Contents

List of Contributors xi
Preface to the Technical Series, Second Edition xv
Preface to the Technical Series, First Edition xvii
Preface to the Second Edition xix
Preface to the First Edition xxi

1 **Microbiota of the Human Gut**
H.B. Ghoddusi and L.V. Thomas

1.1 Background 1
1.2 The human GI tract and its microbiota 2
1.3 Functions of the GI microbiota 5
1.4 Influences on the GI tract and its microbiota 7
1.5 Conclusions 9
References 10

2 **Probiotics: The First 10000 Years**
R. Levin

2.1 In the beginning 17
2.2 The intervention of science 19
2.3 A remarkable sequence of important discoveries 20
2.4 Could disinfection be the solution? 21
2.5 On the cusp of a major breakthrough 22
2.6 The urge for progress switches to the USA (1914–1931) 25
2.7 Meanwhile, in Europe 28
2.8 The ultimate breakthrough comes from Japan? 29
2.9 Conclusions 32
Acknowledgements 33
References 33

3 **Genomic Characterisation of Starter Cultures and Probiotic Bacteria**
G.E. Felis, S. Torriani, A.B. Flórez and B. Mayo

3.1 Introduction 37
3.2 Genome sequencing and comparative genomics: insights into evolution and adaptation to dairy environments 40
3.2.1 Phylum Firmicutes 41
3.2.2 Phylum Actinobacteria 45
3.2.3 Other micro-organisms 46
3.3 Application of genome analysis to LAB and bifidobacteria 47
 3.3.1 In silico safety assessment of LAB bifidobacteria 47
 3.3.2 Unravelling LAB and bifidobacteria properties 51
3.4 Concluding remarks 56
References 57

4 Production and Maintaining Viability of Probiotic Micro-organisms in Dairy Products 67

 4.1 Introduction 67
 4.2 Probiotic micro-organisms 68
 4.2.1 General characteristics 68
 4.2.2 Examples of commercial starter culture blends 69
 4.3 Economic value 72
 4.4 Unfermented probiotic milk 72
 4.5 Probiotic fermented milks and beverages 75
 4.5.1 Lactic acid fermentations 76
 4.5.2 Yeast–lactic acid fermentations 90
 4.5.3 Mould–lactic acid fermentations 93
 4.5.4 Quality appraisal of probiotic fermented milks 93
 4.6 Probiotic cheeses 95
 4.6.1 Methods of introduction of probiotics in cheese 95
 4.6.2 Probiotic strain selection for cheesemaking 96
 4.6.3 Very hard and hard cheese varieties 99
 4.6.4 Semi-hard varieties 102
 4.6.5 Brined cheeses 103
 4.6.6 Soft cheeses 105
 4.6.7 Pasta Filata cheeses 108
 4.6.8 Miscellaneous cheeses 108
 4.7 Probiotic ice cream, frozen desserts and frozen yoghurt 111
 4.7.1 Background 111
 4.7.2 Ice-cream 111
 4.8 Dried probiotic dairy products 112
 4.8.1 Introduction 112
 4.8.2 Infant formula 113
 4.8.3 Dairy-based dried products 114
 4.9 Miscellaneous probiotic dairy products 115
 4.9.1 Fat-based products 115
 4.9.2 Long shelf-life fermented milk drinks or beverages 115
 4.9.3 Milk- and water-based cereal puddings 116
 4.9.4 Mousses, desserts and spreads 116
4.10 Viability of probiotic micro-organisms

4.10.1 Composition of the fermentation medium

4.10.2 Viability as affected by oxygen

4.11 Approaches to improve the viability of the probiotic micro-organisms in the product

4.11.1 Selection of bacterial strain(s)

4.11.2 Type of packaging container

4.11.3 Rate of inoculation

4.11.4 Two-stage fermentation

4.11.5 Microencapsulation technique

4.11.6 Supplementation of the milk with nutrients

4.11.7 The use of oxygen scavengers

4.11.8 The addition of cysteine

4.12 Future developments and overall conclusions

Acknowledgement

References

5 Current Legislation of Probiotic Products

M. Hickey

5.1 Introduction and background

5.2 The situation in Japan

5.2.1 Subsystems of FOSHU

5.2.2 Essential elements for obtaining FOSHU approval

5.2.3 Features of the new category of foods with function claims

5.2.4 Unique features of the Japanese FOSHU system

5.3 The legislative situation in the European Union

5.3.1 Relevant EU food safety legislation

5.3.2 Novel food regulation in the European Union

5.3.3 Genetically modified organisms

5.3.4 EU food-labelling provisions

5.3.5 EU nutrition and health claims

5.3.6 Types of health claims

5.4 The USA’s legislative situation on probiotics and related health claims

5.4.1 Claims and labelling in the USA

5.4.2 The role of the Federal Trade Commission (FTC) and legal challenges

5.5 The Canadian legislative situation regarding health claims and functional foods

5.5.1 Background

5.5.2 Health claims on foods in Canada

5.5.3 Probiotic claims

5.6 Health foods and functional foods in China

5.6.1 Introduction

5.6.2 Chinese legislative structures
5.6.3 The healthy (functional) foods sector in China and its regulation 192
5.6.4 Types of health claims in China and their approval 194
5.6.5 China’s probiotic market size and potential 194
5.7 Codex Alimentarius Commission (CAC) 196
5.7.1 Background 196
5.7.2 Acceptance of Codex standards and their role in the World Trade Organisation (WTO) 197
5.7.3 Codex and food-labelling claims 198
5.7.4 Codex standard for fermented milks 200
5.8 Some conclusions and possible future legislative prospects for probiotics 201
Acknowledgements 202
References 202

