INDEX

Accelerometers, 310–312
MMG detected by, 308–309
Acclimatization, hypoxia and, 422–423
Action potential propagation, velocity of, 84–85
Action potentials (APs), 181, 182. See also Motor unit action potentials (MUAPs) propagation along muscle fiber, 19–20
Activity performance, with SEMG feedback, 450
Activity profiles, fiber membrane, 210–213
Acute reflexive spasm, 439
A/D (analog-to-digital) conversion, 43, 44, 121–122
Admissibility condition, 273, 274
Advanced signal processing techniques, 259–302
EMG signal decomposition, 281–292
monitoring manifestations of muscle fatigue, 292–300
parametric and nonparametric context of, 260–261
theoretical background of, 261–280
Agglomerative hierarchical algorithm, 54
Aging, 10
muscle physiology and, 417–420
Air-coupled condenser microphone, 310–311
Akaike’s information criterion (AIC), 136
Algorithms. See Hierarchical algorithms
Aliasing effect, 121, 122
Allostatic load model, 354
α-motoneuron, 2, 6
Amplification, of electrically elicited surface EMG (—waves), 119
Amplifiers, 43–44
Amplitude
AP, 29
CMAP, 332–333
EMG, 97–100
MUAP, 32, 33, 43
of recorded signals, 43
Amplitude coding, 461–462
Amplitude data reduction, 347–348
Amplitude distribution, 152
Amplitude estimation, 139–145
applications of, 145
surface EMG, 139–145
Amplitude estimator performance, measures of, 141
Amplitude histogram, 389
Amplitude map, 331, 332
Amplitude normalization procedures, 368
Amplitude probability distribution function (APDF) method, 348
Amplitude processing, 141–145
Amplitude resolution, 45
Amplitude spectrum, 218, 219
Amplitude variables, 346
Amyotrophic lateral sclerosis (ALS), 333
Anaerobic threshold (AT), 15
Analog notch filters, 121
Analog-to-digital (AD) conversion. See A/D (analog-to-digital) conversion
Amplitude processing, 141–145
Amplitude resolution, 45
Amplitude spectrum, 218, 219
Amplitude variables, 346
Animal muscle, 243–244
Animals, effects of spaceflight on, 423–424
Antagonist muscle, 235
Antagonists, inhibition of, 14
Antalgic posture, 440
Anti-aliasing filters, 382
Antigravity slow-twitch muscles, 423
"Area ratio," 237–238
arg phase function, 285
ARMA. See Autoregressive-moving-average (ARMA) time series model

Electromyography: Physiology, Engineering, and Noninvasive Applications, edited by Roberto Merletti and Philip Parker.
ISBN 0-471-67580-6 Copyright © 2004 Institute for Electrical and Electronics Engineers, Inc.

477
AR (autoregressive) model, 136, 206, 268
Articular fault, biomechanical, 441
Artificial limbs, multi-joint, 470. See also Prostheses
Associated Hermite expansion, 70
“Augmented feedback,” 408
Autocorrelation functions, 155, 456
Autocorrelation sequence, 135
Autogenic inhibition, 13
Autogenics training program, 445
Autonomic nervous system, 436
Autoregressive-moving-average (ARMA) time series model, 136, 268, 294, 458
Autoregressive transfer function criterion, 136
Auxiliary connections, 44
Average rectified value (ARV), 140, 346
Axial movements, study of, 384
Axonal damage, 334
Axonal stimulation technique, 38
Back Analysis System (BAS), 410
Back pain, EMG and, 404–411. See also Low back pain (LBP)
Bandpass filtering, 50–51
effect on MUAPs, 51
Bandwidth, of crosstalk signals, 93
Barlett-Brillinger-Rosenblatt equation, 268
Bartlett method, 279
“Battery” effect, 110
Bayesian decision theory, 260
“Belly-tendon” montage, 328
Bessel functions, 89, 109
Biceps brachii muscle, contraction modes of, 72
Bicepstral decomposition, 290
Bilinear time-frequency representations (TFRs), Cohen’s class of, 271–272
Bioelectric muscle activity, sources of, 209–210
Biofeedback, 141, 389
muscle function and, 443
SEMG, 352
Biofeedback applications to impairment syndromes, 436–443
SEMG, 435–450
Biofeedback techniques, SEMG, 443–450
Biofeedback training, 405, 407
Biological interference, 58
Biological signals, xv
Biological variation, 58
Biomechanical calibrations, 347
