Contents

Preface
XV

List of Contributors
XVII

1
Bioactive Phytocompounds: New Approaches in the Phytosciences
Ricardo Ramos Mendonça-Filho
1.1 Introduction
2
1.2 Development of Fast Reliable Methods of Extraction and High-Throughput Screening (HTS) of Crude Plant Extracts: New Challenges
3
1.3 Antimicrobial Bioactive Phytocompounds from Extraction to Identification: Process Standardization
6
1.4 Problems Associated with the Efficacy, Stability and Quality Control of Herbal Drugs Preparations
13
1.5 Novel Bioactive Phytocompounds Against Multidrug-Resistant Bacteria/Fungi: The Management of Infectious and Chronic Diseases
17
1.6 Mode of Action of Bioactive Phytocompounds and their Interactions with Macromolecules and Toxicity
18
1.7 Bioactive Phytocompounds and Future Perspectives
21
References
23

2
Quality Control, Screening, Toxicity, and Regulation of Herbal Drugs
Wickramasinghe M. Bandaranayake
2.1 Introduction
26
2.2 Preparation of Herbal Drugs
29
2.3 Quality Control of Herbal Drugs
30
2.3.1 Parameters for Quality Control of Herbal Drugs
34
2.3.1.1 Microscopic Evaluation
34
2.3.1.2 Determination of Foreign Matter
34
2.3.1.3 Determination of Ash
35
2.3.1.4 Determination of Heavy Metals
35
3 Herbal Medicines: Prospects and Constraints 59

Iqbal Ahmad, Farrukh Aqil, Farah Ahmad, and Mohammad Owais

3.1 Introduction 59

3.1.1 Traditional Systems of Medicine 61

3.1.1.1 Asian Medicinal System 61

3.1.1.2 European Herbalism 61

3.1.1.3 Neo-Western Herbalism 61

3.1.2 Modern Phytomedicine 61

3.2 Prospects for Herbal Medicine 62

3.2.1 Indian System-Based Herbal Medicine 64

3.2.2 Progress in the Pharmacokinetics and Bioavailability of Herbal Medicine 67

3.3 Constraints in Herbal Medicine 68

3.3.1 Reproducibility of Biological Activity of Herbal Extracts 68

3.3.2 Toxicity and Adverse Effects 68

3.3.3 Adulteration and Contamination 69

3.3.4 Herb–Drug Interactions 69

3.3.5 Standardization 71

3.3.6 Regulatory Challenges of Asian Herbal Medicine 71

3.4 Good Manufacturing Practice (GMP) for Herbal Medicine 72

3.5 Improving the Quality, Safety and Efficacy of Herbal Medicine 72

3.5.1 Quality Management 73

3.5.2 Encouraging Mediculture 73

3.5.3 Correct Identification of Plant Material 74

3.5.4 Minimizing Contamination in Herbal Medicine 74

3.6 Conclusions 74

Acknowledgments 75

References 76
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Bioactive Phytocompounds and Products Traditionally Used in Japan</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Jin-ichi Sasaki</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Garlic</td>
<td>80</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Biological Effect of Garlic</td>
<td>81</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Antibacterial Effects</td>
<td>81</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Anticoagulation Effects</td>
<td>84</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Antioxidant Activity</td>
<td>86</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Therapeutic Effects of Garlic Powder in the Organophosphate Compound</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Mushroom</td>
<td>87</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Biological Effects</td>
<td>88</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Antitumor Activity</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Sweetcorn</td>
<td>92</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Introduction</td>
<td>92</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Biological Effects</td>
<td>92</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Antitumor Activity of Sweetcorn</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Oil and Flavor of Tree Hiba (Japanese Cypress) (Hinokitiol)</td>
<td>94</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Introduction</td>
<td>94</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Biological Effects</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Plant Extracts Used to Manage Bacterial, Fungal, and Parasitic</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Infections in Southern Africa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J.N. Eloff and L.J. McGaw</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Biodiversity in Southern Africa</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>Use of Plants in Southern African Traditional Medicine</td>
<td>99</td>
</tr>
<tr>
<td>5.4</td>
<td>The Need for Anti-Infective Agents</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>Selection of Plant Species to Investigate</td>
<td>100</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Ethnobotanical Approach</td>
<td>101</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Chemotaxonomy</td>
<td>101</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Random Selection</td>
<td>101</td>
</tr>
<tr>
<td>5.6</td>
<td>Collecting, Drying, and Storage of Plant Material</td>
<td>102</td>
</tr>
<tr>
<td>5.7</td>
<td>Extraction of Plant Material</td>
<td>103</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Which is the Best Extractant?</td>
<td>103</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Extraction Period and Efficiency</td>
<td>104</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Selective Extraction</td>
<td>104</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Redisolving Extracts for Quantitative Data</td>
<td>105</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Storage of Extracts</td>
<td>105</td>
</tr>
<tr>
<td>5.8</td>
<td>Evaluating Quantitative Antimicrobial Activity</td>
<td>105</td>
</tr>
</tbody>
</table>
7.2 Phytoalexins and Phytoncides 139
7.3 Antibiotics 140
7.4 Bacteria and Broth 140
7.4.1 VRE 140
7.4.2 VSE 141
7.4.3 MRSA 141
7.4.4 MSSA 141
7.4.5 Broth 141
7.5 Isolation of Phytoalexins and Phytoncides 141
7.6 Minimum Inhibitory Concentration 142
7.7 Synergism of Antibacterial Compounds with Commercially Available Antibiotics 142
7.8 Antibacterial Activities 143
7.8.1 Sophoraflavanone G 143
7.8.2 Calozeyloxanthone 144
7.8.3 α-Mangostin 144
7.8.4 Gnemonol B and Gnetin E 145
7.8.5 Summary of MIC Values of Phytoalexin and Phytoncide Against MRSA and VRE 146
7.9 Synergism Between the Test Compounds and Commercial Antibiotics Against VRE, MRSA, VSE, and MSSA 147
7.9.1 Sophoraflavanone G 147
7.9.2 Calozeyloxanthone 148
7.9.3 α-Mangostin 148
7.9.4 Stilbene Oligomer 151
7.9.5 Summary of Synergistic Effects Between the Test Compounds and the Commercial Antibiotics Against VRE and MRSA 153
References 154

