Index

3
- 3D architecture 88
- 3D lattice 96
- 3D periodic structures 87, 94
- 3D printing 87
- 3D structures, complex 88
- 3M Co. 105

a
- AAC 197, 198
 - fly ash based 197
 - formulation 205
 - moisture transport 220
 - quartz flour based 197
- ablator panels 109
- absorbance 527
- absorber 536, 616
 - pore size 531
 - porosity 531
 - screen-printed 535
 - sound 381
 - temperature 539
 - tubular 525
 - volumetric 523, 524, 525, 526, 530, 536, 539, 540, 545
- absorption, optical 526
 - volumetric 536
- absorption coefficient 387
- absorption/desorption isotherm 218
- acid attach 174
- acids, aliphatic 125
- acoustic behavior 393
- acoustic damping 384, 390, 391
- acoustic energy 384, 511
 - absorption 387
- acoustic field 510
- acoustic impedance 384
- acoustic instability 509
- acoustic pressure 385

acoustic reactance 385
acoustic resistance 385
acoustic transfer 511, 515, 521
acoustic wave 381, 384, 396, 512
 - drag 395
 - reflection 386
 - transmission 386
acoustic wave number 386
acrylamide 50
acrylates 50
additives 42
 - hollow 53
 - organic 53
 - sacrificial 33
 - volatile or combustible 52
advanced flexible reusable surface insulation (AFRSI) 116
Aercon Florida LLC 198
aerogel 118, 605
aerogel formation 274
Aerosil 78
aerosol process 78
AFRSI 117
agar 50
agarose 50
agents, air-entraining 199
 - flocculating 35
 - gas-generating 158
 - oxygen-releasing 160
 - pore-forming 53
agitation, mechanical 44
airbrush 115
air-flow experiments 330
air-flow test, permeability of 317
airport runways, ends of 196
Al₂O₃, biomorphous 132
 - burners 496
 - porous media 584
albumin 52, 53
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol 125</td>
</tr>
<tr>
<td>– furfuryl 141</td>
</tr>
<tr>
<td>alginates 49</td>
</tr>
<tr>
<td>alkali silicate glass melt 164</td>
</tr>
<tr>
<td>alkaline earth metals 53</td>
</tr>
<tr>
<td>allotropic 139</td>
</tr>
<tr>
<td>alumina 47, 58, 67, 457, 479, 497</td>
</tr>
<tr>
<td>– absorber 526</td>
</tr>
<tr>
<td>– biomorphous 132</td>
</tr>
<tr>
<td>– burners 485, 494</td>
</tr>
<tr>
<td>– electrical properties 369</td>
</tr>
<tr>
<td>– filter 408, 425, 430</td>
</tr>
<tr>
<td>– filters 409</td>
</tr>
<tr>
<td>– kiln furniture 442, 444, 447, 448, 451</td>
</tr>
<tr>
<td>– scaffolds 564</td>
</tr>
<tr>
<td>alumina cement 43</td>
</tr>
<tr>
<td>alumina filters, fibrous 336</td>
</tr>
<tr>
<td>alumina foam, reaction-bonded 37</td>
</tr>
<tr>
<td>alumina membranes, anodized 58</td>
</tr>
<tr>
<td>alumina-borosilicate 102, 119</td>
</tr>
<tr>
<td>alumina-borosilicate refractory oxide fibers 105</td>
</tr>
<tr>
<td>alumina-silica 102</td>
</tr>
<tr>
<td>alumina-silica fibers 105</td>
</tr>
<tr>
<td>alumina-silica refractory oxide fibers 104</td>
</tr>
<tr>
<td>aluminate 46</td>
</tr>
<tr>
<td>aluminum 46</td>
</tr>
<tr>
<td>aluminum borate 106</td>
</tr>
<tr>
<td>aluminum carboxylates 105</td>
</tr>
<tr>
<td>aluminum chloride isopropyl ether complex 48</td>
</tr>
<tr>
<td>aluminum flake 199</td>
</tr>
<tr>
<td>aluminum hydroxide 43, 104</td>
</tr>
<tr>
<td>aluminum mullite 106</td>
</tr>
<tr>
<td>aluminum oxide, reaction-bonded 233</td>
</tr>
<tr>
<td>aluminum oxide chloride 104</td>
</tr>
<tr>
<td>aluminum powder 214</td>
</tr>
<tr>
<td>aluminum salt 104</td>
</tr>
<tr>
<td>amine, basic 104</td>
</tr>
<tr>
<td>ammonia 104</td>
</tr>
<tr>
<td>ammonium hydroxide 113</td>
</tr>
<tr>
<td>analysis, finite-element 296</td>
</tr>
<tr>
<td>anatomy, hierarchical 122</td>
</tr>
<tr>
<td>anisotropy, degree of 230, 256</td>
</tr>
<tr>
<td>anthracite 159, 167</td>
</tr>
<tr>
<td>apex 40</td>
</tr>
<tr>
<td>applications, aerospace 146</td>
</tr>
<tr>
<td>– energy-absorbing 14</td>
</tr>
<tr>
<td>– structural 14</td>
</tr>
<tr>
<td>approaches, model-based 280</td>
</tr>
<tr>
<td>– model-independent 280</td>
</tr>
<tr>
<td>architecture, internal 228</td>
</tr>
<tr>
<td>argillaceous limestone 207</td>
</tr>
<tr>
<td>armour 608</td>
</tr>
<tr>
<td>Asahi Chemical Co. Japan 203</td>
</tr>
<tr>
<td>ash, volcanic 161</td>
</tr>
<tr>
<td>Ashby 128</td>
</tr>
<tr>
<td>asphaltenes 145</td>
</tr>
<tr>
<td>ASTM 139</td>
</tr>
<tr>
<td>Astroquartz 116</td>
</tr>
<tr>
<td>atmosphere, nondiffusing 76</td>
</tr>
<tr>
<td>autoclaved aerated concrete (AAC) 214</td>
</tr>
<tr>
<td>automotive emission-control catalysis 321</td>
</tr>
<tr>
<td>automotive exhaust catalyst supports 300</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>Babb International 198</td>
</tr>
<tr>
<td>bacteria 617</td>
</tr>
<tr>
<td>balloons 308</td>
</tr>
<tr>
<td>– ceramic 307</td>
</tr>
<tr>
<td>– glass 307</td>
</tr>
<tr>
<td>barium-strontium glass 174</td>
</tr>
<tr>
<td>beads, ceramic 307</td>
</tr>
<tr>
<td>behavior, bending-dominated 7, 9</td>
</tr>
<tr>
<td>– buckling-dominated 8, 13</td>
</tr>
<tr>
<td>– fracturing-dominated 8</td>
</tr>
<tr>
<td>– gel-like 203</td>
</tr>
<tr>
<td>– plastic stretch-dominated 13</td>
</tr>
<tr>
<td>– rheological 49, 92</td>
</tr>
<tr>
<td>– stretch-dominated 13</td>
</tr>
<tr>
<td>BET gas adsorption 261</td>
</tr>
<tr>
<td>BET surface area 104</td>
</tr>
<tr>
<td>binary image processing 240</td>
</tr>
<tr>
<td>binder 43, 52, 53, 59, 65</td>
</tr>
<tr>
<td>– aqueous 66</td>
</tr>
<tr>
<td>– burn out of 45</td>
</tr>
<tr>
<td>– colloidal silica 111</td>
</tr>
<tr>
<td>– combinations 66</td>
</tr>
<tr>
<td>– high-temperature alumina 118</td>
</tr>
<tr>
<td>– high-temperature silica 118</td>
</tr>
<tr>
<td>– inorganic 108, 109</td>
</tr>
<tr>
<td>– nonaqueous 66</td>
</tr>
<tr>
<td>– organic 108</td>
</tr>
<tr>
<td>bioactive materials 548, 549</td>
</tr>
<tr>
<td>bioactive glasses 548, 550, 552, 561 ff, 565</td>
</tr>
<tr>
<td>– scaffolds 561, 564</td>
</tr>
<tr>
<td>– sol-gel 561</td>
</tr>
<tr>
<td>– sol-gel processing 560</td>
</tr>
<tr>
<td>– sol-gel-derived 564</td>
</tr>
<tr>
<td>bioceramics 549</td>
</tr>
<tr>
<td>biocompatibility 549</td>
</tr>
<tr>
<td>bioglass 550</td>
</tr>
<tr>
<td>– scaffold 560</td>
</tr>
<tr>
<td>bioinert materials 548</td>
</tr>
<tr>
<td>biomaterials 33, 101</td>
</tr>
<tr>
<td>biomimetic 366, 368, 615</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>monolithic</td>
</tr>
<tr>
<td>packed-bed</td>
</tr>
<tr>
<td>three-way</td>
</tr>
<tr>
<td>catalyst support</td>
</tr>
<tr>
<td>automotive</td>
</tr>
<tr>
<td>catalytic combustion</td>
</tr>
<tr>
<td>catalytic converters</td>
</tr>
<tr>
<td>catalytic foam traps</td>
</tr>
<tr>
<td>catalytic substrate, automotive</td>
</tr>
<tr>
<td>catalytic support, automotive</td>
</tr>
<tr>
<td>catalytically coated trap</td>
</tr>
<tr>
<td>CD</td>
</tr>
<tr>
<td>celcor</td>
</tr>
<tr>
<td>celcor die</td>
</tr>
