Contents

Preface XIX
List of Contributors XXIII

1 The Amyloid Phenomenon and Its Significance 1
Christopher M. Dobson
1.1 Introduction 1
1.2 The Nature of the Amyloid State of Proteins 1
1.3 The Structure and Properties of Amyloid Species 5
1.4 The Kinetics and Mechanism of Amyloid Formation 7
1.5 The Link between Amyloid Formation and Disease 9
1.6 Strategies for Therapeutic Intervention 11
1.7 Looking to the Future 14
1.8 Summary 15
Acknowledgments 16
References 16

2 Amyloid Structures at the Atomic Level: Insights from Crystallography 21
Michael R. Sawaya and David Eisenberg
2.1 Atomic Structures of Segments of Amyloid-Forming Proteins 21
2.1.1 Protein Segments That Form Amyloid-Related Crystals 21
2.1.2 Atomic Structures of Fiber-Like Microcrystals 23
2.2 Stability of Amyloid Fibers 25
2.3 Which Proteins Enter the Amyloid State? 26
2.4 Molecular Basis of Amyloid Polymorphism and Prion Strains 27
2.5 Atomic Structures of Steric Zippers Suggest Models for Amyloid Fibers of Parent Proteins 28
2.6 Atomic Structures of Steric Zippers Offer Approaches for Chemical Interventions against Amyloid Formation 31
2.7 Summary 34
Acknowledgments 36
References 36
3 What Does Solid-State NMR Tell Us about Amyloid Structures? 39
Wolfgang Hoyer and Henrike Heise

3.1 Introduction 39
3.2 Principles of Solid-State NMR Spectroscopy and Experiments for Structural Constraints 40
3.2.1 Isotope Labeling, Magic Angle Spinning, Dipolar Coupling, and Resonance Assignment 40
3.2.2 Defining the Amyloid Core by Magnetization Transfer from Water 43
3.2.3 Determining the Fibril Registry 43
3.2.4 Seeded versus Unseeded Fibrils 44
3.3 Amyloid Fibrils Investigated by Solid-State NMR Spectroscopy 45
3.3.1 Aβ peptides of Different Length 46
3.3.2 Islet Amyloid Polypeptide (IAPP/Amylin): Parallel and Antiparallel Steric Zippers 47
3.3.3 α-Synuclein: Polymorphism with Flexible Terminal Regions 49
3.3.4 PrP: Rearrangements to Maintain a Fibrillar Core Region 51
3.3.5 Yeast Prions with Glutamine/Asparagine-Rich Prion Domains: Sup35p, Ure2p, and Rnq1p 52
3.3.6 Functional Amyloid: the Yeast Prion HET-s 52
3.4 Summary 53
References 54

4 From Molecular to Supramolecular Amyloid Structures: Contributions from Fiber Diffraction and Electron Microscopy 63
Kyle L. Morris and Louise C. Serpell

4.1 Introduction 63
4.2 History 65
4.2.1 The Historical Use of X-ray Fiber Diffraction 65
4.2.2 The Historical Use of Transmission Electron Microscopy 67
4.3 Methodology 68
4.3.1 X-Ray Fiber Diffraction 68
4.3.2 Transmission Electron Microscopy 72
4.4 Recent Advances in Amyloid Structure Determination 73
4.4.1 X-ray Fiber Diffraction 73
4.4.2 Transmission Electron Microscopy 76
4.5 Summary 78
Acknowledgments 79
References 79

5 Structures of Aggregating Species by Small-Angle X-Ray Scattering 85
Cristiano L. P. Oliveira and Jan Skov Pedersen

5.1 Introduction 85
5.2 Theoretical and Experimental Aspects 85
5.3 Data Analysis and Modeling Methods 88
7.3.2 The Membrane Composition Affects Binding and Aggregation Processes 132

7.3.3 Complex Roles of Cholesterol and Gangliosides in Oligomer Cytotoxicity 133

7.4 Biochemical Modifications Underlying Amyloid Toxicity 134
7.4.1 A New View of the Amyloid Cascade Hypothesis 134
7.4.2 Amyloid Pores: a Mechanism for Cytotoxicity? 135
7.4.3 Other Mechanisms for Oligomer Cytotoxicity 137
7.4.3.1 Oxidative Stress and Amyloid Aggregates 138
7.4.3.2 Lipid Modification and Ca\(^{2+}\) Entry 139
7.4.3.3 The Complexity of Amyloid and Oligomer Polymorphism 140

