Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adsorption</td>
<td>86</td>
</tr>
<tr>
<td>ageing sewer system</td>
<td>370</td>
</tr>
<tr>
<td>Agriculture and Resource Management Council of Australia and New Zealand</td>
<td>31</td>
</tr>
<tr>
<td>amenity</td>
<td></td>
</tr>
<tr>
<td>emergence of</td>
<td>105–107</td>
</tr>
<tr>
<td>grass</td>
<td>52</td>
</tr>
<tr>
<td>public open spaces</td>
<td>107</td>
</tr>
<tr>
<td>public perceptions</td>
<td>111–112</td>
</tr>
<tr>
<td>SuDS amenity and sustainable development</td>
<td>110–111</td>
</tr>
<tr>
<td>urban open space</td>
<td></td>
</tr>
<tr>
<td>design</td>
<td>108–109</td>
</tr>
<tr>
<td>multi-functionality of</td>
<td>109–110</td>
</tr>
<tr>
<td>value and use</td>
<td>104</td>
</tr>
<tr>
<td>amplified ribosomal DNA restriction analysis (ARDRA)</td>
<td>121</td>
</tr>
<tr>
<td>ancient civilisations</td>
<td>15, 17</td>
</tr>
<tr>
<td>Angkor Wat</td>
<td>25</td>
</tr>
<tr>
<td>anthropocentric landscapes</td>
<td>106</td>
</tr>
<tr>
<td>areas of outstanding natural beauty (AONB)</td>
<td>266–267</td>
</tr>
<tr>
<td>Auckland design guidance</td>
<td>386–387</td>
</tr>
<tr>
<td>Baixada Fluminense lowland</td>
<td>320</td>
</tr>
<tr>
<td>barays, 25. see also reservoirs</td>
<td></td>
</tr>
<tr>
<td>Basic Sanitation Act</td>
<td>320</td>
</tr>
<tr>
<td>beauty spots</td>
<td>109</td>
</tr>
<tr>
<td>best management practices (BMPs)</td>
<td>5, 32,</td>
</tr>
<tr>
<td>biodegradation</td>
<td></td>
</tr>
<tr>
<td>environment conditions and requirements</td>
<td>116–118</td>
</tr>
<tr>
<td>in green SuDS</td>
<td>119–123</td>
</tr>
<tr>
<td>processes</td>
<td>88</td>
</tr>
<tr>
<td>studies</td>
<td>135–136</td>
</tr>
<tr>
<td>biodiversity value</td>
<td>104</td>
</tr>
<tr>
<td>BIOECODS management trains</td>
<td></td>
</tr>
<tr>
<td>sustainable drainage, Malaysia</td>
<td></td>
</tr>
<tr>
<td>USM campus</td>
<td>309</td>
</tr>
<tr>
<td>biofilms</td>
<td>118–119, 133</td>
</tr>
<tr>
<td>biological treatment</td>
<td></td>
</tr>
<tr>
<td>aquatic plants, floating</td>
<td>20</td>
</tr>
<tr>
<td>constructed wetland</td>
<td>22</td>
</tr>
<tr>
<td>microscopic organisms</td>
<td>22</td>
</tr>
<tr>
<td>reservoirs</td>
<td>20</td>
</tr>
<tr>
<td>water hyacinth</td>
<td>20, 22</td>
</tr>
<tr>
<td>water lilies</td>
<td>20, 22, 23</td>
</tr>
<tr>
<td>bioremediation</td>
<td>119</td>
</tr>
<tr>
<td>bioretention</td>
<td></td>
</tr>
<tr>
<td>areas, 98–100</td>
<td></td>
</tr>
<tr>
<td>ponds, 67, 68</td>
<td></td>
</tr>
<tr>
<td>‘black box’ approach</td>
<td>128</td>
</tr>
<tr>
<td>blue corridors</td>
<td>93</td>
</tr>
<tr>
<td>BMPs. see best management practices (BMPs)</td>
<td></td>
</tr>
</tbody>
</table>

Edited by Susanne M. Charlesworth and Colin A. Booth.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
building retrofit characteristics
financial viability, 248
Melbourne CBD database
building construction, 249–250
buildings judged suitable proportion, 251, 252
cumulative frequency, 250, 251
Google Earth and Google Map software, 251
overshadowing of roofs, 251, 252
structural capacity, 251
in Melbourne office buildings, 248
technical features, 249
capital expenditure (CAPEX), 53–54
carbon sequestration and storage
anthropogenic-driven greenhouse gas emissions, 194
ecosystem age, 194
embodied energy, 198–199
on green roofs, 197–198
industrial revolution, 193
management practices, 201
resultant heating, 194
stormwater management benefits, 195–197
substrate composition, 200
substrate depth, 200
terrestrial carbon sequestration, 194
catastrophic pollution events, 136–138
central plaza, 23, 24
chemical oxygen demand (COD), 120
Chicago Urban Forest Initiative, 107
circumstantial evidence, 121
cisterns, 15, 16, 19
cities built by micro-organisms, 119
City Centre surface water management, 376–377
clean water, 104
Climate Change Act, 172