<tr>
<td>cell</td>
</tr>
<tr>
<td>- attachment</td>
</tr>
<tr>
<td>- close-packed hexagonal</td>
</tr>
<tr>
<td>- cubic packing of</td>
</tr>
<tr>
<td>- diamond-shaped</td>
</tr>
<tr>
<td>- spherical</td>
</tr>
<tr>
<td>- topology of</td>
</tr>
<tr>
<td>cell carriers, artificial</td>
</tr>
<tr>
<td>cell density</td>
</tr>
<tr>
<td>cell edges, thickness</td>
</tr>
<tr>
<td>cell growth, scaffolds for</td>
</tr>
<tr>
<td>cell morphology</td>
</tr>
<tr>
<td>cell size</td>
</tr>
<tr>
<td>cell size distribution</td>
</tr>
<tr>
<td>cell structure</td>
</tr>
<tr>
<td>cell wall</td>
</tr>
<tr>
<td>cell window opening</td>
</tr>
<tr>
<td>cell-edges, fracturing of</td>
</tr>
<tr>
<td>cellular concrete</td>
</tr>
<tr>
<td>- air-dried</td>
</tr>
<tr>
<td>- autoclave-cured</td>
</tr>
<tr>
<td>- cast-in-place</td>
</tr>
<tr>
<td>- cast-in-place, precast</td>
</tr>
<tr>
<td>- consumption of</td>
</tr>
<tr>
<td>- durability of</td>
</tr>
<tr>
<td>- gas phase</td>
</tr>
<tr>
<td>- low temperature cured</td>
</tr>
<tr>
<td>- types of</td>
</tr>
<tr>
<td>cellular materials, anisotropy</td>
</tr>
<tr>
<td>cellular solids</td>
</tr>
<tr>
<td>cellulose</td>
</tr>
<tr>
<td>- carboxymethyl</td>
</tr>
<tr>
<td>- hydroxy</td>
</tr>
<tr>
<td>- methyl</td>
</tr>
<tr>
<td>cellulose derivatives</td>
</tr>
<tr>
<td>cement, asbestos-reinforced</td>
</tr>
<tr>
<td>- synthetic</td>
</tr>
<tr>
<td>cement slurry, induction period of</td>
</tr>
<tr>
<td>cenospheres</td>
</tr>
<tr>
<td>ceramic, bioactive</td>
</tr>
<tr>
<td>- functional</td>
</tr>
<tr>
<td>- light-weight</td>
</tr>
<tr>
<td>- oxide-based</td>
</tr>
<tr>
<td>- reticulated</td>
</tr>
<tr>
<td>- structural</td>
</tr>
<tr>
<td>ceramic fiber, felts and mats</td>
</tr>
<tr>
<td>ceramic foam</td>
</tr>
<tr>
<td>- fluid-solid interaction</td>
</tr>
<tr>
<td>- morphology of</td>
</tr>
<tr>
<td>- polymer-derived</td>
</tr>
<tr>
<td>- properties of</td>
</tr>
<tr>
<td>- reticulated</td>
</tr>
<tr>
<td>ceramic foam structure</td>
</tr>
<tr>
<td>ceramic particles, charged</td>
</tr>
<tr>
<td>ceramic piece, injection-molded</td>
</tr>
<tr>
<td>ceramic powder</td>
</tr>
<tr>
<td>ceramics, pinewood based</td>
</tr>
<tr>
<td>cercor</td>
</tr>
<tr>
<td>channels, noncircular</td>
</tr>
<tr>
<td>characterisation methods, comparison of</td>
</tr>
<tr>
<td>chemical vapor deposition</td>
</tr>
<tr>
<td>chemical vapor infiltration-reaction</td>
</tr>
<tr>
<td>cherry-pit model</td>
</tr>
<tr>
<td>chopping</td>
</tr>
<tr>
<td>chord-length probability function</td>
</tr>
<tr>
<td>circularity factor</td>
</tr>
<tr>
<td>clays</td>
</tr>
<tr>
<td>clinker</td>
</tr>
<tr>
<td>coal</td>
</tr>
<tr>
<td>- hydrogenated</td>
</tr>
<tr>
<td>coalescing bubble model</td>
</tr>
<tr>
<td>coating</td>
</tr>
<tr>
<td>- glass</td>
</tr>
<tr>
<td>coating materials</td>
</tr>
<tr>
<td>coaxial-nozzle technique</td>
</tr>
<tr>
<td>coefficient of thermal expansion</td>
</tr>
<tr>
<td>coke</td>
</tr>
<tr>
<td>collagen</td>
</tr>
<tr>
<td>colloid, ceramic</td>
</tr>
<tr>
<td>- metal</td>
</tr>
<tr>
<td>- semiconducting</td>
</tr>
<tr>
<td>colloid concentration</td>
</tr>
<tr>
<td>combinatorial biology</td>
</tr>
<tr>
<td>combinatorial chemistry</td>
</tr>
<tr>
<td>combustion</td>
</tr>
<tr>
<td>- catalytic</td>
</tr>
<tr>
<td>- closed</td>
</tr>
<tr>
<td>- conventional</td>
</tr>
<tr>
<td>- emissions</td>
</tr>
<tr>
<td>- energy recirculation</td>
</tr>
</tbody>
</table>
- engines 580, 581
- enthalpy 494
- filtration 488
- flameless 495
- homogeneous 580, 585, 589, 592
- instabilities 509
- intelligent engines 582
- porous media 490
- premixed 495
- radical 591
- region 489
- stable 496
- surface 485
- temperature 484, 485, 500, 505, 582, 589
- two-stage 585, 592
- volumetric 485, 495
- volumetric porous-medium 501
- wave 488, 491
common gases, viscosity of 316
components, fugitive 105
- IR-transparent 190
composite 575
- carbon-carbon 109
- natural 122
- porous graded 115
- SiSiC ceramic-ceramic 127
composite reinforcement 101
compressibility effect 314
compressive (crushing) strength 291
computerized X-ray microtomography 238
- M-CT 238
concrete 193
- autoclaved aerated 197
concrete infiltration 319
conductive flux 286
conductivity 25
- electrical 10, 20, 139, 616
- thermal 20, 57, 114, 116, 117, 118, 137, 138, 139, 142, 143, 149, 150, 151, 154, 159, 163, 189, 212, 228
connectivity 3, 571
connectivity density 256, 257
Conoco pitches 149
constant, dielectric 10, 228
container, pressurized 199
continuously regenerating trap (CRT) 420
contrast 238
convection 486, 487
convective instabilities 27
convergent channels 69
conversion, efficiency 431
converter, catalytic 58, 419
copper sulfate pentahydrate 185
coral 576
- scaffolds 556
cordierite 480, 53, 58, 67, 456, 467, 469, 472, 479
- absorber 544
- dielectric behavior 189
- filter 423
- thermal properties 353
- cordierite less, kiln furniture 442
cordierite monoliths 309
cork 20, 138
corrosion resistance 596, 616
cristobalite 169
cross-links, intermolecular 48
CRT glasses 169
- foaming of 174
crushing strengths 300
CSD corrections 242
C-S-H overgrowths 202
CT scan 268
CVD 38, 138, 141
CVI-R 127
cycling, thermal 111
damage parameter 352
damping 509
Darcian permeability 318, 320
Darcy 539
Darcy friction factor 322
Darcy’s law 313 ff, 325, 331, 332, 333, 334, 436, 540
Darcy-Weisbach 322
debinding 67, 69
debinding temperatures 75
decomposition, spinodal 274
deep bed filtration 404, 407
deep filtration 416
defects 597
- structural 40
degree of anisotropy 257
Degussa 78, 207
dehydrocellulose 125
dense packings 278
densification 7
density, fractional 230
- relative 6, 10, 15, 16
deposition, discrete 88
deposition nozzle 91
deposition pattern 96
devitrification 76, 80
devitrifying 111
diamanteous earth 207
diameter, hydraulic 322
diblock copolymer 178
dicalcium silicate 208
α-dicalcium silicate hydrate 203
dichloromethane 47
dielectric materials 364, 369
dielectric constant 354, 374
diesel 345, 379
diesel particulate 421
diesel particulate filter (DPF) 58, 67, 68
diesel particulate filtration 321
differential effective medium (D.E.M.) theory 270
diffusers, light 617
diffusion, thermal 66
diffusion superhighways 66
diffusivity, thermal 9, 10
dimensional conversion 241
dimethylethoxysilane 112
direct blowing 597
direct consolidation techniques 555
direct extrusion 63
direct foaming 20, 561
direct-write assembly 87, 88, 91, 96
distance transformation (DT) method 256
domain size 148
drainage 20, 25, 27
droplet size 182
drug-delivery 189
drying 67, 69
dry-spinning, process 106
Dulong and Petit, rule 350
durable advanced flexible reusable surface insulation (DurAFRSI) 119

