Contents

Preface XIX

List of Contributors XXI

Part 1 Introduction 1

1.1 Cellular Solids – Scaling of Properties 3
Michael F. Ashby

1.1.1 Introduction 3
1.1.2 Cellular or “Lattice” Materials 4
1.1.3 Bending-Dominated Structures 5
1.1.3.1 Mechanical Properties 6
1.1.3.2 Thermal Properties 9
1.1.3.3 Electrical Properties 10
1.1.4 Maxwell’s Stability Criterion 10
1.1.5 Stretch-Dominated Structures 12
1.1.6 Summary 16

1.2 Liquid Foams – Precursors for Solid Foams 18
Denis Weaire, Simon Cox, and Ken Brakke

1.2.1 The Structure of a Liquid Foam 18
1.2.2 The Elements of Liquid Foam Structure 21
1.2.3 Real Liquid Foams 24
1.2.4 Quasistatic Processes 24
1.2.5 Beyond Quasistatics 26
1.2.6 Summary 28
Part 2 Manufacturing

2.1 Ceramics Foams

Jon Binner

2.1.1 Introduction

2.1.2 Replication Techniques

2.1.2.1 Slurry Coating and Combustion of Polymer Foams

2.1.2.2 Pyrolysis and CVD Coating of Polymer Foams

2.1.2.3 Structure of Reticulated Ceramics

2.1.3 Foaming Techniques

2.1.3.1 Incorporation of an External Gas Phase

2.1.3.2 In Situ Gas Evolution

2.1.3.3 Gelation

2.1.3.4 Ceramic Foam Structure

2.1.4 Other Techniques

2.1.6 Summary

2.2 Honeycombs

John Wight

2.2.1 Introduction

2.2.2 Forming the Honeycomb Geometry

2.2.2.1 Background

2.2.2.2 Honeycomb Extrusion Die

2.2.2.3 Nonextrusion Fabrication Processes

2.2.3 Composition

2.2.3.1 Paste

2.2.3.2 Mixing

2.2.3.3 The Binder

2.2.4 Thermal Processing

2.2.4.1 Diffusion: Drying and Debinding

2.2.4.2 Melt Manipulation

2.2.4.3 Sinter Shrinkage Manipulation

2.2.5 Post-Extrusion Forming

2.2.5.1 Reduction Extrusion

2.2.5.2 Hot Draw Reduction

2.2.6 Summary

2.3 Three-Dimensional Periodic Structures

Jennifer A. Lewis and James E. Smay

2.3.1 Introduction

2.3.2 Direct-Write Assembly

2.3.3 Colloidal Inks

2.3.4 Ink Flow during Deposition
2.6.5 Properties of Carbon and Graphite Foam 153
2.6.6 Summary 155

2.7 Glass Foams 158
Giovanni Scarinci, Giovanna Brusatin, Enrico Bernardo

2.7.1 Introduction 158
2.7.2 Historical Background 158
2.7.3 Starting Glasses 160
2.7.4 Modern Foaming Process 161
2.7.4.1 Initial Particle Size of the Glass and the Foaming Agent 161
2.7.4.2 Heating Rate 163
2.7.4.3 Foaming Temperature 164
2.7.4.4 Heat-Treatment Time 164
2.7.4.5 Chemical Dissolved Oxygen 164
2.7.4.6 Cooling Rate 165
2.7.5 Foaming Agents 166
2.7.5.1 Foaming by Thermal Decomposition 166
2.7.5.2 Foaming by Reaction 167
2.7.6 Glass Foam Products 170
2.7.7 Alternative Processes and Products 171
2.7.7.1 Foams from Evaporation of Metals 172
2.7.7.2 High-Silica Foams from Phase-Separating Glasses 172
2.7.7.3 Microwave Heating 172
2.7.7.4 Glass Foam from Silica Gel 173
2.7.7.5 High-Density Glass Foam 173
2.7.7.6 Partially Crystallized Glass Foam 173
2.7.7.7 Foaming of CRT Glasses 174
2.7.8 Summary 175

2.8 Hollow Spheres 177
Srinivasa Rao Boddapati and Rajendra K. Bordia

2.8.1 Introduction 177
2.8.2 Processing Methods 178
2.8.2.1 Sacrificial-Core Method 178
2.8.2.2 Layer-by-Layer Deposition 179
2.8.2.3 Emulsion/Sol–Gel Method 182
2.8.2.4 Spray and Coaxial-Nozzle Techniques 185
2.8.2.5 Reaction-Based and Other Methods 188
2.8.3 Cellular Ceramics from Hollow Spheres (Syntactic Foams) 188
2.8.4 Properties 188
2.8.5 Applications 189
2.8.6 Summary 190
Part 4 Properties 289

