Contents

<table>
<thead>
<tr>
<th>List of Contributors</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xvii</td>
</tr>
<tr>
<td>About the Book</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Charvaka Duvvury</td>
</tr>
<tr>
<td>1.1 Definition of Co-Design</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Overview of the Book</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Challenges of System Level ESD Protection</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Importance of System Level Protection</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Industry-Wide Perception</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Purpose and Motivation</td>
<td>8</td>
</tr>
<tr>
<td>1.7 Organization and Approach</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Outcome for the Reader</td>
<td>12</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>2 Component versus System Level ESD</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Charvaka Duvvury and Harald Gossner</td>
</tr>
<tr>
<td>2.1 ESD Threat in the Real World</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1 ESD Control</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2 ESD Failure Types</td>
<td>15</td>
</tr>
<tr>
<td>2.1.3 ESD Protection Areas</td>
<td>16</td>
</tr>
<tr>
<td>2.1.4 ESD Stress Models</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Component ESD Qualification</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1 Component ESD Tests</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2 ESD Levels for IC Production</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3 Implications for System Level ESD</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4 ESD Technology Roadmap</td>
<td>20</td>
</tr>
</tbody>
</table>
2.3 System Level ESD Tests
2.3.1 IEC 61000-4-2
2.4 ISO 10605
2.5 IEC 61000-4-5
2.5.1 System Applications
2.5.2 Misconceptions and Miscorrelation of Component and System Level Tests
2.5.3 Hard Failures Due to IEC Testing
2.6 Soft Failures Due to IEC Testing
Acknowledgments
References

3 System Level Testing for ESD Susceptibility
Michael Hopkins
3.1 Introduction
3.2 Objectives of System Level Testing
3.3 Compliance to ESD Standards
3.3.1 Legal Compliance Requirements
3.3.2 Compliance to Industry Requirements
3.4 Testing for Product Reliability
3.5 Standards Requirements for System Level Testing
3.5.1 IEC 61000-4-2
3.5.2 Automotive Standards for ESD
3.5.3 Medical Standards for ESD
3.5.4 Avionics Standards for ESD
3.5.5 Military ESD Standards
3.6 Using the IEC Simulator for Device Testing
3.7 Cable Discharge (CDE) Testing
3.7.1 Shielded Cables
3.7.2 Unshielded Cables
3.7.3 Modified Transmission Line Pulsers (TLP) for CDE Testing
3.8 Evaluation of Test Results
3.8.1 Hard Failure Evaluation
3.8.2 Soft Failure Evaluation
3.9 The Quick Fix vs Root Cause Determination
3.10 Determining Root Cause of System Level ESD
3.11 Reproducibility of System Level ESD Tests
Acknowledgments
References

4 PCB/IC Co-Design Concepts for SEED
Harald Gossner and Charvaka Duvvury
4.1 On-Chip System ESD Protection
4.1.1 HBM and CDM vs IEC
5 Hard Failures and PCB Protection Devices

Robert Ashton

5.1 Introduction 129
5.2 ESD Damage to ICs 129
5.3 Protection Methods 130
 5.3.1 Classification of TVS Devices 133
5.4 Characteristics of Protection Devices 134
 5.4.1 Current Limiting Devices 134
 5.4.2 TVS Properties in Their Off-State 135
 5.4.3 Protection Properties of TVS Devices 137
5.5 Types of Protection Devices for ESD 142
 5.5.1 Silicon Based TVS Devices 143
 5.5.2 Metal Oxide Varistors 154
 5.5.3 Polymer Voltage Suppressors 155
 5.5.4 Gas Discharge Tubes 156
 5.5.5 Spark Gaps on PCBs 158
 5.5.6 Thyristor Surge Protection Devices 159
5.5.7 Ferrite Beads 159
5.5.8 Passive Components 161
5.5.9 Common Mode Filters 162
5.6 Primary and Secondary Protection 163
5.7 Evaluating IC Pins 164
5.8 Choosing ESD Protection Devices 164
5.8.1 Coordination between TVS Device and Sensitive Nodes 165
5.9 Summary 167
References 167