e
ecoceramics 573
effective medium theory 189
egg white 52
elastic modulus 351, 612
elastic shear modulus 26
electric resistivity experiment 329
electrical conduction 361, 366
electrical conductivity 616
– foams 370, 372
– honeycomb 378
– specific 363
electrical heating 377, 379
– foam 376
electrical insulation 361
electrical resistance 366, 367, 372
– cells 378
– pores 365
– porosity 365
– specific 363
electrical resistivity 228, 364
– fibers 374
– foams 370
– specific 364
electrophoretic deposition 601
electrospraying 37, 38
emission control 461
emissivity 494, 497, 510, 514, 517, 603
empirical models, acoustic behavior 389
emulsion 47, 182
emulsion combustion 185
emulsion preparation 184
energy, minimized 20
energy absorption 606
engineering, chemical 19, 27
engines 587
equilibrium, laws of 18
ERG corp. 142
Ergun-like equations 328
Ergun-like relationships 319
ethoxyl groups 48
ettringite 212
Euclidian distance function 240
exhaust gas 461, 580
– cleaning 462
expanding bubbles, model of 268, 271, 275, 283
exposimetry 189
extinction coefficient 528, 529
extinction volume 525, 526
extrudate 64
extrusion 63
extrusion pressure 61

f
face 227
– equilateral 272
– polyhedral 278
failure behavior 308
Fanning friction factor 323
felts 109
FEM 298
fiber blowing 102 ff
fiber felts, preprocessed 124
fiber products 101
fiber reinforcement 218
fiber tiles, blended 113
Index