Biomechanics, occupational, 388–389
Biomedical research, 301
Biomedicine, applications of nonlinear techniques to, 154–155
Biorthogonal wavelet bases, 275
Biphasic single differential waveform, 95
Bipolar channels, 464
Bipolar lead, 329
Bipolar recording, 92, 338
Bipolar SEMG electrodes, 124
Blocking phenomenon, 335
Body mechanics instruction, 449
Boston elbow, 462
Boundary conditions, 88
Bracing, learned, 439–440
“Bracing efforts,” 435
Bracketed electrode configuration, 114, 177
Burst duration, 369
C(q, k) formula, 268, 288
Calibration function, 347
Casale, R., 403, 411
Central fatigue, 292
Central nervous system (CNS), 323
control strategy assessment for, 248–249
disorders of, 324–326
Central point electrode, 177
Cerebral palsy, 14, 387
Certainty-based classification, 60
Channel-based conduction velocity estimation, 186–190
Channelopathies, 17
Choi-Williams distribution (CWD), 297
Chronic ailments, myalgia-type, 353
Chronic faulty motor programs, 442–443
Chronic pain, “muscle tension model” of, 405
Cinderella model, 352, 353, 357
Clancy, E. A., 133
Classification phase performance, evaluation of, 69–70
Clustering, of MUAPs, 53–57
Clustering techniques, 53
element output of, 57
for EMG signal decomposition, 56–57
Clustering techniques, 49, 54–56
CMAP amplitude, 331, 332–333. See also Compound muscle action potential (CMAP)
CMAP waveforms, 330, 331
Coefficient of variance, 71–72
Cohen’s class, 301
do bioregulatory time-frequency representations, 271–272
Collateral reinnervation, 33, 34
“Collision neurography,” 334
Common drive, 9, 74
Common mode input voltages, 119
Common mode rejection ratio (CMRR), 44, 118–119
Common noise, 221
Complete-linkage distance metric, 54
Complete-linkage technique, modified, 56
Completely superimposed MUAPs, 63
Compound muscle action potential (CMAP), 208. See also CMAP entries
deriving conduction properties from, 333–335
motor nerve conduction and, 326–328
Compound signals, multichannel models of, 261–263
Computer-based biofeedback, 445
Computer models, 205
Concentric (shortening) muscle action, 9
Concentric needle electrode, 30–31, 34–35
Concentric ring system, 177
Conduction, abnormal, 336
Conduction properties, CMAP-derived, 333–335
Conduction velocity (CV), 20, 84–85, 100–101. See also Conduction velocity estimation; Global CV
muscle-fiber, 39
Conduction velocity estimation, 182, 185–196. See also Muscle-fiber CV estimation
algorithms for, 187–190
channel-based methods for, 186–190
global, 236
influences on, 196
for more than two channels, 190–191
single-MU, 186, 191–196
Conjugate mirror filter (CMF), 277
ConMac electrode, 39–40
Continuous wavelet transform (CWT), 273–275, 298
Contraction. See also Dynamic contractions;
Eccentric contraction (EC); Isometric contractions
electrically elicited, 148, 248
manifestations of muscle fatigue during, 222–226, 238–242
voluntary, 146
Coordination training, 443
Cram, J. R., 435
Craniocervical flexion action, 409, 410
Cross-correlation coefficient, 91
Cross-correlation function CV estimation, 188–189
Cross-sectional area (CSA), decrease in, 421
Crosstalk, 91–97, 250, 368
detection system selectivity and, 92–97
spatial filters and, 180
Crosstalk signals, 91
shape of, 93
Cross-term interference, 301
Cross-terms, 272
Cumulants, 264–265
properties of, 265–266
of random processes, 266–267
system identification using, 267–269
Cumulative function, 189
Current density source, 85–86
Cutoff frequencies, 109, 175
Cylindrical probes, 414
Daniell method, 279
Data format, 45
Data normalization, 368
Data reduction, 347–348
Data storage, 44, 45
dc voltages, of electrodes, 110–111
Deactivation training, 446
Decomposition, performance indexes for, 68
Decomposition algorithms, 68
Decomposition EMC, 36, 41
Deconditioning, SEMG and, 438
Decorrelation, 140
Deep motor units (MUs), 92–93, 248
Deep muscles, recruitment of, 408
“Degree of isotropy,” 177
Delay, defined, 187