climate fluctuations, 16
clogging, 59. see also conventional drainage
coefficient of performance (CoP), 183–184
combined sewer overflows (CSOs), 355
combined surface water outfalls (CSOs), 82
community engagement, 171
community involvement, 95–96, 111
compound specific isotope analysis, 120
comprehensive stormwater management plans, 83
computational modelling
one-dimensional, 270, 271
three-dimensional, 271
two-dimensional, 271
uncertainty, 271
validation, 272
conceptual overlaps, value areas, 110
conventional drainage, 59–60, 91
corrective maintenance, 49
Cumbe Mayo, 26, 27
Curve Number method, 347
dams, 60
dead end metabolites, 117
decision support tools
Daybrook rain garden, UK, 278, 279
map creation process, GIS system, 278
Microdrainage®, 277–278
denaturing gradient gel electrophoresis (DGGE), 131
denitrification, 122, 123
detention
basins, 100, 101
ponds, 69
diurnal rhythm, 119
drainage modelling scale
local level, 272, 273–274
practice procedures, 272
regional level, 272, 273
site characteristics, 272
strategic/catchment level, 272, 273
drainage modelling software
Infoworks, 276
MicroDrainage®, 276
MOUSE, 275–276
MUSIC, 275
SWMM, 274–275
due diligence, 48
Dunfermline Eastern Expansion, 112
ecological aesthetics, 109
ecological sensitivity, 52
ecosystem services
flood management policy and practice, 219
LCA, 220
step-wise progress, 219
in SuDS
constructed wetlands, 220
cultural services, 221, 225–227
filter drains and pervious pipes, 220
infiltration basins, 220
multi-functional opportunities, 228–229
pervious surfaces, 220
provisioning services, 221–223
regulatory services, 221, 223–225
supporting services, 221, 227
‘traffic lights’ approach, 221–227
urban water management, 218–219
WSUD, 219
efficiency performance data, 84
England Flood Risk Regulations, 36
Environment Agency, 28, 39
Environmental Protection Agency, 31
Environmental Quality Standards Directive (2008), 83
Environment Restoration Program of Belo Horizonte City, DRENURBS, 322
European Union (EU) policy, 34
EU Water Framework Directive (EU WFD, 2000), 83
event-driven legislation, 36–37
event mean concentrations (EMCs), 84
existing biodiversity, 97
existing flood management, 60–61
ex-mining ponds and wetlands rehabilitation, 311–312
exotic species, 108
extracellular polymeric substances (EPS), 118
fabric style, 143
fatty acid methyl esters (FAMES), 121
‘Federal Urban Land Parcelling Act’, 319
Federal Water Resource Management Act 2009, 32
fencing and fringing vegetation, 397
fibre length, 143
filter strips, 98
filtration, 116
flood
mitigation, 71
proof, 61
walls, 60
Flood and Water Management Act (FWMA), 36, 37, 41, 376–377
flood risk management (FRM)
and amenity improvement river restoration projects, 288
biodiversity, 287
climate change, 286
green infrastructure, USA, 288
green space and biodiversity, 286
household adaptations, 286
solution, 398
water quality and quantity, 287
wildlife corridors, 286
floods and agriculture risk matrix (FARM), 161
flow control devices
Hydro-brake®, 72
weir, 72
flow desynchronisation, 160, 161
fluorescein diacetate assay (FDA), 131, 132
Funding of Studies and Projects Agency (FINEP), 318–319
garden cities, 107
GCV Green Network Partnership’s approach, 375
general binding rules (GBRs), 39, 40
geocomposite, 143, 144
geofabrics
Danofelt®, 358–359
Inbitex®, 358–359
One-Way®, 358–359
Polyfelt®, 358–359
geosynthetics
applications, 144
classification
fabric style, 143
fibre length, 143
geocomposite, 143, 144
non-permeable, 143, 144
permeability, 143, 144
polymeric material, 143
definition, 142
degradation enhancement, 144
factors, 143
functions, 144
geotextiles
improving water quality, 145–148
nutrients, 148–150
types, 142–143
urban water, 150–151
wick geotextiles, 144
geotextiles
nutrients, 148–150
water quality improvement, 145–148
German Water Management Institutions, 32–33