flow, characteristics 596
 – instability 544
 – Poiseuille 393
 – resistance 539
 – stability 539
flow disruptions 73
flow parameters 381
flow rate, volumetric 91, 314
flow regime 314
flow resistance 389
flow through the wall 68, 69
flow tortuosity 473
flue gas desulfurization 212
Fluent flow 70
fluid, Bingham 93
 – compressible 315
 – incompressible 315
 – Newtonian 91, 93
 – supercritical 49
fluid compressibility 314, 315
fluid mass flow 537
fluid mixing 313
fluid velocity 332
fly ash 160, 207, 213, 214, 428
foam cells, spherical 257
foam formation 269
foam glasses, high-silica 172
foam replication process 449
foam structure, characterization 227
foaming agents 159, 161, 168, 211, 561
 – decomposition of 166
foaming reaction 167
foams 20, 199, 343, 353, 361, 366, 369, 395,
 422, 430, 434, 440, 441, 444, 455, 457, 464,
 473–477, 479, 498, 514, 520, 526, 529, 533,
 564, 573, 590, 598, 608, 609, 611
 – absorber 528, 534, 538, 543, 544
 – anisotropic 274
 – aqueous 253
 – arc-jet 606
 – biological 20
 – brittle 308
 – carbon 137, 138, 141
 – carbonized 145
 – cell 348, 349
 – cell size 349, 600
 – ceramic 3, 33, 62, 303, 323
 – ceramic microcellular 53
 – ceramics 20
 – characterization of 232
 – chemical vapor deposition 598
 – closed-cell 9, 20, 23, 42, 48, 141, 227, 272,
 302
 – dielectric 228
 – dry 19, 20
 – dynamics 24
 – emitter 604
 – glass 158, 302
 – graphite 141
 – graphitic 137, 138, 149
 – isotropic 231
 – liquid 18, 18ff, 19, 20, 26
 – metal 3, 4, 302
 – metallic 20, 149, 614
 – microcellular 257, 451, 459, 600, 605, 607
 – open-cell 5, 9, 20, 34, 141, 227, 230, 271,
 294
 – open-celled 23, 42, 46, 48, 174
 – parameters structure 230
 – physics of 19
 – pitch-derived 138
 – plastic 302
 – polydisperse 23
 – polymer 3, 33, 235
 – polymer, combustion of 34
 – polymer-derived 459
 – polystyrene 143
 – polystyrene-based 143
 – polyurethane 228, 233
 – pore size 349
 – porous media 580, 585
 – precursor 34
 – quasistatic 20
 – reaction-bonded 597
 – real liquid 24
 – replica 36, 554
 – replication 565
 – resin-impregnated 38
 – reticulated 33, 58, 256, 596, 598, 600, 602,
 603
 – rheology 26, 27
 – RVC 138
 – scaffolds 552, 554
 – setting 555
 – solid 20
 – static 19, 20
 – structure parameters of 230
 – superconducting 602
 – surface 600
 – syntactic 138
 – thermosetting 38
 – wet 19, 20
 – force, colloidal 89
 – hydrodynamic 187
 – repulsive 24
forced convection 345
Forchheimer’s equation 313 ff, 331, 333, 334, 531, 539
formaldehyde 143
formamide 183
Fourier’s law 342, 397
fractional density 253
fracture toughness 291, 308
freeze casting 440
freeze drying 577, 601
Freon 47
friction coefficient 322
frictional losses 323
fuel cell 475
fuel cells, solid oxide 616
– solid-polymer 475
fuel injection 585, 587
fuel vaporization 585, 587, 592
fugitive pore formers 440, 451
fugitive porogenic 555
fumed silica 73
furnace, high-temperature 142
furnace linings 102
fused 58
fused deposition 87, 577
fusion targets 189

g
G-A models 305
G-A open-cell model 302
galactose 50
garnet oxide fibers, yttrium 102
gas convection 118
gas diffusion 20, 24
gas evolution, in situ 46
gas flow 512
gas permeability 253
gas phase, external 42
gas turbines 465
gaseous phase 193
gases, toxicity 36
gas-liquid interfaces 42
gas-water interface 42
Gaussian level-set models 277
Gaussian random field (GRF) 277
gel, colloidal 87, 88, 89, 90, 92
– silica 173
gel casting 50, 70, 554, 555, 565, 597, 614
gel foaming 45
gel point 89
gel strengthening agent 46
gel-cast foams, permeability of 331
gelling agent 43, 49, 50
– burning out of 50

gelling substances 49
Gibson and Ashby 128, 230, 273, 294
glass, borosilicate 115
– molten 102
– soda-lime 161
– spongelike 159
glass foam 75, 158, 160
– closed-cell 283
– high-density 173
– high-silicon 172
– partially crystallized 173
– properties 158

glass foam products
– glass foam blocks and shapes 170
– loose glass foam aggregate 170
– spherical pellets 171
glass formers 102
glass frit, borosilicate 112
glass honeycomb funnel 76
glass materials, volcanic 161
glass softening (Littleton) temperature 166
glass spheres 53
glass viscosity 166
glasses, lead silicate 174
glucose, oxygen-bonded 125
gradients, thermal 43
grafoil 143
granular beds 328
granular media 318
– consolidated 318
– unconsolidated 318
granulometry 241
graphite 137, 138, 167
– basal planes 151
– foam 610
– pyrolytic 138
graphite foam, properties of 153
graphitic foam 147
graphitization 138, 139, 148
Grashof number 344
gravity 20, 25
gray-scale histogram 240
ground blast-furnace slag 211
groundwater hydrology 319
gums 42
gypsum 43, 208, 210, 212

h
HA 552
Hagar-Kearns processes 148
Hagen-Poiseuille relationship 93, 318
hannebachite 212
Hashin-Shtrikman bound 270, 273
He pycnometry 134
heat, specific 10
heat accumulation 594
heat capacity 383, 487, 488, 497, 512, 583, 584
heat conduction 348, 392, 474, 486
heat conductivity 397
heat exchange 485, 488, 495
heat exchange devices 321
heat exchanger 33, 537, 609, 610
heat extraction 485, 602
heat flow 383, 396, 577
heat flux 343, 586
heat recuperation 586, 587, 590
heat regeneration 586
heat release 509, 582, 585, 589, 592
heat shield insulation 103
heat sinks 610
heat transfer 9, 342, 343, 354, 467, 470, 473, 491, 495, 496, 509, 510, 511, 514, 516, 519, 521, 525, 529, 530, 531, 533 ff, 584, 609
– cell dimension 355
– cell size 355, 358
– coefficient a 353
– coefficients 354
– convective 352, 359
– convective coefficient 352
– foams 352
– porosity 355
– radiative 349, 515, 605
heat transport 342, 343, 486, 489, 494, 495, 583
– conductive 496, 498, 499
– convective 344
– radial 535
– radiative 344, 346, 347, 498, 499
heaters 376
– infrared radiant 500
heavy metal ions, removal from wastewater 183
Hebel 195, 198, 203
hemicellulose 122, 124, 125
hemihydrate 210
Hershel-Bulkley model 65, 92, 93
hierarchically ordered structures 460
high surface area 33
high-purity fused silica honeycomb (HPFS), paste-extrusion 78
holes, triangular 40
hollow sphere 240
– applications of 177, 189
– cellular ceramics from 188
– processing methods 178
– processing of 177
– properties of 188
honeycomb 14, 57, 58, 323, 366 ff, 422, 429, 432, 433, 454, 455, 457, 459, 461, 464, 466, 467, 470, 472 ff, 476, 477, 479
– absorber 528, 532, 538, 542, 544
– bubble-free 81
– ceramic 57
– channels 58
– cordierite 67, 309
– direct extrusion 59, 62
– direct paste extrusion 73
– extrusion of 57
– funnels 69
– glass 57, 73
– hot drawing 63
– linear cellular 58
– melt extrusion of 64
– nonextrusion fabrication processes 62
– paste extrusion of 64
– polycrystalline 72
– precursor 67
– silicon carbide 67
honeycomb die 60
honeycomb extrusion die 60
honeycomb fiber 73, 76, 78, 82
honeycomb like 601
honeycomb structures 292
– cross sectional geometry 299
– porosity effects on mechanical properties 299
hot drawing 75
hot draw 57
HPFS 79
H.S. bnd 270
hydrates, insoluble 208
hydration 208
hydration reaction 193
hydraulic diameter model 329
hydrochloric acid 47
hydrogen 46
hydrogen cyanide 36
hydrogen sulfide 168
hydrolysis, rates of 183
hydrophones 189
hydroxyapatite 50, 185, 548, 549, 550, 551, 552, 553, 556
– scaffolds 554, 557, 564
hydroxyl groups 48
hypervelocity impact 190
hypervelocity impact shields 606, 607
hypromellose 66