Delayed onset of muscle soreness (DOMS), 375
Delay estimation, for nonidentical signals, 186–187
Demodulation, 143–144
Demyelination, 334
diseases associated with, 335
Dendrogram, 54
Depolarization zone, 82
Depth parameter, 283–284
Derived variables, in multifactorial analysis, 397
Destructively superimposed MUAPs, 63
Detail, defined, 277
Detected motor units (MUs), association with reference MUs, 67–68
Detection system parameters, 196
effect on EMG variables, 249–250
Detection systems, modeling, 215–218
Detection system selectivity, crosstalk and, 92–97
Deterministic difference, 67
Deterministic signals, spectral estimation of, 134–137
Deterministic structures, 159, 161
Developed force, surface EMG features and, 97–101
Difference filtering, first- and second-order, 51
Differential configuration, 111–113
Digital adaptive noise cancellation filters, 121
Digital filter banks, 278
Digitized signals, features of, 45
Dimensionality reduction, 467
Dirac delta function, 113, 114
Discrete wavelet transform (DWT), 275–277
“Discriminating characters,” 259–260
Discrimination training, 446
Disease, MUAP parameter changes in, 32–34
Disparately detected MUAPs, 65, 66
Disselhorst-Klug, C., 169
Dissimilarity measures, 53
Distance matrices, 55, 157
Distance measures/metrics, 53, 54
Distribution function method of CV estimation, 189–190
Disuse atrophy, 438
Disynaptic inhibition, 14
Divisive hierarchical algorithm, 54
Doncarli, C., 259
Doppler-delay domain, 271–272
Dorsiflexion, 394, 397
Double differential (DD) configuration, 111, 112, 114
Doublets, 73–74
Down-sampling, 275
Downtraining, 443
relaxation-based, 444–445
threshold-based, 445
“Driven right leg” (DRL), 119
Duration, MUAP, 32
Dynamic contractions, 293
effect on surface EMG variables, 251
manifestations of muscle fatigue during, 296–300
Dynamic control, 470
Dynamic membrane model, nonlinear, 17
Dynamic movement, generalization to, 446–448
Dynamic tasks, regions of muscle activity during, 154
Dysfunctional muscle activity, isolation of, 443–444
Dysponesis, 435, 437
Dystonia, 325
Eccentric contraction (EC), 9
muscle damage and, 375
Electrical activity (EA), 346
objective of recording, 28
Electrically elicited contractions, 148
effect on EMG signal features, 248
Electrical stimulation, fatigue and, 235
Electrical stimulator, 44
Electrode arrays, 127
Electrode montages, 89–91
Electrode orientation, 196
Electrode placement, 183
“optimal,” 99
Electrodes. See also Electrode placement
configuration, distance, and location of, 111–115, 126, 216, 250
European recommendations on, 123–127
impedance, noise, and dc voltages of, 110–111
intramuscular, 49, 81
material used for, 123
shape and size of, 91, 124, 216–218, 250
transfer function of, 108–109
Electrode-skin impedance, 91, 110, 218, 366
Electrode-skin interface, 108, 109
properties of, 111
Electromechanical coupling efficiency (EMCE), 318
Electromechanical delays (EMD), 315
Electromyogram (EMG), xv. See also Electromyography (EMG); EMG entries
Electromyographic patterns, 389
Electromyographic signal alterations, muscle fatigue and, 348–352
Electromyographic techniques, potential of, 344
Electromyography (EMG). See also Electromyogram (EMG); EMG entries;
Surface electromyography (SEMG)
computers and, xvi
early use of, 343
functional models of, 138
in kinesiology, 381–382
macro, 39–40, 75–76
mental stress and, 356
needle, 30–36
psychological effects on, 353–357
scanning, 41–42
single-fiber, 36
spatial and temporal parameters of, 406
stress and, 355–356
versus MMG, 316–318
work-related disorders and, 345
Electronic voltage noise, 119
Elicited contractions, manifestations of muscle fatigue during, 224–226
Embedding dimension, choice of, 156
Embedding theorem, 155
EMG amplitude, 98. See also Electromyogram (EMG)
 estimation of, 134, 139–145
 relation to force, 99–100
 variability in, 126, 389
EMG applications, in ergonomics, 343–358
EMG data processing applications, in ergonomics, 345