8 Methods for Testing the Antimicrobial Activity of Extracts 157

Jenny M. Wilkinson
8.1 Introduction 157
8.2 Antibacterial Assays 158
8.2.1 Semi-Solid Substrate Methods 161
8.2.1.1 Disk Diffusion Method 161
8.2.1.2 Agar Dilution Method 162
8.2.1.3 Broth Dilution Methods 163
8.2.1.4 Thin-Layer Chromatography–Bioautography 164
8.3 Antifungal Assays 165
8.4 In vivo Assessment of Antibacterial and Antifungal Activity 166
8.5 Methods for Assessing Antiviral Activity 167
8.6 Screening of Plant Extracts for Antiparasitic Activity 167
8.7 Conclusions 168
References 169
9 Targeted Screening of Bioactive Plant Extracts and Phytocompounds
Against Problematic Groups of Multidrug-Resistant Bacteria 173
Farrukh Aqil, Iqbal Ahmad, and Mohammad Owais
9.1 Introduction 174
9.1.1 Multiple Antibiotic Resistance in Bacteria 174
9.1.2 Plants as a Source of Novel Bioactive Compounds 177
9.2 Approaches to Targeted Screening Against MDR Bacteria 179
9.2.1 MDR Efflux Pump Inhibitors from Plants 180
9.2.2 β-Lactamase Inhibitors 181
9.2.3 Synergy Between Phytocompounds and Antibiotics 182
9.2.4 Targeting Virulence and Pathogenicity 185
9.2.5 Quorum Sensing Inhibitors 186
9.3 Other Potential Approaches 189
9.3.1 Targeting Gene Transfer Mechanisms 189
9.3.2 Targeting R-Plasmid Elimination 190
9.4 Conclusions and Future Directions 191
Acknowledgments 192
References 193

10 Activity of Plant Extracts and Plant-Derived Compounds against
Drug-Resistant Microorganisms 199
Antonia Nostro
10.1 Introduction 199
10.2 Plant Materials with General Antimicrobial Activity Including some
Drug-Resistant Strains 200
10.3 Plant Materials with Specific Antimicrobial Activity Against Drug-
Resistant Strains 201
10.3.1 Drug-Resistant Gram-Positive Bacteria 201
10.3.2 Drug-Resistant Gram-Negative Bacteria 211
10.3.3 Other Drug-Resistant Microorganisms 212
10.4 Plant Materials that Restore the Effectiveness of Antimicrobial Agents
and/or Inhibit Drug Resistance Mechanisms 223
10.4.1 Other Mechanisms 225
10.5 Conclusions 226
References 226

11 An Alternative Holistic Medicinal Approach
to the Total Management of Hepatic Disorders:
A Novel Polyherbal Formulation 233
Mohammad Owais, Iqbal Ahmad, Shazia Khan, Umber Khan,
and Nadeem Ahmad
11.1 Introduction 233
11.2 Conventional Medicines for Liver Disorders 236
11.3 Herbal Medicines – Potential Therapeutic Agents with Minimal
Side-Effects 237
11.4 Contributions of Elementology to Potential Treatments for Hepatic Disorders 240

11.5 Other Alternatives in Liver Therapy 242

11.6 Conclusions 242

References 243

12 Traditional Plants and Herbal Remedies Used in the Treatment of Diarrheal Disease: Mode of Action, Quality, Efficacy, and Safety Considerations 247

Enzo A. Palombo

12.1 Introduction 248

12.2 Methods Used in the Evaluation of Bioactivity of Medicinal Plants 249

12.2.1 Antibacterial Activity 249

12.2.2 Antiprotozoal Activity 250

12.2.3 Antihelminthic Activity 250

12.2.4 Antiviral Activity 250

12.2.5 Antidiarrheal Activity 251

12.3 Traditional Medicinal Plants Used in the Treatment of Diarrhea that Display Antimicrobial Activity 252

12.4 Traditional Medicinal Plants Used in the Treatment of Diarrhea that Display Antidiarrheal Activity 255

12.5 Phytochemical Analysis, Identification of Active Plant Components, and Mechanism of Action of Medicinal Plants Used in the Treatment of Diarrhea 260