i
ideal gas 540
ideal gas law 512
idle time 44
ignition 582, 585, 593, 604
ignition temperatures 419
image analysis 237
image illumination 239
images, two-dimensional 255
impact 606, 607, 608
impact testing 120
impedance 385
implants, porous 33
impregnation 457
Inconel, wire 119
industrial filtration 319
inert filler 208
inertial flow 331
infiltration 572
– colloidal silica 599
– glass 600
– polymer 608, 609
– Si 598, 600
– Si-melt 127, 131
– SiO-vapor 131
– Si-vapor 131
injection 585, 586
injection molding 49, 50
ink, colloidal 93, 96
– colloidal gel-based 96
– particle-filled 87
– particle-filled, polymer 88
ink delivery system 88
ink flow 87, 91
ink reservoirs 78, 88
ink rheology 94
ink-jet printing systems, scaffold 558
instability, convective 26
interstitial pore velocity 332
insulation 109
– acoustic 101
– flexible 118
– high-temperature 144
– multilayer 117
– thermal 101
insulation tiles 110
insulator, thermal 143
integrity, structural 137
interaction, electrostatic 179
interconnecting cells 253
interconnectivity 227
interfaces, air-liquid 21, 64
– air-solid 64
– liquid-solid 64
interlayer water 194
internal surface area 41
interparticle bond density 90
interpenetrating 575
interpenetrating composites 571, 578
intersection, number 237
– polygonal 247
intersection lengths, unfolding 242
intersection-probability effect 241
inertial flow 336
ionic strength 89
isocyanates 47

j
jaffeite 211
Johns Manville Corporation 102
junctions 21

k
kaolin 67
– calcined 67
Kelvin cell 231
Kelvin functions 393, 394
kiln furniture 189, 439, 440, 446, 452
– pore size 449
Kozeny-Carman equation 318, 320, 321
Kozeny-Carman relation 251
Kraemer-Sarnow (KS) softening point 144

l
lambda probe 461
laminar flow 323
laminarizing effect 333
landfill stabilizers 190
Laplace-Young law 21, 24, 27
lapone 180
laser scanning confocal microscopy 261
lattice, 3D periodic 96
– body-centred cubic 274
– face-centred cubic 274
– foam like 9
– hexagonal close-packed 274
– insulating 10
– Kagome 15, 16
– pyramidal 15
– stretching-dominated 14
– triangulated 4ff
lattice spacing 96
layer-by-layer deposition 179
layer-by-layer technologies 87
lead oxide 174
lead titanate, mesostructured 183
lead zirconate titanate 183
level-cut Gaussian random field (GRF) scheme 276
level-set Gaussian model 268
Lewis number 492, 504, 513
LigaFill 377
– SiC foam 370
light microscopy 237
lightweight 195, 198
lightweight cores 79
lignin 124
lignite 159
lime, vertical-kiln fired 214
lime cement 205
limestone 193, 212
links, colloidal gel based 87
– colloidal 89 ff
– particle-filled, polymeric 87
liquid, viscosity 250
liquid extrusion porosimetry 250, 261
liquid motion 24
liquid water, viscosity of 316
liquid-foam, formation of 274
liquid-silicon infiltration 127
Littlton temperature 166
loads, acoustic 109
– aerodynamic 109
loose glass foam aggregate 170
Lord Kelvin 274
lost-foam technique 143
low-pass filtering 239
LSI 127
Ludox 73
Ludox silica binder, ammonia-stabilized 112

m
Mach number 384, 511, 512
macroscopic lateral expansion 282
magnesia cement 43
mapping, three-dimensional 262
MAS NMR (magic angle spinning nuclear magnetic resonance spectroscopy) 194
masonry, lightweight 196
mass, pyroplastic 158
mass flow 540
mass transfer 313
mass transport, diffusive 492
massive parallel processing 59
mat 374
materials 3
– alumina-borosilicate 102
– alumina-silica 102
– bioorganic 123
– cellular 3 ff, 4
– cellulose-derived 50
– cementitious 218
– ceramic 295
– closed cell 33
– foamed 195
– heat-shield 102
– heterogeneous 268
– highly porous 33, 315
– lattice 4
– lattice-structured 4, 6
– lightweight 138, 203
– linear-elastic 6
– metal 295
– monolithic 4
– open-cell 33
– photonic 87
– polymer 295
– pozzolanic 207
– sol-gel-derived 275
– unfoamed 195
– viscoelastically formed 63
– wood-derived 124
matrix, homogeneously 269
matrix phase 200
maximum foam stability 164
Maxwell’s stability criterion 10, 10 ff
McLachlan equation 372
mechanical properties 309
– computer models for 298
mechanofusion 178
media, fibrous 313
– granular 313
medical imaging 189
melt spinning 102
melt viscosity 102
membrane 3
membrane stresses 9
membrane supports 58
MER corporation 140, 147
mercury intrusion porosimetry 250
mercury porosimetry 261
mesophase 148
metakaolinite 207
metal powder 46
metals 39, 572
methocel 66, 76
methyl methacrylate 50
methyl polysiloxane 47
methylcellulose 66, 112
methylsilicone resin 53
methyltrichlorosilane 129
MFCX (microfabrication by coextrusion) 62, 70
micro computer tomography 253, 274
microcombs 58
microemulsions 276
microgravity 20
micromass 451
microscope, acoustic 261
microscopy, confocal 261
microspheres, hollow 138
– hollow porous 185
microstructure 42
– impact of fabrication 308
– porous 57, 67
microtomography (μCT) 247
microwave heating 172
minimum interface area 231
Minimum Solid Area (MSA) models 293, 294, 295, 362
Minimum Solid Area porosity models 293
minimum surface area models 275
micro-CT scans 280
mixer, beater-type 42
– blender-type 42
– Brabender 65
mixture, viscoelastic 208
model 372, 392, 512, 540
– Biot’s 395
– direct 393
– efficiency 431
– filtering 405
– filtration 405
– Lambert’s 396
– Rayleigh’s 390
modeling 267, 515
– acoustic 514
– mass transfer 433
– reaction 433
– theoretical 267
modulus, relative 15
modulus of elasticity 551
modulus-density 15
molten-metal filtration 321
monoliths 416, 454 ff, 528
montmorillonite, foaming of 161
motion-control platform 88
MSA 372
MSA models 294, 303, 309, 367
– extension of 298
MTS 129
mullite 58
– biomorphous 132
– silicon carbide 124

