Index

a
additives 71, 82
amorphous
– polymer 9, 97ff.
– structures 4, 6, 9
atomic force microscopy (AFM)
– droplet 145
– nanofiber 74f., 102
axisymmetric undulations, see fiber deposition

b
bioerodible polymers 166, 169f.
biopolymers 172ff.
biostable polymers 166, 172, 228
branching, see jet
buckling, see fiber deposition
burst release 174
c
capillary flow porometry 107f., 117f.
catalysis, see electrospinning applications
chain
– conformation 7ff.
– extension 38
– macromolecular 7, 166
– molecules 9, 43
chemical composition 73, 78, 80
chemical vapor deposition (CVD) 116, 161, 230
coealescence
– fiber 43f., 116
– fluid droplets 43f.
cotton, see textile
Coulomb forces 57f.
counterelectrode
– distance 31, 130, 153f.
– nozzle 137
– /substrate 31, 131
– temperature 71
counterelectrode type
– bottom-up 37
– frame-shaped 111, 138
– planar 32, 110, 127, 129, 140, 148
– quadrupolar 139
– rotating cylinder-type 110f., 140
– star-type 139
– unstructured 109
– wheel-shaped 110, 140f.
crystalline
– partially 9, 11, 96, 99f.
– polymer 8, 11
– structures 4f.
crystallization 59, 96
crystals
– lamellar 9, 11, 77
current 70, 79
d
Darcy law 109, 119
die
– substrate distance 151
– tip 34
– tip-counterelectrode distance 39, 93, 153f.
dielectric
– constant 80
– permittivity 70
diffusion
– filter 188f., 194
– gas 114
– water vapor 199
dispersions 166
displacement velocity 39, 59, 152, 155
droplet
– cone-shaped 35, 52
– curve 49ff.
– deformation 35, 46f., 127
– fluid 47

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
electrospinning setups 18, 23, 25, 30, 32
 – coaxial 144, 155ff.
 – die-free multiple-jet injection 133ff.
 – microfluidic feeding 145
 – multiple-die 132ff.
 – single-die 127ff.
 – syringe-type 127, 130, 134, 154
 – top-down arrangement 32
electrospinning tubes by fiber technique (TUFT) 144, 160ff., 210
electrospraying 33
extracellular matrix (ECM) 3, 13ff., 219
 – transport and release of drugs 228ff.
 – tumor therapy 230f.
 – wound healing 226ff.
electrospinning 16ff.
 – chamber 131ff.
 – deposition pattern, see fiber deposition
 – electrical parameters 31
 – experimental setups 29ff.
 – high-precision deposition (HPDE) 37ff., 93, 143ff.
 – high-throughput 136
 – history 22f.
 – materials 165ff.
 – melt 180ff.
 – near-field 144ff.
 – process 29ff.

f
 fiber
 – core–shell 155ff.
 – diameter 12ff.
 – elongation 42, 59ff.
 – extrusion 10ff.
 – flexibility 116
 – formation 33
 – functionalized 13, 77
 – hollow 11, 86, 144, 155ff.
 – natural 2, 4, 11, 14
 – silk 2, 4
 – soft 43
 – solid 11, 17, 43
 – thickness 72f.
 – thinning 42
 – wool 4, 14
fiber applications, see electrospinning applications
fiber architectures 20, 22, 71
fiber deposition 30f., 42ff.
 – axisymmetric undulations 39f.
 – buckling deformation 44f., 94f., 146, 150, 152f.
 – crossgrating-type 39
 – individual 148ff.
 – pattern 93, 145ff.
 – spindle-like 42
 – test pattern 151f.
 – velocity 39
fibers 1, 3
filter 12f.
 – capture ratio 194ff.
 – coalescence 12, 196
 – diffusion 188ff., 194
 – efficiency 188ff.
 – Knudsen regime 192ff.
 – nanostructuring 190ff.
fibrils 1, 3
freezing-in process 97
G
 Gaussian coil 7f.
glass formation 59, 96
glass transition temperature 43, 97
Gorham process 160
h
 hierarchical
 – structure 14, 16
 – trajectory 20
high speed video analysis 34, 37, 42
high voltage generator 31, 129ff.
humidity 84, 91, 198f
hydroxypropyl cellulose (HPC) 171f.