Glasgow Strategic Drainage Plan (GSDP), 370
Gloucester (M5) MSA
application for judicial review, 267
devices, SuDS management train, 265, 266
Gloucestershire southbound MSA (M5), 264, 265
LGV parking and access roads, 265
maintenance strategy, 267
rainwater harvesting, 265
sequence of site control devices, 265–266
stone-filled treatment trenches, 265
Gloucestershire Gateway Trust and Westmorland Ltd, 264
Great Stink, 14
green infrastructure (GI), 93
biodegradation
environmental conditions and requirements
for, 116–118
in green SuDS, 119–123
biofilms, 118–119
green roof
in Benaguasil, 366
in Xativa, 364–366
green roof retrofit
building characteristics
construction, 249–250
cumulative frequency, 250, 251
financial viability, 248
Google Earth and Google Map software, 251
judged suitable Proportion, 251, 252
in Melbourne office buildings, 248
overshadowing of roofs, 251, 252
structural capacity, 251
technical features, 249
design aspects, 247
drivers and barriers, 253–254
extensive and intensive green roofs, 246–247
hybrid semi-intensive green roof, 246
optimal stormwater management, 247
runoff reduction, 255
green roofs, 67, 68, 98, 99
green SuDS
constructed wetlands, 120–121
nitrogen in, 122–123
greywater recycling (GWR), 26, 63
ground source heat (GSH), 178
GWR. see greywater recycling (GWR)
hard engineering flood management, 61
hard SuDS
biodegradation studies, 135–136
biofilms, 133
‘black box’ approach, 128
carbon dioxide evolution and oxygen consumption, 130, 131
catastrophic pollution events, 136–138
design and diversification, 134–135
DGGE, 131
FDA, 131, 132
infiltration channels and grit-filled gaps, 129
microbiology, 132–133
model rigs, 130
oil staining, 129, 130
pervious pavement design, 129
photodegradation and evaporation, 129
PPS/filter drain, 128
smaller test rigs, 130
HGV management train, 261–263
high performance landscapes (HPLs), 54
high-resolution ground-based light detection and ranging (LiDAR) data, 274
Hopwood Park MSA
car park management, 261, 263
contaminant concentrations, sediment, 262, 263
decorative balancing pond, amenity building, 261
decorative balancing pond feature, amenity building, 261, 262
Environment Agency SuDS demonstration site, 261
flow attenuation, 261
maintenance and pollution control, 261
management trains
amenity building roof, 261
car park, 261
coach park, 261
HGV park, 261
sediment and water quality, 264
structural integrity, 264
non-degradable pollutants, 264
oil and silt interceptor, 263
reduced maintenance budget, 264
sediment trapping, grass filter strip, 263
water treatment efficiency, 262
human disasters, 14
humid tropics
biodiversity and amenity, 301
blocked drainage system, Nigeria, 301, 302
climate change adaptation and mitigation, 301
climatic and ecological problems, 301
drainage infrastructure, 301
surface water management strategy, 301
urban drainage problems, 301, 302
urban heat island reduction, 301
urban hydrological cycle, 303
vegetated devices, 303–308
water quantity and quality, 301
hybrid park typology, 380
Hydro-brake®, 72
hydrocarbons, 117
Iguaçu-Sarapuí river basin, 320–322
individual local planning authorities (LPAs), 38
infiltration, 19, 20, 23
Infiltration basins in Costa Ermita, Benaguasil, 362–363
informal settlements network (ISN)
Langrug local residents, 337, 338
of South Africa, SuDS
biomimicry, 339
'bottom-up/grassroots approach, 335, 336
co-management of drainage, 330–331
crate and trench soakaways, 334
fragmented interrelationships, 336
greywater discharge catchpit, shallow pipeline, 338
greywater swales, 339
high population densities, 328
ISN Alliance and Stellenbosch Municipality,
337, 338
management practices, 333
natural wetland ecosystem, 340
physical environment deterioration, 328
social behaviour and attitudes, 335
socio-political history, 329
stakeholder engagement, 342
stormwater treatment, 340