n
Na₂CO₃, thermal decomposition of 166
nanoparticles 180
nanosized silica 126
nanosized SiO₂ 126
NASA, Ames 112
Navier-Stokes equation 390, 392
necking 105
needle coke 149
network, interconnected 21
– node-bond 276
network structure 90
Newtonian fluid 91
Nextel 105, 117
next-generation vehicles 115
nitrides 39, 53
nitrogen, pressurized 52
NMR imaging 261
noise 509
Nomex 112
non-cytotoxid materials 548
non-Darcian permeability 338
non-destructive characterization 259
numbering up 59
Nusselt 397
Nusselt number 354, 358
Nusselt relation 519
Nusselt/Reynold relations 355 ff

o
OFA 61 ff, 63, 66, 69, 80
OOF (object-oriented finite element analysis of real material microstructures) 298
open frontal area (OFA) 61, 66, 67, 73, 76, 321
open-cell ceramic foams 309
open-cell foams, alumina-based 304
open-cell GRF model 282
open-cell-tesselation model 283
operator, EXCLUSIVE-OR 256
optical microscopy 247
order, long-range 139
organic monomers 45
– polymerization of 43
organic polymer 104
oxide, biomorphous ceramics 134
oxide fiber, board 108
– bulk 108
– continuous 105
Index

– felt 108
– mat 108
– paper 108
oxides 39, 53
– reduction of 169
oxygen, chemical dissolved 164
ozone abatement catalysis 321
ozone decomposition 478

P
PAA 89
packing, space-filling 295
PAN 143
panels, sandwich 612, 613
papers, ceramic 109
– preprocessed 124
parallel-flow honeycombs 322
parameters, morphological 280
particle-filter contact 324
particles 59, 587
– arrangements 69
– coated 182
– glass 73, 158
– graphite 68
– orientations 69
– reflective 117
– spherical 295
particulate 434
paste 57
– longer 64
– short 64
paste extrusion 57, 61, 63, 79
paste-extruder 65
patterns, growth-ring 122
– tracheidal-cell 122
PDADMAC 179
Péclet number 487, 490ff, 504
pectin 122
pentagon(s) 236
percolating network 89
percolating paths 58
percolation models 293
percolation threshold 280, 372, 374
– geometrical 281
periodic tetrakaidecahedral model 271
perlite 53
permeability 33, 36, 51, 57, 68, 143, 212, 229, 250, 313, 531, 583
– Darcian 229, 314
– evaluation 315
– gas 248
– liquid 248
– non-Darcian 314
– quantification 313
permeability models, conduit flow 317
– geometrical 317
– Navier-Stokes 317
– statistical 317
permeability parameters 313
permeability-structure correlation 337
petroleum engineering 319
pH value 89
phase, dispersed continuous 60
phase transformations, polymorphic 111
phenolic resin 598
phenolics 141
phonon scattering 154
photocatalytic oxidation 477
photomultipliers 62
photonic crystal fibers 57, 58
– silica 82
photonic crystals 189
phylllosilicate 210
piezoelectric ceramic/polymer composites 96
pinewood 125, 130
pinewood based ceramics 131
pitch 144
– coal-derived 144
– mesophase 145
– petroleum-derived 144
pitch foam 147
Pittsburg Corning Corporation 160
Pittsburgh Plate Glass and Corning Glass Works 159
plast-casting 70
Plaster of Paris 196
plasticizing agents 159
plateau border 21
Plateau, Joseph 18
plateau stress 7
Plateau’s equilibrium rules 21
Plateau’s law 274
PMMA 162
Poco Graphite, Inc. 150
PocoFoam 140
Poisson’s ratio 94, 291
polyacrylamide 50
poly(acrylic acid) 50, 89
polyacrylonitrile 143
poly(diallyldimethylammonium chloride) 179
polyelectrolytes 179
polyester 141
polymer 89, 575
– burnout of 36, 37
– foamed 276
– high molecular weight 49
– organic 137
– polvaromatic 124
– preceramic 48
– urethane 137
– water-soluble 42
polymer foams, replication of 34
polymer melt 48
polymeric polymer 36
polymeric silicate chains (dreierketten) 210
polymerization 44
poly(methyl methacrylate), PMMA 53, 162
poly(methylsiloxane) 124
polyols 47
polyphenyl methyl silsesquioxane) 48
polysaccharide 50
polysilicic acids 168
polysiloxane 573
poly(-silsesquioxane) 48
polystyrene 34
polystyrene sulfonate 179
polyurethane (PU) 34, 47, 48, 141
poly(vinyl alcohol) 50, 142
poly(vinyl chloride) 34
polyvinyl-pyrrolidone 50
pore architecture 96
pore cross section 248
pore density, porous-medium 583
pore diameter, burners 504
pore diameter distribution 249
pore formers 52
– inorganic 53
– scaffolds 561
pore shape 575
pore size 440, 575, 596
– burner 487, 489, 491, 504
– filter 409
– porous-medium 583
– scaffold 562
pore size distribution 243, 259
pore structure 57
– compromises 309
– hierarchically ordered 123
– porous-medium 583
– unidirectional 123
pores 332
– aligned 601
– coalescence of 164
– cubic 295
– ellipsoidal 298
– interconnectivity 572
– lenticular 256
– morphology 551
– orientation 551
– oriented 601
– polyhedral 295
– scaffold 551
– shape 362, 572
– size 362, 572
– spherical 236, 256, 269, 294, 295, 298
– spontaneously filled 248
– tubular 293, 295
pores per inch (ppi) 39, 97, 408
pores per meter (ppm) 97
porosity 516, 575, 596
– absorber 528
– closed 76
– loss of 66
– scaffold 551 ff, 562
– strength dependence 300
– type of 227
porous, radiant 485
– volumetric 485
porous alumina 233
porous burner 345, 479, 484, 491, 498, 501, 502, 503, 506, 581
– volumetric 503
porous ceramics, permeability of 317
porous media, flow regimes 331
porous medium, interaction 594
Portland Cement 43, 193, 195, 205, 206, 208
– fabrication of 207
– history of 207
Portland stone 207
portlandite 199, 206
portlandite crystals 201
powder, ceramic 35, 43, 64
– glass 64, 65, 76
– metal 64
– polymer 64
pozzolana 207
pozzuolan 213
ppi method (pores per inch) 234
precipitation 76
precemclay polymer 459, 598, 600, 605, 607, 613
– foams 304, 374
– SiC fibers 375
precompaction 161
precursor, cellular 138
– ceramic 180
– inorganic 185
– liquid 20
– mesophase 147
– metal alkoxides 131