7.5 Summary 141

References 141

8 Pathways of Amyloid Formation 151
Francesco Bemporad and Fabrizio Chiti

8.1 Introduction 151

8.2 Nomenclature of the Various Conformational States 152

8.3 Graphical Representations of the Mechanisms Leading to Amyloid 153
8.3.1 Time Course of Amyloid Content 153
8.3.2 Energy Landscapes of Amyloid Fibril Formation 155
8.3.3 Reaction Equilibria Involved in Amyloid Fibril Formation 157

8.4 Pathways of Amyloid Fibril Formation 159
8.5 Nucleation Growth versus Nucleated Conformational Conversion 161

8.6 Summary 163

References 163

9 Sequence-Based Prediction of Protein Behavior 167
Gian Gaetano Tartaglia and Michele Vendruscolo

9.1 Introduction 167

9.2 The Strategy of the Zyggregator Predictions 167
9.2.1 Prediction of the Effects of Amino Acid Substitutions on Protein Aggregation Rates 168
9.2.2 Prediction of the Overall Aggregation Rates of Peptides and Proteins 170
9.2.3 Prediction of Aggregation-Prone Regions in Amino Acid Sequences 171

9.3 Aggregation Under Other Conditions 173
9.3.1 Prediction of Protein Aggregation-Prone Regions in the Presence of Denaturants 173
9.3.2 Prediction of Aggregation-Prone Regions in Native States of Proteins 173
9.4 Prediction of the Cellular Toxicity of Protein Aggregates 174
9.5 Relationship to Other Methods of Predicting Protein Aggregation Propensities 175
9.6 Competition between Folding and Aggregation of Proteins 177
9.7 Prediction of Protein Solubility from the Competition between Folding and Aggregation 177
9.7.1 Sequence-Based Prediction of Protein Solubility 178
9.7.2 Prediction of the Solubility of Proteins Based on Their Cellular Abundance 178
9.8 Sequence-Based Prediction of Protein Interactions with Molecular Chaperones 179
9.9 Summary 179
References 180

10 The Kinetics and Mechanisms of Amyloid Formation 183
Samuel I. A. Cohen, Michele Vendruscolo, Christopher M. Dobson, and Tuomas P. J. Knowles
10.1 Introduction 183
10.2 Classical Theory of Nucleated Polymerization 184
10.2.1 From Microscopic Processes to a Master Equation 184
10.2.2 Kinetic Equations for Experimental Observables 187
10.2.3 Characteristics of Oosawa-Type Growth 189
10.2.3.1 Nucleation and Growth Occur Simultaneously 189
10.2.3.2 The Early Stages of the Reaction Time Course Are Described by Polynomial Growth 189
10.2.3.3 The Late Stages of the Reaction Time Course are Described by Simple First-Order Kinetics 190
10.2.3.4 The Integrated Rate Laws Exhibit Scaling Behavior 191
10.2.4 Global Analysis of Experimental Data Using the Oosawa Theory 192
10.3 The Theory of Filamentous Growth with Secondary Pathways 193
10.3.1 Extending the Oosawa Framework to Include Fragmentation and Secondary Nucleation 193
10.3.2 Early Time Perturbative Solutions 195
10.3.3 Characteristics of Exponential-Type Growth 196
10.3.3.1 The Early Stages of the Reaction Time Course Are Exponential 196
10.3.3.2 The Solution Exhibits Scaling Behavior 198
10.3.4 Global Analysis of Experimental Data Using Linearized Solutions 198
10.4 Self-Consistent Solutions for the Complete Reaction Time Course