6 Enumeration and Identification of Mixed Probiotic and Lactic Acid Bacteria Starter Cultures 207
A.Č. Majhenič, P.M. Lorbeg and P. Treven

6.1 Introduction 207
6.2 Classification 207
6.3 Phenotypic methods 208
6.3.1 Differential plating 208
6.3.2 Carbohydrate fermentation-based methods 211
6.3.3 Spectroscopic methods 213
6.3.4 Fluorescence dyes-based methods 216
6.4 Genetic methods 219
6.4.1 Polymerase chain reaction-based methods 219
6.4.2 DNA banding pattern-based methods 224
6.4.3 DNA sequencing-based methods 230
6.4.4 Probe hybridisation methods 235
6.5 Conclusions 237
References 238

7 Prebiotic Ingredients in Probiotic Dairy Products 253
X. Wang and R.A. Rastall

7.1 Introduction 253
7.2 Criteria for an ingredient to be classified as a prebiotic 254
7.3 Health benefits of prebiotics and their mechanisms of action 254
7.3.1 Short-chain fatty acids and human metabolism 255
7.3.2 Mineral absorption 256
7.3.3 Energy intake and appetite regulation 256
7.3.4 Lipid metabolism 258
7.3.5 Immune function modulation of prebiotics 258
7.3.6 Colorectal cancer risk and prebiotics 259
7.3.7 Gut permeability 260
7.3.8 Colon motility and faecal bulking with application to constipation 261
7.4 Inulin-type fructans as prebiotics 261
 7.4.1 Determination of inulin-type fructans 262
 7.4.2 Production of inulin-type fructans 264
 7.4.3 Physical and chemical characteristics of inulin-type fructans and application in the food industry 264
 7.4.4 Prebiotic effects of inulin-type fructans 265
 7.4.5 Health benefits of inulin-type fructans 265
7.5 Galactooligosaccharides as prebiotics 267
 7.5.1 Production and determination of galactooligosaccharides 269
 7.5.2 Application of galactooligosaccharides in the food industry 269
 7.5.3 The prebiotic effect of galactooligosaccharides 269
 7.5.4 Infant nutrition and galactooligosaccharides 271
 7.5.5 Health benefit of galactooligosaccharides 272
7.6 Resistant starch and other glucose-based non-digestible carbohydrates 276
7.7 Xylooligosaccharides 279
7.8 Other potential prebiotics candidates and summary 279
References 279

8 An Overview of Probiotic Research: Human and Mechanistic Studies 293
G. Zoumpopoulou, E. Tsakalidou and L.V. Thomas

8.1 Mechanisms underlying probiotic effects 293
 8.1.1 Probiotic effects on the gut microbiota and its metabolites 294
 8.1.2 Probiotic immune modulation 295
 8.1.3 Probiotic effects on gut barrier function 296
 8.1.4 Probiotics and the gut–brain axis 296
 8.1.5 Probiotic mechanisms in the urogenital tract 297
 8.1.6 Survival of the gut microbiota through the gut 297
8.2 Probiotic human studies: gastrointestinal conditions 297
 8.2.1 Inflammatory bowel disease (IBD) 297
 8.2.2 Irritable bowel syndrome (IBS) 302
 8.2.3 Constipation 303
 8.2.4 Diarrhoeal diseases 304
 8.2.5 Paediatric conditions 306
8.3 Probiotic research: human studies investigating extra-intestinal conditions 308
 8.3.1 Common infectious diseases 309
 8.3.2 Allergic diseases 310
 8.3.3 Urogenital conditions 313
 8.3.4 Obesity-related disease 314
 8.3.5 Liver disease 317
 8.3.6 Cancer 318
 8.3.7 Immune disorders: HIV 319
 8.3.8 Trials investigating aspects of the gut–brain axis 320
8.4 Conclusions 321
References 321
9 Production of Vitamins, Exopolysaccharides and Bacteriocins by Probiotic Bacteria

D.M. Linares, G. Fitzgerald, C. Hill, C. Stanton and P. Ross

9.1 Introduction

9.2 Vitamin production by probiotic bacteria
9.2.1 Background
9.2.2 Folate
9.2.3 Vitamin B₁₂
9.2.4 Riboflavin and thiamine
9.2.5 Vitamin K

9.3 Exopolysaccharides (EPS) production by probiotic bacteria
9.3.1 Introduction
9.3.2 Classification of exopolysaccharides
9.3.3 Health benefits of exopolysaccharides

9.4 Production of bacteriocins by probiotic cultures
9.4.1 Background
9.4.2 Production of antimicrobials as a probiotic trait
9.4.3 Classification of bacteriocins
9.4.4 Antimicrobial potential of Lactobacillus spp.
9.4.5 Antimicrobial potential of Bifidobacterium spp.
9.4.6 Other lactic acid bacteria species with antimicrobial potential

9.5 Overall conclusions
Acknowledgements
References

10 Future Development of Probiotic Dairy Products

M. Saarela

10.1 Developments in the probiotic field in the European Union (EU)
10.2 The current probiotic market and its trends
10.3 Recent developments in the probiotic research
10.4 Future target areas for research and conclusion
References

Index