Index 639
Index

reduction extrusion 57, 62, 70
 – segmented 72
reflection coefficient 386
refractories 189
refractory linings 33
refractory oxide fibers 101
 – alumina 102
 – alumina-silica 105
 – mullite 102
 – yttrium alumina 102
 – zirconia 102
region of interest (ROI) 239
replication 20, 533
replication technique 34, 377
 – foam 404
resins 42
 – phenolic 138
resistivity, electrical 154
resorbable materials 540
resorcinol 143
response, viscoelastic 89
reticulated 617
reticulated ceramics 574
 – structure of 39
reticulated foams, laminar foam 332
 – turbulent foam 332
reticulated vitreous carbon foam 143
reticulation 51
 – factor of 51
reusable launch vehicles 101
Reynolds number 322, 323, 331, 333, 336, 358, 391
rheology 27
rigorous property-prediction methods 279
rings, seasonal 122
Robocast 62
Robocasting 87 ff, 88
robotic deposition 87, 88, 97
rod cell 256
RTV silicone 117

S
sacrificial fillers 600
sacrificial pore-forming 573
sacrificial-core method 178
Saint Gobain 159
sandwich 292
sandwich components 292
sandwich panels 14, 451
scaffolds 547, 548, 550 ff, 555 ff, 559, 562, 563, 566, 616
 – sol-gel 562
scanning electron microscopy (SEM) 237
Scano Medical AG 258
scarificial-core technique 179
Schwarz-Saltikov approach 242
seaweed 50
selective catalytic reduction 478
selectivity 474
self-insulating 195, 198
semiconducting materials 364
semiconductors 154, 611
sensors 87
S-glass 116
shading, correction 239
shape, circular 236
 – polyhedral 21
 – space-filling 12
shape factor 237, 246
shear modulus 301
shear rate profile 91
shear rates 52
shear thinning 65
shock failure 301
shock resistance 291
shredding 109
shrinkage 439, 441, 447, 449, 452, 597, 600, 602, 613, 614
 – anisotropic 125
 – drying-induced 89
shrinkage inhibitor 69
Si infiltration, near-stoichiometric 127
SiC 161, 167, 476
 – filter 418, 423
 – gas-phase 127
 – porous-medium 584, 590
 – scaffolds 565
 – solid-state reactions 127
SiC ceramics, beechwood derived 126
 – pinewood derived 126
Si-gas, infiltration 130
silica 58, 159
 – colloidal 105, 206
 – condensed 207
 – devitrification 79
 – pyrogenic 78
silica fibers, crystalline 111
 – high-purity 102
 – thermal stability 102
silica flour 206
silica gel, glass foam from 173
silica (Ludox), colloidal 111
silica paste extrusion 78
silica sand, fine-grained 206
silica tiles 114
silicate 46
 – foamed 173
silicate chains 206
silicides 39
silicon carbide (SiC) 58, 161, 375, 479
 – absorber 526, 532, 534, 535, 538
 – burners 485, 494, 496, 497
 – electrical properties 364, 370
 – filters 411, 418
 – gas phase reaction 127
 – solid-state reaction 127
 – thermal properties 353
silicon gas, infiltration of 130
silicon oxy carbide (SiOC) 47, 53
silicon precursors 126
silicon tetraboride 112
silicon tetrachloride 78
silicon tetrachloride 78
silicone resin 48
simulation, numerical 7
sintering 69
 – flow 158
sintering model 79
sintering time 79, 80
sinugram 253
SiO2 185
SiO2 precursors 126
SiOC ceramic foam 283
size distribution, pore 237
size pores 433
skeletal densities 134
skeleton, polymer 228
 – polyurethane 260
skeletonization 240
slump time 80
SMI 255
soda-borosilicate glass 172
soda-lime glass 167
sodium carbonate, thermal decomposition of 166
sodium silicate 46, 183
sodium sulfate 165
sodium sulfide 165
sol, particular 182
 – silica 104
sol globules, emulsified 182
solar cell 604
solar hemispherical reflectance 527
sol-gel 47, 173, 560
sol-gel method 182
sol-gel process, surfactant-templated 132
solid, cellular 3ff
 – monolithic 207
 – spacefilling 88
solid free-form fabrication (SFF) 292
 – scaffold 557
solid-fluid contact processes 324
solution, caustic 199
sonar hydrophones 575
soot 345, 418, 424, 427, 587
 – combustion 421, 422, 477
 – elimination 592
 – emissions 593
 – extrusion 81
 – oxidation 421, 464
 – particles 580
sorosilicate 210
sound, absorption 616, 617
sound proof 195
sound propagation 390
 – inviscid 382
space shuttle 109, 115, 116
space shuttle tiles, rigid 110
space vehicle 102, 109, 110
spaghetti 67, 68
spaghetti die 76
spanning filament 94
specific heat 33, 510
specific heat capacity 346, 350, 397
specific surface 355, 583
specific surface area 229, 329, 356, 367, 456,
 529, 530, 534, 536, 613
speed brake areas 116
sphere packing 274
sphere-pack models 277
spheres, biological 53
 – hollow 256, 257
 – hollow glass 187
 – polycrystalline 183
 – polymeric 53
spherical pellets 171
spherical polymer particle 178
spherical pores, random orientation 245
spherodility 187
spinning process 104
spray drying 185
 – schematic 185
spray technique 185
stabilizer, vertical 116
starch 42, 167
 – chemically modified 52
 – high-temperature 118
Stefan-Boltzmann equation 347
Stefan-Boltzmann law 525
stem cells 548
stereolithography 87
stereological correction factor 245
stereology 40, 241
stiffness 10, 612
Stokes 391, 394, 406
strain, ε 14
- compressive 7
stray light effects 239
strength 351, 439, 441, 443–447, 456, 496, 531, 547, 551, 554, 555, 562, 565, 571, 573, 596 ff, 600, 602, 607, 616
stress, compressive 7
- thermal 350
stress, σ 14
Strip-Star 242
structure, bending-dominated 4 ff, 11
- carbon-carbon 110
- cardboard 124
- cellular 10
- closed-cell 53
- continuous 88
- energy-absorbing 189
- microtruss lattice 10
- periodic 268
- reticulated 36
- stretch-dominated 4, 11, 12, 15
- tetrakaidecahedral 23
- woven 15, 58
structure model index 255, 257
structure-property relationships 267, 268, 274
strut 6, 227, 351, 363, 370, 377, 449, 600
- density 230
- elastic stretching 13
- flaws 598
- hollow 33, 36, 51, 230, 256, 597, 599
- swelling 599
- triangular-shaped 228
strut connectivity 10
strut material, tailored composition 227
strut morphology 230
strut shape 230
strut surface 256
strut thickness 227, 230, 598
strut thickness distribution 230, 260
substrates 58
sugar 42, 167
superalloy 119
superconducting, high-temperature 602
superficial velocity 332
surface, catalytic 119
- liquid 20
surface active agent, surfactant 65
surface area 49, 309, 456, 458, 471, 473, 525, 611
- internal 40, 41
- loss of 66
- specific 57, 261
surface dissolution 208
Surface Evolver 20, 22, 23
surface free energy γ_{12} 248
surface impedance 385
surface tension 20, 21, 24, 26, 42, 63, 68, 105, 167, 187
surface to volume ratio 97, 230
surface-surface correlation functions 279
surface-volume correlation functions 279
surfactant 24, 25, 42, 43, 45–48, 52, 199
- anionic 179
- cationic 42, 179
suspension, ceramic 35
- thixotropic 35
symmetry, translational 4