10.4.1 The Key Phenomenological Parameters Depend on Combinations of the Microscopic Rate Constants

10.4.2 Reaction Time Course with Depleted Monomer Concentration

10.4.3 Global Analysis of Amyloid Reaction Kinetics Using Self-Consistent Solutions

10.5 Summary

References

11 Fluorescence Spectroscopy as a Tool to Characterize Amyloid Oligomers and Fibrils

Per Hammarström, Mikael Lindgren, and K. Peter R. Nilsson

11.1 Introduction

11.2 Fluorescence Spectroscopy for Studies of Amyloid Reactions In vitro

11.2.1 Fluorescence Output Formats

11.2.2 Fluorescence Anisotropy

11.2.3 Single Molecule Detection

11.2.4 Conformational Probes

11.3 Cysteine- Reactive Fluorescent Probes

11.3.1 Environmentally Sensitive Probes – Spectrochromic Stokes Shift Assay

11.3.2 Fluorescence Anisotropy Probes for Amyloid Oligomerization

11.3.3 Pyrene Excimer Formation Probes for amylloid Oligomer and Fibril Topology

11.3.4 Bifunctional Cysteine Reagents as Probes for Amyloid Oligomers and Fibrils

11.4 Amyloidotropic Probes for Amyloid Fibrils and Oligomeric States

11.4.1 Are There Selective Probes for Prefibrillar Oligomeric States?

11.4.2 Fluorescence Anisotropy of Small Molecule Probes for Capturing the Intermediate Oligomeric State

11.4.3 In vivo Fluorescent Probes for Amyloid Fibrils

11.5 Luminescent Conjugated Poly and Oligothiophenes LCPs and LCOs

11.5.1 Optical Properties of Chemically Defined LCOs

11.5.2 Bridging the Imaging and Spectroscopy Gap – Microspectroscopy of In vivo Formed Amyloids

11.5.3 Bridging the Imaging and Spectroscopy Gap: Microspectroscopy and Real Time Imaging of Amyloid Formation

11.5.4 New Nanoscopic and Multifunctional Fluorescence-Based Imaging Technologies
11.5.5 LCOs for Optical In vivo Imaging of Protein Aggregates in Transgenic Mouse Models 234
11.6 Summary 236
Acknowledgments 237
References 239

12 Animal Models of Amyloid Diseases 245
Stanislav Ott and Damian C. Crowther
12.1 Introduction 245
12.2 Some Big Questions Regarding Amyloid Diseases and Some Answers from Animal Models 247
12.3 Identifying the Toxic Species in the Systemic Amyloidoses 248
12.4 Identifying the Toxic Species in Alzheimer’s Disease 250
12.5 Infectious Protein Misfolding 252
12.5.1 Bona fide Prion Disease 254
12.5.2 Prion-Like Diseases 254
12.6 Conclusions 256
References 257

13 The Role of Aβ in Alzheimer’s Disease 263
Timothy M. Ryan, Blaine R. Roberts, Victor A. Streltsov, Stewart D. Nuttall, and Colin L. Masters
13.1 History of Amyloidosis 263
13.1.1 Early Reports of Amyloidosis 263
13.1.2 Origins of Modern Definition of Amyloid 264
13.2 Biochemistry of Aβ 264
13.2.1 Identification of the Alzheimer’s Amyloid Subunit 265
13.2.2 The Production and Processing of the Aβ Peptide 267
13.3 Amyloid Fibrils 268
13.3.1 Synthetic Structural Studies 268
13.3.2 In vivo Fibrillar Structure 269
13.4 The Soluble Oligomer Theory of AD 269
13.4.1 The Development of the Soluble Oligomer Theory of AD 269
13.4.2 Soluble Oligomers In vivo 270
13.4.3 Recombinant Soluble Oligomers 271
13.4.4 Synthetic Aβ Soluble Oligomers 271
13.5 Other Factors Involved in Amyloid Plaque Formation in AD 274
13.5.1 Interactions with Lipids and Membranes 275
13.5.2 Electrostatic Membrane Interactions 275
13.5.3 Integral Membrane Interactions 276
13.5.4 Other Lipid Interactions 277
13.5.5 Apolipoprotein Interactions 277
13.5.6 Receptor Interactions 277
13.6 Metal Ions in AD 278
13.6.1 Cu/Aβ Interactions 278
13.6.2 Zn/Aβ Interactions 279
13.6.3 Fe/Aβ Interactions 279
13.6.4 Other Metals Involved in AD 279
13.7 Other Potential Aβ Interactions 280
13.8 Other Neurodegenerative Diseases 280
13.9 Conclusion 280
References 281