surface water drainage, 329
surface water runoff, 334
water and sanitation issues, 334
water-based services, 329, 330
Infoworks, 276
infrequent maintenance, 49
inspection. see also sustainable drainage systems (SuDS)
integration of, 47
skill level descriptions, 48
intermediate tier authorities, 32, 33
international policy and legislation, 34
land owners/residents complaints, 46
landscapes, 105
Langrug informal settlement
drainage culvert, 332, 333
Franschhoek valley, 331
location map, 332
large woody debris (LWD), 165–166
lead local flood authority (LLFA), 38
legislation, 31, 36
legislative hierarchies, 32–33
less unsustainable methods, 62
life cycle assessment (LCA), 220
light detection and ranging (LiDAR) data, 274
local green space, 93
Localism Act, 93
lower tier authorities, 32, 33, 38
low impact development (LID), 5
green infrastructure, 348
human accommodation, 349
Morton Arboretum in Lisle, Illinois, 350
natural infiltration and treatment, 348
Rain gardens in Portland, Oregon, 349
stormwater approaches, 237
USA
artful applications, 353
Clean Water Act, 345–346
EPA's water-quality standards, 346
federal water protection laws, 345
LID, 348–350
‘non-point-source’ pollution, 345
ongoing research and technical guidance, 352, 353
stormwater and urban agendas, 350–352
stormwater management practices, 346–348
technical guidance, 353
unifying legislation, 345
urban runoff water-quality standards, 346
low level maintenance, 50
macro-catchments, 17
management train. see also surface water management train
conveyance, 69–70
regional control, 69
site control, 69
source control, 66–68
mapping, 169
Mayan culture, 16
medium level maintenance, 50
metal concentrations, 82
Metropolitan Glasgow Strategic Drainage Partnership (MGSDP), 370
microbial communities, 121
microbial degradation, 86
micro-catchments, 17
Microdrainage®, 276–278
The Model for Urban Sewers (MOUSE), 275–276
The Model for Urban Stormwater Improvement Conceptualisation (MUSIC), 275
modelling uncertainty, 271
model rigs, 130
modern urban landscapes, 107
motorway service areas (MSAs)
Gloucester (M5), 264–267
Hopwood Park, 260–264
public expectations and standards, 259
in UK, 259–260
Murray-Darling Basin Authority, 41
national laws, local implementation of
England, 38–39
Scotland, 39–40
Index 405

national legislation
 EU water directives, 34, 36
 FRMA, 36
 lead local flood authority (LLFA), 36
 WFD transposition, 34
 National Planning Policy Framework (2012) (NPPF), 38, 92
natural flood risk management (NFRM)
 alteration, 160
 catchment scale classification, 163
 definition, 159
 emerging research, 161
 FEH catchment descriptors, 161–164
 flow desynchronisation, 160
 monitoring studies, 162, 163
 pedological, hydrogeological and land-use variation, 164
 practical application, 167–168
 restoration, 160
 significance, 171–172
 study approach
 engagement, 171
 mapping, 169
 modelling, 169–170
 monitoring, 162, 170
 upland afforestation, 165
 upland drainage alteration, 165–167
 upstream thinking, 160–161
 variable rainfall event, 164
 wetlands and floodplain alteration, 166–167
new and emerging pollutants (NEPs), 398
 NFRM. see natural flood risk management (NFRM)
nitrogen, 122
 Nitshill design study, 375–376
 N mineralisation, 123
 N nitrification, 123
 one-dimensional modelling, 270, 271
operational expenditure (OPEX), 53–54
 operational record, 49
 operational risk evaluation, 48
participatory action research (PAR), 333, 335
 PAUP-driven regulatory approach, 386
 performance-based maintenance, 52
 personal injury, 46
 pervious pavement design, 129
 pervious paving systems (PPS), 63, 66, 67
 ASTM (2001) C936 specification, 179
 EcoHouse, 180–181
 GSHP, 179, 181
 method of infiltration, 178
 permeable, 178
tanked/attenuation system, 179
 test rigs, 180
 vertical structure, 179
photolysis processes, 86
 pipe-based systems, flood frequency, 60