i
impurities 12
instability
– axisymmetric 42, 63ff.
– bending 40f., 44, 52, 55f., 145f.
– Rayleigh-type 33, 40f., 61f., 95f.
– secondary 87
– whipping 41, 62, 64
insulation properties 4
interference properties 34, 36

j
jet
– bending trajectory 55f., 94, 150
– branching 41, 46, 66, 87
– charged 57
– deformation 37f., 70
– diameters 34, 36, 38
– flowing 32
– linear trajectory 52f., 148
– looping part 40, 59f., 150
– mimicking 63
– rectilinear 33
– spiraling 40, 59f.
– spraying 41
– straight path 36ff.
– stretching 52, 54, 79
– trajectories 92ff.
– undulating trajectory 39f., 149
– velocity 37, 39
jetting 46ff.

k
Kevlar fibers 12
Knudsen number 191, 193, 199f.

l
laser Doppler velocimetry 43
lotus effect, see self-cleaning
lyotropic polymer 12, 172

m
magnetic liquids 134f.
Master lines 80
Maxwell model 52ff.
melt
– electrospinning 30, 180ff.
– extrusion 11
membranes 15, 20, 197
– air flow resistivity 197f.
– microporous 199
– Gore-Tex 199
Monte Carlo simulations, see porosity

n
nanofiber 12f., 15, 38, 69ff.
– antibacterial 200f.
– coating 136
– diameter 78ff.
– formation 69ff.
– functionalized 77
– geometry 72ff.
– internal morphology 76f., 96ff.
– nonwovens 105ff.
– porosity 75, 78, 85f., 88, 91f.
– scaffolds 78
– single 101f.
nanofiber structures 69, 72
– band-type 85
– barbed 87
– breath figures 90
– hollow 86
– layer-like 110
– linear 146, 208
– parallel 110f., 148f., 204
– pearl-necklace 95
– planar 153
– rectangular 150
– ribbon-type 120
– spherical 86, 91, 97
– spike 134
– topology 72f., 88f.
nanofiber
– ultrathin 197
nanofilm 9, 97
nanorods 15
nanotubes 160f., 179, 181, 217
Navier–Stokes equation 63, 191f.
needled punching technique 111
neurons 13f.
nanowoven 19, 42
– architectures, see nanofiber structures
– fiber diameter distribution 117ff.
– heterogeneous 112f.
– high-precision deposition electrospinning (HPDE) 151ff.
– membrane 20, 107f.
– nanofibers 105ff.
– properties 106f., 124
Index

o
- optical microscopy
 - charge-coupled device (CCD) camera 73
 - nanofiber 72ff.
 - nonwovens 106
 - polyamide 2
- optical properties 9, 14
- orientation
 - 3-D 111, 220
 - highly 43
 - molecular 124
 - order 98, 101
 - planar 32, 110
 - random 110
 - statistical planar 110
- orientational distribution 19
- oriented 32, 43, 110, 224