6 Soft Failure Mechanisms and PCB Design Measures 169
David Pommerenke and Pratik Maheshwari

6.1 Introduction 169
6.2 Are HBM, CDM, MM, and Latch-Up Results Meaningful Soft Failures? 171
6.3 Classification of Soft Failure Modes 173
6.3.1 In-Band/Out-of-Band with Respect to Voltage 174
6.3.2 In-Band/Out-of-Band with Respect to Pulse Width 175
6.3.3 Local vs Distant Errors 176
6.3.4 Amplified/Non-amplified Soft Failures 176
6.4 Optimized System Level Testing 178
6.5 Soft Failure Characterization Methods 182
6.5.1 Susceptibility Scanning 183
6.5.2 Current Spreading Reconstruction 190
6.5.3 Local Injection 191
6.5.4 Software-Based Methods for Soft Failure Analysis 201
6.6 Soft Failure Examples 205
6.6.1 Example 1: Soft Failure Caused by Field Injection on a DUT (Mini Photo Frame) 205
6.6.2 Example 2: PLL Disturbance Measurement 207
6.6.3 Example 3: Direct Field Coupling on the USB Data Bus 212
6.6.4 Example 4: Direct Injection on the MIPI Bus Interface 215
6.7 Countermeasure Examples 216
6.7.1 Divert Current 216
6.7.2 Filtering 217
6.7.3 Shielding 217
6.7.4 Secondary ESD Avoidance 218
6.7.5 Improved Connector-Cable Shield Connection 218
6.7.6 Enclosure to Connector Shield Junction 218
6.7.7 Firmware 218
6.7.8 Reducing Crosstalk 219
6.7.9 Reduce ESD Current by Resistance 220
6.7.10 Avoid ESD 222
6.8 The Way Forward 223
Acknowledgment 230
References 231
7 ESD in Mobile Devices 234
Matti Uusimäki

