, 443
Solvay-Fluor products, see Industrial materials and applications
Spin casting 337
Spinodal decomposition 275–6
Sputtering 337
Strontium cuprate 398–400
Strontium manganese oxide 411–12
Sulfur hexafluoride 209–10
Supercluster model 437–9
and microordering 447–9
Superconducting cuprates 383–4
complex oxides 383–4
fluorine insertion/fluorination reagents 384–8
fluorination of nonsuperconducting cuprates 408–11
superconductivity–structure relationships 388–9, 415–16
electron-doped conductors 389–90
hole-doped conductors 390–8
structural rearrangements in fluorinated cuprates 398–411
Surface acidity studies 69–71, 101–2
metal oxides compared to fluorides 102–3
FTIR adsorption studies 103–7
molecular acids vs metal fluorides 101, 108–9
solid metal fluorides
aluminium chlorofluoride benchmark 109–10, 123
FTIR methodology 103–7, 110–17
radiotracer (35Cl) approach
experimental method 112–17
geometries of HCl adsorption 135–6
HS-AlF$_3$ 69–72, 123–7
HS-MgF$_2$ 69–71, 127–9
HTB aluminium hydroxyfluorides 129–35
Surface activity 128
Surface free energies 177–8
Surface hydroxylation 188, 193–6
Suzuki coupling reactions 95–7
Switchable hydrophobic/hydrophilic layer, see Offset processing
Synthesis routes
the fluoride route, see Microporous materials see also Microwave-assisted synthesis;
Sol-gel synthesis, overviews of
Talc 507–8
Tanabe model 30, 74
TEDOR technique 149–50
Telecom applications 334–6
Temperature programmed desorption 27, 69, 70, 71
and calculated binding energies 187–8
FTIR study of metal oxides 103–7
Tetraethyloxysilicate 312
Tetrafluoroorthosilicate 311
Thakur’s method 288–9
Thermal decomposition processes 43
Thermogravimetric analysis 260–3, 530–3
Thin films 33, 314
nansheet solutions 475
optical systems 34, 313–17
anti-reflection/low refractive index 304, 307, 317–18
porous metal fluoride 319
protective coatings 34–5
transparent conducting 313
Tin oxide 313
Tin titanium oxy-hydroxyfluoride 62–3
Titanium oxy-hydroxyfluorides 61–3
Titanium-based oxyfluorides, see UV absorbing Ce and Ti-based oxyfluorides
Tocopherol synthesis 80–2
TOP spectra 146–7
TPD, see Temperature programmed desorption
Transition metal catalysts 32, 84–8
Transition metal oxides 383–4
Transition metal oxy-hydroxyfluorides 61–4
Transparency 31, 277–8, 313
TRAPDOR 148–50
Trifluoroacetic acid 309, 310–11
Two-dimensional one pulse spectra 146–7
Tysonite structure 423–4, 426–7, 449–53
Ultra-low dielectric constant 321
Ultra-violet absorption, see UV absorbing Ce and Ti-based oxyfluorides
Upconversion processes 296–7, 333
Uranium fluoride 206
UV absorbing Ce and Ti-based oxyfluorides 229–30
analysis and magnetic measurements 233–4
cerium–calcium-based oxyfluorides structure and fluorine environment 237–42
19F NMR analysis/local fluorine environment 247–52
CaF$_2$ observation/ion solubility limits 242–4
evaluation of cation–anion bond lengths 244–7
TEM and EELS analysis 252, 253
Vanadium oxide catalysts 32, 84–8

Waveguides, planar 314, 316, 331–2
applications 334–6
fabrication processes 336–8
fluoride glass

composition and properties 332, 333
emerging glass-ceramic systems 342–4
glueology and performance 338–40
lasers 334–6, 341–2
optical amplifiers 334–6, 340–1
rare-earth emissions and energy levels 333, 334

Xenon difluoride 386–8

Yttrium barium copper oxide 390
related structures and fluorine insertion 393–8

ZBLA(N) glasses 309, 310–11, 332–3
Zeolites, see Microporous materials