12.6 Quality, Efficacy, and Safety Considerations 263

12.7 Conclusions 266

Acknowledgments 267

References 267

13 Mutagenicity and Antimutagenicity of Medicinal Plants 271

Javed Musarrat, Farrukh Aqil, and Iqbal Ahmad

13.1 Introduction 271

13.2 Plants as Protective Agents Against DNA Damage 272

13.3 Antimutagenic Properties of Edible and Medicinal Plants 274

13.4 Mutagenicity of Plant Extracts and Phytochemicals 279

13.5 “Janus Carcinogens and Mutagens” 280

13.6 Chemical Nature of Phytoantimutagenic Compounds 281

13.6.1 Flavonoids 282

13.6.2 Phenolic Compounds 282

13.6.3 Coumarins 282

13.6.4 Diterpenoids 282

13.6.5 Organosulfur Compounds 283

13.7 Assays for Mutagenicity and Antimutagenicity 283

13.8 Paradigms in Antimutagenicity Research 285
14 Potential of Plant-Derived Products in the Treatment of Mycobacterial Infections 293
Deepa Bisht, Mohammad Owais, and K. Venkatesan

14.1 Introduction 293
14.2 Current Therapy of Tuberculosis and Leprosy 294
14.3 Need for Newer Antimycobacterial Drugs 295
14.4 Plant Extracts 295
14.5 Well-Characterized Plant-Derived Compounds 297
14.5.1 Alkanes, Alkenes, Alkynes, Fatty Acids and their Esters and Simple Aromatics 297
14.5.2 Alkaloids 299
14.5.3 Phenolics and Acetogenic Quinones 302
14.5.4 Terpenes 304
14.5.5 Steroids 308
14.6 Conclusion 308
Acknowledgements 309
References 309

15 Ethnomedicinal Antivirals: Scope and Opportunity 313
Debprasad Chattopadhyay

15.1 Introduction 313
15.1.1 Ethnomedicines and Drug Discovery 314
15.1.2 Viruses: The Acellular Parasite of Cellular Hosts 315
15.1.2.1 Viral Infection Control 316
15.2 Antiviral Ethnomedicines Against Common Virus Families 316
15.3 Major Groups of Antivirals from Plants 321
15.3.1 Phenolics and Polyphenols 322
15.3.2 Coumarins 323
15.3.3 Quinones 324
15.3.4 Flavones, Flavonoids, and Flavonols 324
15.3.5 Tannins 327
15.3.6 Lignans 327
15.3.7 Terpenoids and Essential Oils 328
15.3.8 Alkaloids 329
15.3.9 Lectins, Polypeptides and Sugar-Containing Compounds 330
15.4 Mixtures and Other Compounds 330
15.5 Experimental Approaches 331
15.5.1 In Vitro Efficacy 331
15.5.2 Clinical Trials in Humans 332
15.6 Future Prospects 334
15.7 Conclusions 334
Acknowledgments 335
References 335
16 **Immunomodulatory Effects of Phytocompounds** 341

Buket Cicioğlu Arıdoğan

16.1 Introduction 342

16.1.1 General Properties and Classification of Phytocompounds 342

16.2 Effect of Specific Medicinal Herbs on Immune System and Immune Cells 343

16.3 General Properties of Echinacea Species 344

16.4 Effects of Echinacea Species on the Immune System and Various Immune Cells 345

16.5 Asteraceae 349

16.6 *Lithospermum erythrorhizon* 351

16.7 Guarana 352

16.8 Side and Adverse Effects of Some Phytocompounds 352

16.9 Conclusion 353

References 354

17 **Use of a Liposomal Delivery System for Herbal-Based Therapeutics (with a Focus on Clove Oil)** 357

Nadeem Ahmad, Maroof Alam, Iqbal Ahmad, and Mohammad Owais

17.1 Introduction 357

17.1.1 Cinnamon Oil 359

17.1.2 Oregano Oil 359

17.1.3 Clove Oil 359

17.1.3.1 Composition of the Clove Oil Used 360

17.2 Rationale for Using Liposomized Formulation of Clove Oil 361

17.2.1 Advantageous Properties of Liposomes 362

17.3 Experiments Conducted to Develop Liposomal Clove Oil Formulation 362

17.3.1 Determination of MIC of Clove Oil against *Candida albicans* 363

17.3.2 Determination of MIC of Clove Oil against *Escherichia coli* 363

17.3.3 *In Vitro* Antibacterial Activity Test Results 363

17.3.4 *In Vitro* Antifungal Activity Tests Results (Table 17.4) 364

17.3.5 *In Vivo* Antifungal Activity Test Results against Experimental Vaginal Candidiasis 364

17.3.5.1 Evaluation of Efficacy of Liposomized Clove Oil 364

17.3.5.2 Evaluation of Route of Administration 365

17.4 Conclusions 366

References 366

Subject Index 369