 piped stormwater sewer system, 14
Piscineos, Sao Paulo Metropolitan Area, 322–324
Pitt Review, 37
pollutant, 116
 concentrations, 81
 dynamics, 123
 load, 82, 83, 87
 organic and inorganic, 81
 physico-chemical conditions, 83
 primary sources, 79–80
 removal processes, 85–87
pollution attenuation process, 117
polymeric material, 143
ponds, 17
 Portuguese acronym for ‘Research Programme on Basic Sanitation’ (PROSAB), 318–319
post-handover inspection, 47
PPS. see pervious paving systems (PPS)
 Proposed Auckland Unitary Plan (PAUP), 380, 381
Protijuco, Sao Carlos/ Sao Paulo, 324–325
Provincial Government Intervention, 339
public education, 111
rainfall seasonality, 16
rain gardens, 98, 99
 rainwater harvesting (RwH), 65
 in antiquity, 15–17
 Code for Sustainable Homes, 205
dual benefits, 205, 206
 in England and Wales, 206
 infrastructure, 17–19
stormwater source control (see stormwater source control)
Rainwater Harvesting Tank, Benaguasil Youth Centre, 363–364
Reconstruction and Development Programme (RDP), 330
 regional control, 69, 100–101
 reporting, 48–49. see also sustainable drainage systems (SuDS)
reservoirs, 17
re-suspension processes, 83
retention ponds, 69
retrofit, 70–71, 71
RIBA award winning Wheatley MSA, 260
river restoration, 26
rock chips, 23
romanticism movement, 106
routine maintenance, 49
Royal Institute of Building Architects (RIBA), 61
RwH. see rainwater harvesting (RwH)
salutogenesis, 375
sand filters, 19
Scottish Environment Protection Agency (SEPA), 39, 370
Scottish Flood Risk Management Act (FRMA), 36
Scottish legislation, 41
Scottish Planning Policy (SPP), 39
seasonal effects, 123
sedimentation basin, 20, 21
sediment-derived turbidity, 82
settling tanks, 19–21
silting tanks, 20
site control, 69, 100
smaller test rigs, 130
source control, 66–68, 98–100
stable isotope techniques, 123
stone chips, 23
storm intensity, 67
stormwater and urban agendas
infiltration basin, suburban residential
neighbourhood, 350, 351
low-density suburban locations, 350
recreational and scenic functions, 350
retrofit construction, Missouri, 351, 352
stormwater control measures (SCMs), 5
stormwater management, 111
computer model, continuous simulation, 347–348
Curve Number method, 347
human accommodation, 347
hydroclimatic conditions, 348
mitigation requirements
design requirements, 385, 386
high contaminant generating activities, 386
source control, 386
volume and quality, 385–386
Phoenix, 348
types, 346, 347
Stormwater Management Model (SWMM), 274–275
stormwater runoff, 122
stormwater source control
application, 215
case study development, 214
design process
retention and throttle RwH tanks, 206, 209, 211
RwH as source control, 210–212
RwH storage, 209
site characteristics, parameters and global
design criteria, 209–210
traditional SuDS approach, 210
empirical data, 213
in England and Wales, 207–209
roof runoff, 211, 213, 214
RwH tanks, 211, 214
sample simulation results, 211, 213
street drainage, 14
sub-surface flow (SSF), 86
SuDS selection and location tool (SUDSLOC), 273–274
SuDS triangle, 61
supreme authority, 32, 33
surface flow (SF), 86
surface water, 31
legislative hierarchies, 32–33
management train, 3–5, 5, 8
policy, 3
runoff, 94
The United Kingdom
England vs. Scotland, 40–41
event-driven legislation, 36–37
international policy and legislation, 34
national laws, local implementation of, 38–40
national legislation, 34–36
vs. other countries, 41–42
surface water management measures (SWMMs), 5
Surface Water Management Plans (SWMPs), 39
surface water management train, 5, 8
sustainable communities, 112
sustainable development and liveability, 93
sustainable drainage systems (SuDS), 205
aim of, 5
barriers and drivers, 396–398
benefits, 5, 6
biodiversity, 93–94
in Brazil
compensatory techniques, types, 317, 318
history, 316–319
infiltration and storage processes, 317