EMG decomposition technique, 41
EMG detection, 89–91
EMG equipment, 43–44
 time resolution of, 45
EMG filters, 120–121
EMG frequency range, 109
EMG front-end amplifiers, 115–120
“EMG gaps,” 348
EMG machines, 44
EMG modeling, 205–227
 additional applications of, 226–227
 basic assumptions in, 209
 bioelectric muscle activity and, 209–210
 detection systems, 215–218
 fiber membrane activity profiles and, 210–213
 inverse modeling, 222
 motor unit recruitment and firing behavior, 218–222
 motor unit structure and, 213–214
 of muscle fatigue, 222–226
 phenomenological models, 207
 structure-based SEMG models, 207–209
 volume conduction and, 214–215
EMG pattern analysis, 395
EMG profiles, 391–392
 linear envelope and, 390–391
EMG recordings, 7, 117
EMG signal acquisition, 49
 See also EMG signal decomposition algorithms
 applications of results of, 70–77
 MUAP detection and, 50–52
 steps in, 48–66
 using higher order statistics, 287–292
 using wavelet transform, 281–286
EMG signal decomposition algorithms, 56–57
 performance evaluation for, 67–70
EMG signal decomposition system, 50
EMG signal features, physiological phenomena affecting, 247–248
EMG signal generation, 1–20
 amplitude and, 97–100
 biophysics of, 81–102
 conduction velocity and, 100–101
 crosstalk and, 91–97
 EMG detection and, 89–91
 intracellular action potential and, 85–86
 signal source, 82–85
 spectral frequencies and, 101
 volume conductor and, 87–89
EMG signals. See also EMG signal decomposition; EMG signal generation;
 Intramuscular EMG signals; Surface EMG signal
 attributes of, 50
 electrode size and, 91
 frequency analysis of, 293
 history of, xv–xvii
 needle, 42–43
 nonstationarity of, 293
 processing of, 345–346
 simulation of, 139
EMG signal spectrum, estimation of, 121, 147, 148. See also EMG spectrum
EMG variables, 153
 estimate repeatability for, 251–252
 parameters affecting, 249–250
 “true” value of, 250
Emotions, in the neuromuscular network, 436
End-of-fiber components, influence on CV estimation, 100
End-of-fiber effects, 86, 102
End-of-fiber potentials, 95
Endpoint control, 470–471
Energetics, muscle, 15–16
Energy metabolism, effect on motor units, 10–11
Energy spectral density, 148
Englehart, K. B., 453
Epilepsy, 324
Epoch length/overlap, in stationary and nonstationary conditions, 150–152
Equilibration training, left/right, 448–449
Equivalent input voltage noise density, 119
Equivalent statistical bandwidth, 459
Ergodicity, 264
Ergonomics, 388
 amplitude data reduction and, 347–348
 EMG applications in, 343–358
 muscle fatigue indicators in, 348–352
 musculoskeletal disorders and, 352–353
SEMG biofeedback in, 352
workload concepts in, 344–345
Euclidean similarities, 60
European Concerted Action Surface EMG for Noninvasive Assessment of Muscles, 107
European recommendations, on electrodes, 123–127
Excitation-contraction (E-C) coupling, 11
Exclusive MUAPTs, 65
Exclusive trains, 66
Exercise
HA fatigue during, 422
with SEMG feedback, 449
Exercise physiology applications
SEMG, 365–377
strength and power training, 372–375
time and frequency domain analysis, 368–369
tips related to, 366–368
walking versus race walking and running, 370–371
Exposure variation analysis (EVA) method, 348, 350
Extracellular longitudinal current, 83
“Exuberant” projections, 14
False positives/negatives, 68–70
Far-field potentials, 89
Far-field signals, 93, 95
Farina, D., 47, 81, 133, 169, 233
Fast Fourier transform (FFT), 293. See also FFT periodograms; Short-time Fourier transform (STFT)
Fast-twitch fatigable (FF) motor units, 3, 9
Fast-twitch fatigue-resistant (FR) motor units, 3
Fast-twitch fibers, 299
Fast twitch motor units, 242
Fast-twitch muscle fibers, 4
Fast-twitch muscles, 423
Fatigue, 348–349. See also Muscle fatigue
indexes of, 233, 237–238
inhibitory metabolites and, 16
mechanical versus myoelectric
manifestations of, 235
pathological, 335–338