7.1 Introduction 234
7.2 ESD Energy Path in Mobile Device 234
7.3 ESD Generation Examples on a Large Scale 239
 7.3.1 Large Machines Generating Charges to Their Isolated Bodies 239
 7.3.2 Tribo-Electric Series 240
 7.3.3 Charge Generated by a Person Inside a Car 240
 7.3.4 The Charge Generated to Mobile Device by Accident in Grounded System 241
 7.3.5 Alternative Discharging Paths at Connection Moment 244
 7.3.6 Charge Behavior at Insulator Surface 244
 7.3.7 Example of Consumer Level Charge Generation with Simple Device 246
7.4 Relation between Electrostatic Discharge Immunity Test and Real-World Discharge Waveforms 248
7.5 Laboratory Test Methods 248
7.6 Fast ESD and Slow ESD Concepts 249
7.7 Fast-ESD and Slow-ESD in a Mobile Device 250
 7.7.1 Example of Ground Level Bounce Relative to an External Module 251
7.8 Isolating a Mobile Device 252
 7.8.1 Example 1: Material Thickness 252
 7.8.2 Example 2: Solid Glue 253
 7.8.3 Example 3: Positioning Holes in a Rubberized Key Mat 255
 7.8.4 Example 4: Induced Electric Field 255
7.9 Shielding a Mobile Device 257
7.10 Orientation Effects on ESD Path 259
 7.10.1 ESD Path Example: Phone Face Up on Table 259
 7.10.2 ESD Path Example: Phone Face Down on the Table 263
7.11 ESD Design in Practice 264
 7.11.1 Grounding Challenges in Practice 264
7.12 PCB Layout Considerations of Metal Shielding “Cans” 267
 7.12.1 Components Near the Edge of the Shield 268
7.13 ESD Protection for Cable Interfaces 269
 7.13.1 Cable Placement and Common Mode Current in a Mobile Device 270
 7.13.2 Localizing Noise Current with Alternate Cabling Placement 274
 7.13.3 Cable Interface Protection Components 275
7.14 Common Mode Impedance Concerns for Layout 280
 7.14.1 Common Mode Impedance Challenges in the Grounding Paths 280
 7.14.2 Signals with Shared Common Mode Impedance 280
 7.14.3 Isolating Signals with Shield Grounded to Internal PCB Layers 282
 7.14.4 Simulated Example of Ground Impedance Effect on ESD/EMI Filter Performance 283
 7.14.5 ESD Protection on Stacked Chips 283
 7.14.6 Layout Concerns around the Periphery and PCB Cutouts 285
7.15 ESD and Software Considerations in Mobile Devices 287
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.15.1 Role of Software in EMC and ESD Design</td>
<td>287</td>
</tr>
<tr>
<td>7.15.2 Signal Sensitivity to ESD Examples</td>
<td>288</td>
</tr>
<tr>
<td>7.15.3 Delayed Effects on Software from ESD Events</td>
<td>290</td>
</tr>
<tr>
<td>7.16 Software Versions Utilized in Early ESD Immunity Testing</td>
<td>291</td>
</tr>
<tr>
<td>7.17 Conclusion</td>
<td>292</td>
</tr>
<tr>
<td>References</td>
<td>292</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ESD for Automotive Applications</td>
<td>294</td>
</tr>
<tr>
<td>Wolfgang Reinprecht</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction and Historical Aspects</td>
<td>294</td>
</tr>
<tr>
<td>8.1.1 Why Do Automotive Components Require High ESD Levels?</td>
<td>294</td>
</tr>
<tr>
<td>8.1.2 Field Return Rate of Automotive Products due to System Level</td>
<td>296</td>
</tr>
<tr>
<td>ESD Events</td>
<td></td>
</tr>
<tr>
<td>8.1.3 ESD Related Field Returns Because of Incomplete Specification or</td>
<td>297</td>
</tr>
<tr>
<td>Missing System Protection</td>
<td></td>
</tr>
<tr>
<td>8.2 Automotive Components</td>
<td>299</td>
</tr>
<tr>
<td>8.2.1 Communication Systems CAN, LIN, FlexRay</td>
<td>299</td>
</tr>
<tr>
<td>8.2.2 Power Supply Systems as DCDC Converter, Alternator, LDO</td>
<td>303</td>
</tr>
<tr>
<td>8.2.3 Sensors and Sensor Interfaces</td>
<td>304</td>
</tr>
<tr>
<td>8.2.4 Keyless Entry/Go with Components Exposed to Human Touching/Handling</td>
<td>311</td>
</tr>
<tr>
<td>8.2.5 Power Steering, Drive by Wire, Gearbox, Hybrid Systems, Recuperation</td>
<td>313</td>
</tr>
<tr>
<td>8.2.6 LED Lights, Entertainment, Navigation, and Audio</td>
<td>313</td>
</tr>
<tr>
<td>8.3 Design Constraints, Operating Voltage, and Overvoltage Tolerance</td>
<td>315</td>
</tr>
<tr>
<td>8.3.1 “Normal Overvoltage Range”: 18 V into 5 V/3 V/1.8 V</td>
<td>315</td>
</tr>
<tr>
<td>8.3.2 Load Dump</td>
<td>315</td>
</tr>
<tr>
<td>8.3.3 Loss of Ground, Dual Polarity, and Reverse Polarity</td>
<td>317</td>
</tr>
<tr>
<td>8.3.4 EMC Tolerance versus ESD Robustness (Fast Transients)</td>
<td>319</td>
</tr>
<tr>
<td>8.3.5 Leakage Current versus ESD Robustness (Pre-Pulse Voltage)</td>
<td>320</td>
</tr>
<tr>
<td>8.3.6 Latch-Up-Free ESD Protection versus Snapback Devices</td>
<td>321</td>
</tr>
<tr>
<td>8.4 On-Board ESD Protection and Internal ESD Protection</td>
<td>324</td>
</tr>
<tr>
<td>8.4.1 Characterization Methods to Get Relevant Data for External ESD Devices</td>
<td>324</td>
</tr>
<tr>
<td>8.4.2 ESD Design Window Using External Protection Elements (TVS)</td>
<td>324</td>
</tr>
<tr>
<td>8.4.3 Optimizing On-Chip ESD Protections to Match Board Level Protection</td>
<td>324</td>
</tr>
<tr>
<td>8.4.4 On-Board Ground Shift due to System ESD Events</td>
<td>325</td>
</tr>
<tr>
<td>8.4.5 Secondary Effects as Transient Disturbances to “Internal” Pins (Lateral Coupling)</td>
<td>326</td>
</tr>
<tr>
<td>8.4.6 Pin Placement, External Passive Components, and Board Layout Constraints</td>
<td>328</td>
</tr>
<tr>
<td>8.5 Verification and Qualification</td>
<td>329</td>
</tr>
<tr>
<td>8.5.1 Safe Operating Area Check to Verify Overvoltage Tolerance</td>
<td>329</td>
</tr>
<tr>
<td>8.5.2 ESD Design Rule Check to Verify ESD Concept and Constraints</td>
<td>330</td>
</tr>
<tr>
<td>8.5.3 ESD Tests on Chip Level HBM/CDM</td>
<td>331</td>
</tr>
</tbody>
</table>
Contents