nature and human development, 316
rainfall transformation, 316
retention capacity, soil, 315
stormwater management, 319
temporal and spatial responses, 318
urban flooding, 315
urbanisation, 315
challenges, 5, 7
City Scale
ageing sewer system, 370
City Centre surface water management, 376–377
design studies, 373–375
funding, 377–378
legislation, 371–372
multi-functionality, 372–373
Nitshill design study, 375–376
pond construction, Glasgow, 374
post event analysis, 370
community managed and wildlife-SuDS
amenity value and use, 103
biodiversity value, 103
design, 103
management, 103
conventional drainage, 62
conveyance features, 101–103
cultural services, 221, 225–227
de-learning, 398
delivering policy and strategy objectives, 92
designing
management train, 96
for people and wildlife, 96
devices, 66
EcoHouse monitoring
ambient air and ground temperature, 182, 183
CoP, 183–184
habitated space, 182
statistical analysis, 182, 183
in England and Wales
key design criteria, 207
practitioners design, 206
prevention, 206
regional control, 206
site control, 206
source control, 206
typical SuDS solution, 206, 207
fencing and fringing vegetation, 397
field-scale implementation of, 63
flood risk management solution, 398
green infrastructure (GI), 93
GSH, 178
inspection, 47–48
involving people, 95–96
location of, 54
maintenance
asset type and design for, 52–53
CAPEX and OPEX, balancing, 53–54
data, gathering, 48
levels, 50
planned, 50–52
record, 49
regimes, 51, 54
schedules, 50–52
Malaysia
BIOECODS management trains, 308, 309
cow grass (*Axonopus compressus*), 308
ex-mining ponds and wetlands
rehabilitation, 311–312
management trains construction, 312
preliminary testing, 308
Taiping Health Clinic, 310–311
USM Engineering Campus, 309–310
management trains
computer models (see Drainage modelling software)
decision support tools, 277–278
monitoring, 272
optimal rainfall event design, 280
using Microdrainage, 276–278
management train, site characteristics and devices, 63, 64
in Melbourne, drivers and barriers, 253–254
modelling, monitoring and evaluation, 395–396
multi-functional opportunities, 228–229
multiple benefits
biodiversity improvements, 240
categories, 239
distribution of benefits, 241
flood reduction benefits, 238–239
health benefits, 240
social benefits, 240
valuing benefits, 240–241
new build, 71–72
operation, 46
performance efficiency, 84
PPS
ASTM (2001) C936 specification, 179
EcoHouse, 180–181
GSHP, 179, 181
method of infiltration, 178
permeable, 178
tanked/attenuation system, 179
test rigs, 180
vertical structure, 179
provisioning services, 221–223
public perceptions, USA
bioswales, 290, 292
cow grass (*Axonopus compressus*), 308
co-development and co-ownership, 292
green infrastructure, USA, 288
green streets policy, 289
knowledge co-construction approach, 292
‘nuisance flooding’, 288–289
quality and behaviour of, 87–88
reducing energy use, 186–188
regional control, 100–101
regulatory services, 221, 223–225
reporting, 48–49
retrofit, 70, 71
rocket, 8
sustainable drainage systems (SuDS) (cont’d)
sediment in, 85
site control, 100
source control, 98–100
in Spain
applications, 356
CSOs, 355
filter drain, 360
geofabrics, 358–359
GITECO Research Group, 357
hydraulic performance, 365
integration, new urban developments, 361–362
Las Llamas Park (Santander), 357, 358
La Zoreda car park (Oviedo), 357, 360
linear drainage system, 360
in Mediterranean region, 362–366
permeable pavement scheme, 358, 359
permeable surfaces, 358–359
progressive social awareness, 356
Sports Centre, Gijon car park, 357
stormwater-related problems, 355
sustainability principles, 358
swale, 360
urban planning process, 356
urban water management, 355
water chemistry, 359
water quality tests, 365
square, 8
supporting services, 221, 227
sustainable development and liveability, 93
three-storey office block, 184–185
triangle, 8