\(t \)

talc path 67
tape casting 50, 63
taper optics 62
TCP 552
technique, two-microphone 388, 389
telescope mirrors 79
template 178, 615
- biocarbon 124
- biological 133, 369
- carbon 125, 130
- core-shell 179
- native 123
- polymer 33
- sacrificial 553
- structural 48
tensile (flexure) strength 291
tensile strength 300
TEOS 183
tessellation process 278
testing, impact 119
tetracalcium aluminoferite 208
tetraethoxysilane 183
tetraethylorthosilicate 124
tetrahydrofuran 145
tetrakaidecahedral cell model 274
tetrakaidecahedron 231
textile processing 103
thaumasite 212
theoretical models, acoustic damping 390
thermal conduction 117, 543, 544, 605
thermal conductivity 9, 342 ff, 346, 347, 349, 353, 354, 362, 411, 441, 443, 486–489, 491, 494, 497, 516, 531, 536, 604, 605, 609
– convection 117
– dispersion 348
– measurement 345
– non flow 345
– with flow 348
thermal diffusivity 343, 346, 487, 489, 492
thermal efficiency 586
thermal energy 484
thermal expansion 351, 443, 497
thermal expansion coefficient 573
thermal insulation 33, 109
thermal losses 541
thermal mass 599
thermal properties 359
thermal protection systems (TPS) 33, 102, 104, 109, 117, 612
– foam 605
thermal quenching 490
thermal radiation 117, 525, 527
thermal resistance 583, 584
thermal shock 409, 412, 439–444, 446, 447, 449, 465, 496, 497, 531, 573, 584, 599
– cyclic 351
– parameters 351
thermal shock resistance 229, 305, 350, 411
thermal stability 604
thermal stress 291, 301, 615
thermoacoustics 509
thermophotovoltaic emitter 603
thermoplastic 141
thermoset 48
thermosetting 141
THF 145
thickener 43, 49
thickness of foams 43
thinning 240
three-dimensional (3D) periodic structures 87
three-point (e-p) bounds 270
threshold segmentation 240
through-pore channel 249
through-pores 248, 261
Ti, vapor 126
tiles, all-silica 110
tin 46
TiO₂ 185
tissue 547
– engineering 548, 550, 562, 563, 565
– formation 563
– regeneration 548
tissue ablation 189
tissue engineering scaffold 87	
titania scaffolds 564
titania glass 78	
titanium isopropoxide 132
titanium (IV) butoxide 183
titanium (IV) ethoxide 183
titanium (IV) propoxide 183
titanium vapor infiltration 126
tobermorite 203, 215
tobermorite crystals 204
tortuous path 405
total frontal area 323
tracheids 122
trade-offs, porosity-property 309
transducers, single-element 189
transforma-borosilicate glasses, polymorphic 169
transformations, polymorphic 173
transition, pseudoplastic-to-dilatent 88
transmission coefficient 386
transmission loss 386
transport, thermal 154
traps 416 ff, 423, 424, 426
– filter 423
Trass 207
treatment, hydrothermal 43, 104, 188
tricalcium aluminate 208
tube, monolithic 60
tube forming 59
tube geometry 59
turbulence 412
turbulent flow 323
two-microphone technique 518
u
ultrafiltration 321
ultrafoam 143
ultramet corp. 138, 142
ultrasonic imaging 189
unit cells 6
– face centered 96, 98
– simple 96, 98

v
vapors, hydrocarbon 141
velocities, sonic 291
vertex 227
vesicle template 179
vesicles 178
viscosity 26, 49, 105, 164, 167
– surface 18
viscous flow regime 331
viscous froth model 27
viscous processing 64
viscous sintering 63, 76
visiocell 236, 247, 252
VOI 258
void space 6, 193
volatile organic compounds 477
volume fraction, critical 89
volume of interest (VOI) 256
volumetric ignition 582
volumetric solar receivers 523
Voronoi tessellation 274, 282
Voronoi tessellation model 268, 270
voxels 280
Vycor glass 115

\textbf{w}
wall thickness 42, 180
\hspace{1em}– tapered 308
wall-flow honeycombs 321
Warren-Kraynik model 283
wash coat 454 ff, 462, 463, 472, 475
waste glass 160
waste materials 211
waste municipal solid 160
wastes, organic 167
\hspace{1em}– vitrified 160
water purification 319
water-extraction rate 182
water-flow experiments 330
water-flow test 317
waves, acoustic 509
\hspace{1em}– equation 382
\hspace{1em}– pressure 383
\hspace{1em}– propagation 383
\hspace{1em}– shock 608
\hspace{1em}– velocity 383
wax, microcrystalline 70, 73
wax filament 71, 73
Weaire-Phelan unit cell 231
weaving 103
web thickness 73
wetting liquid 249
window glass 160
window opening 227
window size 40, 41
windows 253
wollastonite, fibrous 218
wood 122, 159, 573
\hspace{1em}– composition 122
\hspace{1em}– coniferous deciduous 122
\hspace{1em}– morphologies 124
\hspace{1em}– scaffolds 556
woodstove combustion 321

\textbf{x}
X-ray microtomography 238, 246, 253
X-ray tomography 253, 254, 258

\textbf{y}
Young’s modulus 94, 291, 297, 308, 443, 612
Yton 198
ytterbium oxide, foam 603

\textbf{z}
zeolite 180, 218, 458, 459, 463, 470, 478, 615
zinc 46
zinc oxide 159
\hspace{1em}– kiln furniture 448
zirconia 476
\hspace{1em}– biomorphous 132
\hspace{1em}– burners 497
\hspace{1em}– electrical properties 369
\hspace{1em}– filter 412
\hspace{1em}– kiln furniture 442, 444, 447, 448
\hspace{1em}– scaffolds 564
ZrO$_2$, burners 496
\hspace{1em}– porous media 584
ZrO$_2$, biomorphous 132