4.1 Mechanical Properties 291
Roy Rice

4.1.1 Introduction 291
4.1.2 Modeling the Porosity Dependence of Mechanical Properties of Cellular Ceramics 292
4.1.2.1 Earlier Models 292
4.1.2.2 Gibson–Ashby Models 294
4.1.2.3 Minimum Solid Area (MSA) Models 295
4.1.2.4 Computer Models 298
4.1.3 Porosity Effects on Mechanical Properties of Cellular Ceramics 299
4.1.3.1 Honeycomb Structures 299
4.1.3.2 Foams and Related Structures 301
4.1.4 Discussion 307
4.1.4.1 Measurement–Characterization Issues 307
4.1.4.2 Impact of Fabrication on Microstructure 308
4.1.4.3 Porosity–Property Trade-Offs 309
4.1.5 Summary 310

4.2 Permeability 313
Murilo Daniel de Mello Innocentini, Pilar Sepulveda, and Fernando dos Santos Ortega

4.2.1 Introduction 313
4.2.2 Description of Permeability 313
4.2.3 Experimental Evaluation of Permeability 315
4.2.4 Models for Predicting Permeability 317
4.2.4.1 Granular Media 318
4.2.4.2 Fibrous Media 320
4.2.4.3 Cellular Media 321
4.2.5 Viscous and Inertial Flow Regimes in Porous Media 331
4.2.6 Summary 338

4.3 Thermal Properties 342
Thomas Fend, Dimosthenis Trimis, Robert Pitz-Paal, Bernhard Hoffschmidt, and Oliver Reutter

4.3.1 Introduction 342
4.3.2 Thermal Conductivity 342
4.3.2.1 Experimental Methods to Determine the Effective Thermal Conductivity without Flow 345
4.3.2.2 Method to Determine the Effective Thermal Conductivity with Flow 348
4.3.3 Specific Heat Capacity 350
4.3.4 Thermal Shock 350
4.3.5 Volumetric Convective Heat Transfer 352
4.3.5.1 Nusselt/Reynold Correlations and Comparison with Theoretical Data 354
4.3.6 Summary 359

4.4 Electrical Properties 361
Hans-Peter Martin and Joerg Adler
4.4.1 Introduction and Fundamentals 361
4.4.2 Specific Aspects of Electrical Properties of Cellular Solids 366
4.4.2.1 Honeycombs 367
4.4.2.2 Biomimetic Ceramic Structures 368
4.4.2.3 Ceramic Foams 369
4.4.2.4 Ceramic Fibers 374
4.4.3 Electrical Applications of Cellular Ceramics 376
4.4.3.1 Foam Ceramic Heaters 376
4.4.3.2 Electrically Conductive Honeycombs 378
4.4.4 Summary 379

4.5 Acoustic Properties 381
Iain D. J. Dupère, Tian J. Lu, and Ann P. Dowling
4.5.1 Introduction 381
4.5.2 Acoustic Propagation 381
4.5.2.1 Linearized Equations of Motion 381
4.5.2.2 Wave Equation 382
4.5.2.3 Relationships between Acoustic Parameters under Inviscid Conditions 383
4.5.2.4 Acoustic Energy 384
4.5.3 Acoustic Properties 384
4.5.3.1 Acoustic Impedance and Admittance 384
4.5.3.2 Acoustic Wavenumber 386
4.5.3.3 Reflection Coefficient, Transmission Coefficient, and Transmission Loss 386
4.5.3.4 Absorption Coefficient 387
4.5.4 Experimental Techniques 387
4.5.4.1 Moving-Microphone Technique 387
4.5.4.2 Two- and Four-Microphone Techniques 388
4.5.5 Empirical Models 389
4.5.6 Theoretical Models 390
4.5.6.1 Viscous Attenuation in Channels (Rayleigh's Model) 390
4.5.6.2 Acoustic Damping by an Array of Elements Perpendicular to the Propagation Direction 391
4.5.6.3 Generalized Models 392
4.5.6.4 Complex Viscosity and Complex Density Models 392
4.5.6.5 Direct Models 393
4.5.6.6 Biot's Model 395
4.5.6.7 Lambert's Model 396
4.5.7 Acoustic Applications of Cellular Ceramics 397
4.5.8 Summary 398

Part 5 Applications 401

5.1 Liquid Metal Filtration 403
Rudolph A. Olson III and Luiz C. B. Martins
5.1.1 Introduction 403
5.1.2 Theory of Molten-Metal Filtration 404
5.1.3 Commercial Applications 408
5.1.3.1 Aluminum 408
5.1.3.2 Iron Foundry 410
5.1.3.3 Steel 412
5.1.4 Summary 414