8.5.4 TLP Characterization of Product to Meet SEED 331
8.5.5 System ESD Tests on Board Level up to the Level of Failure 331
8.5.6 No-Gos in Terms of ESD Design 332

8.6 Conclusion 332
References 333

9 Future Applications of SEED Methodology 334
Harald Gossner and Charvaka Duvvury

9.1 Refinement of Models 334

9.2 Limitations of Simulation and Beyond 337
 9.2.1 Relation of SEED to System ESD Tests 337
 9.2.2 Outlook to a Comprehensive Design Verification 341

9.3 Advances toward High-Speed Systems 342
 9.3.1 USB and HDMI Challenges 343

9.4 Issues and Challenges of System Protection 345
 9.4.1 USB 2.0 versus USB 3.0 345
 9.4.2 USB 2.0/3.0 versus HDMI 346
 9.4.3 Automotive Technologies 346
 9.4.4 IC Package Technologies 347
 9.4.5 PCB Technologies 347
 9.4.6 Optical Interfaces 348
 9.4.7 Polymer Material Applications 348

9.5 Benefits for Next Generation Systems 349
 9.5.1 Harmonized Approach for Component to System Protection 349
 9.5.2 IEC Specification Requirements 350
 9.5.3 Cost of System Protection 351

Acknowledgments 351
References 351

10 Co-Design Trade-Offs: Balancing Robustness, Performance, and Cost 353
Jeffrey C. Dunnihoo

10.1 Co-Designing across Functional and Corporate Boundaries 353
 10.1.1 Component (Factory) versus System (End User) ESD Issues 353
 10.1.2 Probabilities and Uncertainties of System ESD Costs 354
 10.1.3 Bounded and Cumulative ESD Failure Probability 355
 10.1.4 Product and Organizational Response to ESD Failure 357
 10.1.5 The Reality of the “Real Cost of ESD” 358
 10.1.6 Co-Designing a Solution 358

10.2 ESD Goals and Constraints 359
 10.2.1 The Co-Design Gamut 359
 10.2.2 ESD Margin Requirement Based on Unknown Probabilities 360
 10.2.3 Extreme and Abusive Users 361
 10.2.4 Ignoring the “Long Tail” Events 363
 10.2.5 Capturing Quantitative System Fault Data 364
 10.2.6 ESD Sousveillance 364
Contents

10.2.7 Beyond ESD Sousveillance 365
10.2.8 Vulnerabilities in the Meantime 365

10.3 Costs of System and Component ESD Susceptibility 366
10.3.1 Poor User Experience 366
10.3.2 Quantifying User Experience 367
10.3.3 Failure Analysis and Customer Return Costs 367

10.4 Costs of Improving System and Component ESD Robustness 369
10.4.1 Component Costs 369
10.4.2 Reduced Profit Margin 370
10.4.3 Reduced Performance 370
10.4.4 Co-Design Cost Allocation Example 371
10.4.5 Alternative Cost Reductions with Performance Enhancement 372
10.4.6 Increased Time-to-Market and Negative TVS Pricing 375

10.5 Defining the Interaction and Trade-off Matrix 376
10.5.1 Performance 376
10.5.2 Price 377
10.5.3 Robustness 377

10.6 Assigning the Costs of Failure Criteria 378

10.7 System Development Triangle Co-Design Contributions 379
10.7.1 Function Vendor Partitions (CPU, ASIC, Interface Device) 380

10.8 Product Planning Guidelines 380
10.8.1 Set Realistic Robustness Goals Early 380
10.8.2 Responsibilities of the Product Design Team 381
10.8.3 Responsibilities of the Product Testing and Qualification Team 381
10.8.4 Responsibility for Line Returns from Manufacturing 381
10.8.5 Responsibility for Field Returns from the Customer 381
10.8.6 Organizational Interaction with Vendors 381

10.9 Validating Co-Design Trade-off Decisions 382
10.9.1 Historical Data Availability 382
10.9.2 Difficulties of Cost Identification and Assignment 383
10.9.3 Dangers of the “Keep Your Head Down” Mentality 384
10.9.4 Balancing Low-Level Problems with High-Profile Exposure 385

10.10 Conclusions on Co-Design Economics 387
References 387

Glossary 389

Index 391