p
- permeation coefficient 109, 116, 119, 123ff.
- phase
 - matrix 89
 - separation 89, 91f., 229
 - transition 97
- pheromones 210ff.
- photocrosslinking 171
- phototreatment, see thermal treatment
- polymer
 - block-copolymer 166, 172, 176ff.
 - complex systems 175ff.
 - graft-copolymer 166, 176ff.
 - hybrids 178
 - poly(acrylic acid) (PAA) 70, 170
 - polyacrylonitrile (PAN) 81f., 90, 107, 112, 117ff.
 - polyamide (PA) 19, 32, 82, 85ff., 88, 113, 166, 169
 - polybenzimidazole (PBI) 166, 169, 206
 - polycaprolactone (PCL) 70, 166, 170, 221f.
 - polycarbonate (PC) 157, 159
 - poly(ethylene-co-vinyl acetate) (PEV) 166
 - poly(ethylene imine) (PEI) 170
 - polyethylene oxide (PEO) 17f., 45, 65, 70, 81, 149, 158, 170, 221
 - poly(ethylene terephthalate) (PET) 166
 - polyimides (PI) 166, 169
 - poly(l-lactid acid) (PLLA) 44, 75, 78, 113, 162, 166f., 169f.
 - polymer processing, see fiber processing
 - poly(methyl methacrylat) (PMMA) 166, 169
 - poly(p-xylylene) (PPX) 160f., 230
 - polystyrene (PS) 44, 72, 75, 90, 95, 166ff.
 - poly(tetrafluoroethylene) (PTFE) 198f.
 - polyurethanes (PU) 166, 228
 - poly(vinyl acetate) 81, 88
 - polyvinyl alcohol (PVA) 43, 87, 170
 - poly(vinyl chloride) (PVC) 166
 - poly(vinyldiene fluoride) (PVDF) 9, 90, 157f., 166
 - poly(vinyl pyrrolidone) (PVP) 102, 159, 170ff.
- pore diameter 114
 - bubble point 108, 119, 123
 - pore size 19, 78, 86, 91
 - distribution 108
 - geometric 107, 117f., 121
 - nonwovens 105, 107, 116
- porosity
 - 3-D 114
 - Monte Carlo simulations 114ff.
 - nonwovens 106, 113ff.
 - surface 208
 - total 85, 115, 120ff.

q
- quantum effects 77, 209

r
- refractive index 38, 73
- reinforcement 2, 12f.
 - applications 21
 - nanofiber 90, 95, 103, 110, 138, 203ff.

s
- scaffolds
 - nanofiber-based 78, 220ff.
 - porous 221
- scanning electron microscopy (SEM) 2
- cotton textile 2
- nanofibers 15, 75
- nonwovens 106
- self-
 - assembly 179
 - cleaning 114
 - organization 15ff., 96, 229
- sol–gel process 162
- solution
 - concentration of polymer 80ff.
 - feeding rate 78f., 82
 - flow rate 70, 79
 - PEO/water 18
 - water-based systems 137
- ultrasonic agitation 83
Index

solvent
– DMF 166ff.
– mixtures 84, 91, 134
– organic 166ff.
– vapor pressure 71
stiffness 11, 43, 101, 124f.
strength 11, 101f.
– nonwovens 124
stress, 2, 73, 52, 125
superhydrophobicity 177, 180f.
supermolecular 15, 89
superparamagnetic particles 33, 134
surface
– charge density 70, 79, 87
– energy contribution 62f., 95
– filtration 13
– modifications 206ff.
– roughness 33, 134
– solid 206f., 210
– tension 79f.
– topology 71, 84
surface area
– internal 12, 105, 108, 114

\(t \)
textile
– applications 11, 197ff.
– cotton 2, 11, 14
thermal
– conductivity 199f.
– properties 9
– treatment 137
\(\text{TiO}_2 \)
– nanotubes 161f.
– shell material 159
tissue engineering, see electrospinning
applications
top-down
– approach 10, 32
– die/counterelectrode 37
tracer-particle tracking technique 34, 37
trajectory, see jet
transmission electron microscopy (TEM) 2, 76ff.
tubes by fiber technique (TUFT), see electrospinning

\(\nu \)
viscoelastic
– dumbbell 54
– fluids 47
– Maxwellian fluid 52f.
– properties 9
– relaxation 52, 54, 70, 83
– stresses 52f.
viscous fluids 47, 83

\(x \)
X-ray diffraction (XRD) 76f., 100