5.2 Gas (Particulate) Filtration 416
Debora Fino and Guido Saracco
5.2.1 Introduction 416
5.2.2 Properties of (Catalytic) Cellular Filters 417
5.2.3 Applications 418
5.2.3.1 Diesel Particulate Abatement 418
5.2.3.2 Abatement of Gaseous Pollutants and Fly-Ash 428
5.2.4 Modeling 433
5.2.5 Summary 436

5.3 Kiln Furnitures 439
Andy Norris and Rudolph A. Olson III
5.3.1 Introduction 439
5.3.2 Application of Ceramic Foam to Kiln Furniture 441
5.3.2.1 Longer Life 441
5.3.2.2 More Uniform Atmosphere Surrounding the Fired Ware 446
5.3.2.3 Reduction of Frictional Forces during Shrinkage 447
5.3.2.4 Chemical Inertness 447
5.3.2.5 Cost Benefits 448
5.3.3 Manufacture of Kiln Furniture 449
5.3.3.1 Foam Replication Process 449
5.3.3.2 Foams Manufactured by using Fugitive Pore Formers 451
5.3.4 Summary 452
5.4 Heterogeneously Catalyzed Processes with Porous Cellular Ceramic Monoliths 454
Franziska Scheffler, Peter Claus, Sabine Schimpf, Martin Lucas, and Michael Scheffler

5.4.1 Introduction 454
5.4.2 Making Catalysts from Ceramic Monoliths 455
5.4.2.1 Enlargement of Surface Area and Preparation for Catalyst Loading 456
5.4.2.2 Loading with Catalytically Active Components and Activation 457
5.4.2.3 Zeolite Coating: A Combination of High Surface Area and Catalytic Activity 458
5.4.3 Some Catalytic Processes with Honeycomb Catalysts 461
5.4.3.1 Automotive Catalysts 461
5.4.3.2 Diesel Engine Catalysts 464
5.4.3.3 Catalytic Combustion for Gas Turbines 465
5.4.3.4 Applications of Honeycomb Catalysts for Other Gas Phase Reactions 465
5.4.3.5 Honeycomb Catalysts for Gas/Liquid-Phase Reactions 467
5.4.3.6 Other Research Applications of Honeycomb Catalysts 472
5.4.4 Catalytic Processes with Ceramic Foam Catalysts 473
5.4.4.1 Improvement of Technical Processes for Base Chemicals Production 474
5.4.4.2 Hydrogen Liberation from Liquid Precursors/Hydrogen Cleaning for Fuel Cell Applications 475
5.4.4.3 Automotive and Indoor Exhaust Gas Cleaning 476
5.4.4.4 Catalytic Combustion in Porous Burners 479
5.4.5 Summary 479

5.5 Porous Burners 484
Dimosthenis Trimis, Olaf Pickenäcker, and Klemens Wawrzinek

5.5.1 Introduction 484
5.5.2 Flame Stabilization of Premixed Combustion Processes in Porous Burners 486
5.5.2.1 Flame Stabilization by Unsteady Operation 488
5.5.2.2 Flame Stabilization under Steady Operation by Convection and Cooling 489
5.5.2.3 Flame Stabilization under Steady Operation by Thermal Quenching 490
5.5.2.4 Diffusive Mass-Transport Effects on Flame Stabilization 492
5.5.3 Catalytic Radiant Surface Burners 493
5.5.4 Radiant Surface Burners 494
5.5.5 Volumetric Porous Burners with Flame Stabilization by Thermal Quenching 495
5.5.5.1 Materials and Shapes for Porous-Medium Burners 496
5.5.5.2 Applicationsof Volumetric Porous Burners 498
5.5.6 Summary 506

5.6 Acoustic Transfer in Ceramic Surface Burners 509
Koen Schreel and Philip de Goey

5.6.1 Introduction 509
5.6.2 Acoustic Transfer 511
5.6.3 Analytical Model 512
5.6.4 Acoustic Transfer Coefficient for Realistic Porous Ceramics 514
5.6.4.1 Numerical Results 515
5.6.4.2 Measurements 518
5.6.5 Summary 521