14 Experimental Approaches to Inducing Amyloid Aggregates 295
Lise Giehm and Daniel Otzen
14.1 The Need for Reproducible Fibrillation Assays 295
14.2 Setting Up an Assay to Monitor Fibrillation 296
14.3 Conditions That Promote Protein Aggregation 298
14.3.1 Formation of an Aggregation-Competent Amyloidogenic Precursor 303
14.3.2 Assembly of Aggregation-Prone Complexes via Additives Such as Surfactants or Lipids 308
14.3.3 Ability to Recruit Native-Like Monomers by an “Infectious” State 309
14.3.4 Minor Conformational Changes in an Essentially Native-Like Precursor 311
14.3.5 Promotion of Elongation and Nucleation Steps through Fragmentation 311
14.3.6 Miscellaneous Effects 312
14.4 Processing and Batch Differences 312
14.5 Toward High-Throughput Assays 313
14.6 Summary 314
References 314

15 Fibrillar Polymorphism 321
Marcus Fändrich, Melanie Wulff, Jesper Søndergaard Pedersen, and Daniel Otzen
15.1 Detection of Fibrillar Polymorphism 321
15.2 The Structural Definition of Fibril Polymorphism 322
15.2.1 Inter-sample Polymorphism 322
15.2.2 Intra-Sample Polymorphism 326
15.2.3 Deformations from Ideal Helical Symmetry 326
15.3 The Two Classes of Fibril Polymorphism 328
15.3.1 Protofilament Assembly Polymorphisms: Different Orientations and Different Numbers of Protofilaments 328
15.3.1.1 Different Orientation 328
15.3.1.2 Different Numbers of Protofilaments 328
15.3.2 Protofilament Substructure Polymorphisms and Composite Fibril Structures 329
15.4 How Does Fibrillar Polymorphism Arise? 332
15.5 The Interconversion of Fibril Polymorphs 334
15.6 The Biological Implications of Fibril Polymorphism 335
15.7 Summary 337
Acknowledgments 338
References 338

16 Inhibitors of Amyloid and Oligomer Formation 345
Nikolai Lorenzen, Erich E. Wanker, and Daniel Otzen
16.1 Introduction: Amyloidoses versus Neurodegenerative Diseases 345
16.1.1 Antibody-Mediated Immunotherapy 346
16.1.1.1 Active Immunization 346
16.1.1.2 Passive Immunotherapy 348
16.1.2 The Blood Brain Barrier 349
16.1.3 Nucleic Acid-Based Agents against Protein Aggregates 350
16.1.3.1 Stabilizing the Native State 350
16.1.3.2 Structural Properties of Fibrillation Inhibitors 350
16.1.3.2.1 Unspecific Effects by Colloidal Agents 356
16.1.3.3 Polyphenols: a Potent Class of Amyloid Inhibitors 357
16.1.3.3.1 Epigallocatechin Gallate: the Universal Amyloid-Inhibitor? 357
16.1.4 Promoting Fibrillation to Avoid Toxic Oligomers 359
16.1.4 Peptides and Peptide Mimetics 360
16.1.5 Nanoparticles: Untamed Dragons with Fire Power to Heal? 361
16.2 Summary 362
References 363

