Contents

Foreword xiii
Preface xv
Acknowledgements xix
Introduction xxi
About the Companion Website xxv

1.1 What are simulation models? 2
 1.1.1 Conceptual models 4
 1.1.2 Physical models 7
 1.1.3 Mathematical models 7
 1.1.4 Empirical models 8
 1.1.5 Simulation models 9

1.2 How do we use simulation models? 12
 1.2.1 Using models for prediction 13
 1.2.2 Models as guides to data collection 13
 1.2.3 Models as ‘tools to think with’ 14

1.3 Why do we use simulation models? 15
 1.3.1 When experimental science is difficult (or impossible) 16
 1.3.2 Complexity and nonlinear dynamics 18

1.4 Why dynamic and spatial models? 23
 1.4.1 The strengths and weaknesses of highly general models 23
 1.4.2 From abstract to more realistic models: controlling the cost 27

2 Pattern, Process and Scale 29

2.1 Thinking about spatiotemporal patterns and processes 30
 2.1.1 What is a pattern? 30
Contents

2.1.2 What is a process? 31
2.1.3 Scale 32
2.2 Using models to explore spatial patterns and processes 38
 2.2.1 Reciprocal links between pattern and process: a spatial model of forest structure 39
 2.2.2 Characterising patterns: first- and second-order structure 40
 2.2.3 Using null models to evaluate patterns 43
 2.2.4 Density-based (first-order) null models 46
 2.2.5 Interaction-based (second-order) null models 48
 2.2.6 Inferring process from (spatio-temporal) pattern 49
 2.2.7 Making the virtual forest more realistic 53
2.3 Conclusions 56

3 Aggregation and Segregation 57
 3.1 Background and motivating examples 58
 3.1.1 Basics of (discrete spatial) model structure 59
 3.2 Local averaging 60
 3.2.1 Local averaging with noise 63
 3.3 Totalistic automata 64
 3.3.1 Majority rules 65
 3.3.2 Twisted majority annealing 68
 3.3.3 Life-like rules 69
 3.4 A more general framework: interacting particle systems 70
 3.4.1 The contact process 71
 3.4.2 Multiple contact processes 73
 3.4.3 Cyclic relationships between states: rock–scissors–paper 76
 3.4.4 Voter models 78
 3.4.5 Voter models with noise mutation 80
 3.5 Schelling models 83
 3.6 Spatial partitioning 86
 3.6.1 Iterative subdivision 86
 3.6.2 Voronoi tessellations 87
 3.7 Applying these ideas: more complicated models 88
 3.7.1 Pattern formation on animals' coats: reaction–diffusion models 89
 3.7.2 More complicated processes: spatial evolutionary game theory 91
 3.7.3 More realistic models: cellular urban models 93

4 Random Walks and Mobile Entities 97
 4.1 Background and motivating examples 97
 4.2 The random walk 99
 4.2.1 Simple random walks 99
 4.2.2 Random walks with variable step lengths 102
 4.2.3 Correlated walks 103
 4.2.4 Bias and drift in random walks 108
 4.2.5 Lévy flights: walks with non-finite step length variance 109
CONTENTS

4.3 Walking for a reason: foraging and search
 4.3.1 Using clues: localised search 115
 4.3.2 The effect of the distribution of resources 116
 4.3.3 Foraging and random walks revisited 119
4.4 Moving entities and landscape interaction 119
4.5 Flocking: entity–entity interaction 121
4.6 Applying the framework 125
 4.6.1 Animal foraging 126
 4.6.2 Human ‘hunter-gatherers’ 128
 4.6.3 The development of home ranges and path networks 129
 4.6.4 Constrained environments: pedestrians and evacuations 129
 4.6.5 Concluding remarks 131

5 Percolation and Growth: Spread in Heterogeneous Spaces 133
 5.1 Motivating examples 133
 5.2 Percolation models
 5.2.1 What is percolation? 137
 5.2.2 Ordinary percolation 138
 5.2.3 The lost ant 142
 5.2.4 Invasion percolation 145
 5.3 Growth (or aggregation) models
 5.3.1 Eden growth processes: theme and variations 149
 5.3.2 Diffusion-limited aggregation 155
 5.4 Applying the framework 158
 5.4.1 Landscape pattern: neutral models and percolation approaches 158
 5.4.2 Fire spread: Per Bak’s ‘forest fire model’ and derivatives 162
 5.4.3 Gully and erosion dynamics: IP + Eden growth + DLA 166
 5.5 Summary 168

6 Representing Time and Space 169
 6.1 Representing time
 6.1.1 Synchronous and asynchronous update 170
 6.1.2 Different process rates 172
 6.1.3 Discrete time steps or event-driven time 173
 6.1.4 Continuous time 174
 6.2 Basics of spatial representation
 6.2.1 Grid or lattice representations 175
 6.2.2 Vector-based representation: points, lines, polygons and tessellations 177
 6.3 Spatial relationships: distance, neighbourhoods and networks
 6.3.1 Distance in grids and tessellations 179
 6.3.2 Neighbourhoods: local spatial relationships 181
 6.3.3 Networks of relationships 183
<table>
<thead>
<tr>
<th>9</th>
<th>In Conclusion</th>
<th>265</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>On the usefulness of building-block models</td>
<td>265</td>
</tr>
<tr>
<td>9.2</td>
<td>On pattern and process</td>
<td>266</td>
</tr>
<tr>
<td>9.3</td>
<td>On the need for careful analysis</td>
<td>268</td>
</tr>
</tbody>
</table>

References 271

Index 299