types
constructed wetlands, 220
filter drains and pervious pipes, 220
infiltration basins, 220
pervious surfaces, 220
‘traffic lights’ approach, 221–227
urban runoff, treatment of, 83–84
sustainable drainage techniques
rainwater harvesting (RwH)
in antiquity, 15–17
infrastructure, 17–19
sustainability, 14–15
Sustainable Urban Drainage Centre, 339–341
Sustainable Urban Drainage Manual, 320
sustainable water management, non-structural approaches, 26–28
swales, 69, 70, 94, 101
system for catchment, pre-treatment and treatment (SCPT), 146
‘Tabor to the river’ (T2R), 289
Taiping Health Clinic, 310–311
temperate zone, SuDS. See Humid tropics
terminal restriction fragment length polymorphism (TRF), 121
terracotta pipes, 17, 18
terrestrial carbon sequestration, 194
Thames Tideway Catchment, 71
total petroleum hydrocarbons (TPH), 262
T-piece terracotta pipe, 104
UK approaches vs. other countries, 41–42
underlying drainage structure, 23, 24
upper tier authorities, 38
upstream thinking, 160–161
urban green spaces, 107
urban hydrological cycle, 303
urbanisation, 4–5, 91, 303
urban open space design, 108–109
urban receiving water bodies, 82–83
urban stormwater, 79
urban water and sediment quality
pollutant removal processes, 85–87
in SuDS, 87–88
urban runoff
land use types, range of, 80–82
pollutants mobilised by, 79–80
receiving water bodies, 82–83
recharge, 83–84
urban watercourses, 83
USM Engineering Campus, 309–310
vegetated channels, 69
vegetated devices
cow grass (Axonopus compressus), 308
green infrastructure, climate change, 306, 308
green roofs, 303–304
wetlands and swales, 304–306
vegetated roof. see green roof retrofit
volatilisation, 86, 120
Wastewater Treatment Works (WWTW), 339–341
water demand, reduction in, 26
Water Environment and Water Services (Scotland) Act 2003 (W EPS), 34, 39, 41
water environment, pollution of, 46
Water Framework Directive (WFD), 32, 92
water quality
biological treatment, 20–23
factors, 147
floating mat device, 147
infiltration capacity, 146
physical treatment, 19–20
pollutant removal layer, 145
rainwater reuse, 146
runoff pollution treatment, 146
SCPT, 146
water quantity
 conventional drainage, 59–60
 existing flood management, 60–61
flow control
 Hydro-brake®, 72
 weir, 72
management train
 conveyance, 69–70
 regional control, 69
 site control, 69
 source control, 66–68
new build, 71–72
reduction, 23–24
retrofit, 70–71
sub-surface drainage, 23–24
SuDS implementation, 62–65
volume, 59–60
water flow, 59–60
water sensitive design (WSD)
 and low impact development, 398
 in New Zealand
 Auckland Council technical reports, 381
 Auckland design guidance, 386–387
 biophysical conditions, 382–383
 biophysical features, 380
 environmental stewardship, 380
 Maori values, 380
 PAUP-driven regulatory approach, 386
 sensitive receiving environments,
 stormwater, 383–384
 socio/political drivers, 385
 stormwater mitigation requirements, 385–386
 technical guidance and specification,
 381, 382
 Wynyard Quarter, 388–389
 water sensitive urban design (WSUD), 5, 32,
 65, 219
water storage, 25
weir, 72, 73
Western Cape Government (WCG), 339
wetland plants, 101, 102
wetlands and swales
 Aloe sp., 304, 305
 Bermuda grass, 306, 307
 disease vectors, 304
 management strategies, 304
 pre-treatment phase, 304
 Tectorum sp., 304, 305
 Vetiver grass (Vetiveria zizanioides), 305, 306
 wetland vegetation, 108
WEWS. see Water Environment and Water Services (Scotland) Act 2003 (WEWS)
Wheatley Motorway Service Area (MSA), 63
whole life cost (WLC), 53
 best management practices, 237
 construction and maintenance costs, 237
 cost-benefit approach, 237
 cost data, 237
 definition, 236
 evidence, 237–238
 LID stormwater approaches, 237
 planned maintenance and replacement
 regime, 236
Wilderness Act (1964), 106
WLC. see whole life cost (WLC)
WSUD. see Water Sensitive Urban Design (WSUD)