5.7 Solar Radiation Conversion 523
Thomas Fend, Robert Pitz-Paal, Bernhard Hoffschmidt, and Oliver Reutter

5.7.1 Introduction 523
5.7.2 The Volumetric Absorber Principle 525
5.7.3 Optical, Thermodynamic, and Fluid-Mechanical Requirements of
Cellular Ceramics for Solar Energy Conversion 526
5.7.4 Examples of Cellular Ceramics Used as Volumetric Absorbers 532
5.7.4.1 Extruded Silicon Carbide Catalyst Supports 532
5.7.4.2 Ceramic Foams 533
5.7.4.3 SiC Fiber Mesh 534
5.7.4.4 Screen-Printed Absorbers (Direct-Typing Process) 535
5.7.4.5 Material Combinations 536
5.7.5 Absorber Tests 536
5.7.6 Physical Restrictions of Volumetric Absorbers and Flow Phenomena in
cellular ceramics 539
5.7.6.1 Experimental Determination of Nonstable Flow 544
5.7.7 Summary 545

5.8 Biomedical Applications: Tissue Engineering 547
Julian R. Jones and Aldo R. Boccaccini

5.8.1 Introduction 547
5.8.2 Regenerative Medicine and Biomaterials 548
5.8.3 Bioactive Ceramics for Tissue Engineering 549
5.8.4 Scaffold Biomaterials for Tissue Engineering 550
5.8.5 Cellular Bioceramics as Scaffolds in Tissue Engineering 552
5.8.5.1 HA and Other Calcium Phosphates 552
5.8.5.2 Melt-Derived Bioactive Glasses 560
5.8.5.3 Sol–Gel-derived Bioactive Glasses 560
5.8.5.4 Other Bioceramics Exhibiting Cellular Structure 564
5.8.6 Properties of Some Selected Bioactive Ceramic Foams 565
5.8.7 Summary 566
5.9 Interpenetrating Composites

Jon Binner

5.9.1 Introduction 571
5.9.2 Metal–Ceramic Interpenetrating Composites 572
5.9.3 Polymer–Ceramic Interpenetrating Composites 575
5.9.4 Summary 578

5.10 Porous Media in Internal Combustion Engines

Miroslaw Weclas

5.10.1 Introduction 580
5.10.2 Novel Engine Combustion Concepts with Homogeneous Combustion Processes 581
5.10.3 Application of Porous-Medium Technology in IC Engines 583
5.10.4 The PM Engine Concept: Internal Combustion Engine with Mixture Formation and Homogeneous Combustion in a PM Reactor 587
5.10.4.1 PM Engine with Closed PM Chamber 588
5.10.4.2 PM Engine with Open PM Chamber 589
5.10.5 An Update of the MDI Engine Concept: Intelligent Engine Concept with PM Chamber for Mixture Formation 590
5.10.6 Two-Stage Combustion System for DI Diesel Engine 592
5.10.7 Summary 594

5.11 Other Developments and Special Applications

Paolo Colombo and Edwin P. Stankiewicz

5.11.1 Introduction 596
5.11.2 Improving the Mechanical Properties of Reticulated Ceramics 596
5.11.2.1 Ceramic Foams by Reaction Bonding 597
5.11.2.2 Overcoating of Conventional Reticulated Ceramics 598
5.11.2.3 Infiltration of the Struts of Reticulated Ceramics 599
5.11.3 Microcellular Ceramic Foams 600
5.11.4 Porous Ceramics with Aligned Pores 601
5.11.5 Porous Superconducting Ceramics 602
5.11.6 Porous Yb2O3 Ceramic Emitter for Thermophotovoltaic Applications 603
5.11.7 Ceramic Foams for Advanced Thermal Management Applications 604
5.11.8 Ceramic Foams for Impact Applications 606
5.11.8.1 Hypervelocity Impact Shields for Spacecrafts and Satellites 606
5.11.8.2 Armour Systems 608
5.11.9 Heat Exchangers 609
5.11.10 Ceramic Foams for Semiconductor Applications 611
5.11.11 Duplex filters 611
5.11.12 Lightweight Structures 612
5.11.13 Ceramic Foams as Substrates for Carbon Nanotube Growth 613
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11.14</td>
<td>Metal Oxide Foams as Precursors for Metallic Foams</td>
<td>614</td>
</tr>
<tr>
<td>5.11.15</td>
<td>Zeolite Cellular Structures</td>
<td>615</td>
</tr>
<tr>
<td>5.11.16</td>
<td>Current Collectors in Solid Oxide Fuel Cells</td>
<td>616</td>
</tr>
<tr>
<td>5.11.17</td>
<td>Sound Absorbers</td>
<td>616</td>
</tr>
<tr>
<td>5.11.18</td>
<td>Bacteria/Cell Immobilization</td>
<td>617</td>
</tr>
<tr>
<td>5.11.19</td>
<td>Light Diffusers</td>
<td>617</td>
</tr>
<tr>
<td>5.11.20</td>
<td>Summary</td>
<td>618</td>
</tr>
</tbody>
</table>

Concluding Remarks 621

Index 625