17 Development of Therapeutic Strategies for the Transthyretin Amyloidoses 373
Colleen Fearns, Stephen Connelly, Evan T. Powers, and Jeffery W. Kelly
17.1 Introduction to Transthyretin Structure and Function 373
17.2 Introduction to Amyloid Diseases in General 373
17.2.1 Transthyretin Amyloid Diseases 375
17.2.2 Current Strategies to Treat Human Amyloid Diseases 377
17.3 Mechanism of Transthyretin Amyloidogenesis 378
17.3.1 Kinetic Stabilization of the Transthyretin Tetramer Ameliorates Amyloid Disease – Genetic Evidence 379
17.4 Kinetic Stabilization of the Transthyretin Tetramer through Small-Molecule Binding 381
17.4.1 Bivalent Kinetic Stabilizers 384
17.4.2 Kinetic Stabilizers Must Bind Selectively to Transthyretin 385
17.5 Assessment of Diflunisal for Treatment of Transthyretin Amyloidosis 385
17.6 Tafamidis, the First Approved Drug for Treatment of a Transthyretin Amyloidosis 385
18 Hormone Amyloids in Sickness and in Health 395
Carolin Seuring, Nadezhda Nespovitaya, Jonas Rutishauser, Martin Spiess, and Roland Riek
18.1 Introduction 395
18.2 Constitutive vs. Regulated Secretory Pathways 395
18.3 Secretory Granules Contain Aggregated Cargo 396
18.3.1 Secretory Protein Sorting and Granule Formation 396
18.3.2 Triggering the Formation of Secretory Granules 398
18.3.3 Triggering the Formation of Secretory Granules by Glycosaminoglycans (GAGs) 399
18.4 Secretory Granule Aggregation by Functional Amyloid Formation 401
18.5 Hormone Amyloids in Disease: Diabetes Insipidus 402
18.6 Conclusions 405
References 405

19 Functional Amyloids in Bacteria 411
Morten S. Dueholm, Per Halkjaer Nielsen, Matthew Chapman, and Daniel Otzen
19.1 Introduction 411
19.2 Functional Amyloids are Common in Nature 412
19.3 Identification and Characterization of Functional Amyloids 413
19.4 Functional Bacterial Amyloids Play Many Roles 415
19.4.1 Biofilm Formation and Cell Clustering 415
19.4.2 Binding to Eukaryotic Cells 416
19.4.3 Oligomeric Toxins 417
19.4.4 Coating of Spores and other Cells 417
19.5 Biogenesis and Regulation of Functional Bacterial Amyloids 418
19.5.1 Curli 418
19.5.2 Functional Amyloids in Pseudomonas 418
19.5.3 Chaplins 420
19.5.4 Hydrophobins 420
19.6 Structural Composition of Functional Amyloids 421
19.6.1 Curli: Five Repeating Units and Essential Gln and Asn Residues 421
19.6.2 FapC Linkers of Variable Length: Pseudomonas 423
19.6.3 Chaplins: GN Motif and Conserved Cys Residues 423
19.6.4 Harpins: Small and Polar Residues 425
19.7 Assembly Properties of Functional Amyloid In Vitro 425
19.8 Diversity and Distribution of Functional Amyloid Genes 426
19.9 Summary 431
Acknowledgments 433
References 433
20 Structural Properties and Applications of Self-Assembling Peptides
Zhongli Luo and Shuguang Zhang

20.1 Introduction to Self-Assembling Peptides 439
20.2 The Principles of Self-Assembling Peptides 439
20.2.1 Design Principle for Self-Assembling Peptides 439
20.2.2 Conformational Changes Undergone by Self-Assembling Peptides 441
20.2.2.1 Effect of Temperature 441
20.2.2.2 Effect of pH 442
20.2.2.3 Effect of Amino Acid Sequence 442
20.3 Self-Assembling Peptide Nanofibers 443
20.3.1 The Nanofiber Structures of the Peptide Scaffold 443
20.3.2 The Process of Peptide Scaffold Formation 444
20.3.3 A Proposed Model for the Process of Nanofiber Formation 445
20.4 Diverse Applications of Self-Assembling Peptide Nanofibers Scaffolds 446
20.4.1 Three-Dimensional Tissue Cell Cultures 446
20.4.2 Cell and Tissue Engineering 448
20.4.3 Controlled Drug Delivery and Regenerative Medicine 450
20.4.4 Trauma Emergency 451
20.5 Summary 451
Acknowledgments 452
References 452

21 Harnessing the Self-Assembling Properties of Proteins in Spider Silk and Lung Surfactant 455
Jan Johansson

21.1 Introduction 455
21.2 Amino Acid Sequences and Amyloid Formation 455
21.3 Spider Silk and How the Spiders Make It 458
21.4 Harnessing the Properties of Spider Silk and Its Constituent Proteins 461
21.5 Biosynthesis of an α-Helix from One of the Most β-Prone Sequences Known 462
21.6 Anti-Amyloid Properties of the BRICHOS Domain 464
21.7 Summary 465
Acknowledgments 465
References 466

Index 471