sites of, 234
Fatigue assessment, 247–248
Fatigue indexes, estimate repeatability for, 251–252
Fatigue plots, 225, 237, 239, 240, 351
in different conditions or subjects, 241
Fatigue studies, 161
Fatigue variables, 349
“Fatigue vector,” 238
Fatiguing stimulation, 313
Faulty motor programs, chronic, 442–443
“Faulty motor schema,” 436
Feature extraction, 465
for pattern recognition, 52–53
Felici, F., 365
FFT periodograms, 294
Fiber composition, 242
modifications of, 244–246
Fiber density (FD), 36–37
estimation of, 36
Fiber inclination angle, 196
Fiber length, 250
Fiber membrane activity profiles, 210–213
Fiber type composition, age and, 418–419
Fiber type modification, hypoxia-induced, 421
Fiber typing, 242–246
Filligoi, G., 133
Filtering effect, volume-conductor-mediated, 82
Filters, EMG, 120–121
Final prediction error (FPE), 136
Finite impulse response (FIR) filter, 216
Finite-time integrator, 390
Firing behaviors, 75
modeling, 218–222
Firing instants, 67
synchronization of, 220–222
Firing-pattern analysis, 71–74
Firing-pattern information, 56, 59
MUAPT, 64
Firing patterns, 71, 208
dependent, 138
MU, 74–75
Firing processes, MU, 220
Firing rates (FRs), 7–9
influence on MMG, 316–318
instantaneous, 73
Fisher test, 252
Foot-contact sensors, 390
Force, 97–101
conduction velocity and, 100–101
in motor unit modeling, 213–214
relation to EMG amplitude, 99–100
spectral frequencies and, 101
versus MMG, 313–315
Force level, surface EMG variables and, 248
Force measurement, isometric, 337
Force signal, spike-triggered averaging of, 75
Force training, 373
INDEX

Force twitch, MMG and, 314
Fourier approach, 150
Fourier-based spectral estimators, 134–135
Fourier integral, 269
Fourier transform (FT). See also FT fiber areas; Short-time Fourier transform (STFT); Two-dimensional Fourier transform in time-frequency representations, 269
Frequency analysis, 293
Frequency content, 42–43
Frequency domain, information extraction in, 145–153
Frequency domain analysis, 410–411
SEMG, 369
Frigo, C., 381
Front-end amplifiers, 115–120
FT fiber areas, percentage of, 372
Functional activity performance, with SEMG feedback, 450
Functional diagnosis, 393
Fusimotor neurons, 12

Gait analysis, 371–372. See also Movement analysis
linear envelope and, 389–393
mechanical effect of muscle contraction and, 385–386
motor control strategies and, 384
multifactorial analysis and, 393–397
pathophysiologic factors in, 387–388
SEMG applications in, 381–397
Gait initiation studies, 384
Gaussian distribution, 220, 221
Gaussian probability density function, 144
General wavelet packets, 278
Generator model, 135–136
Global CV, 247
estimates of, 100–101
Global processing techniques, 163
Glycogen depletion, 11
Glycolytic energy metabolism, 5
Golgi tendon organs (GTOs), 13
Grid electrode systems, 179
Group Ia inhibitory interneurons, 13–14
Group Ib interneurons, 13
Guarding/bracing, learned, 439–440
“Guided imagery,” 445
Hägg, G. M., 343
Harmonic components, 369
Health professionals, teaching and training, 227
Heisenberg uncertainty principle, 272
Hemiplegia, 393–394
Henneman’s size principle, 218, 219, 247
Henon map, 156
Hermens, H. J., 107, 205
Hermens synchronization model, 221
Herniated disc, 439
Heuristic rules, multi-joint movement and, 469
Hierarchical algorithms, 54
Hierarchical clustering methods, 54
High-density multichannel recording, 338–341
High-pass filtering, 95, 118, 121
High-pass spatial filters, 171, 174
crosstalk and, 180
Higher order statistics, EMG signal decomposition using, 287–292
Hodges, P., 403
Hodgkin-Huxley model, 17–19
HOS-based EMG decomposition, 289–290
HOS-based methods, 301
H-reflex studies, 14
Hudgins, B. S., 453
Human motor system, 2
Humans, effects of spaceflight on, 423
Humeral rotation rule, 469
Hyperactivity, psychophysiological stress-related, 436–437
Hypermobility, joint, 441–442
Hypobaric hypoxia, 420–423
Hypothalamic pituitary-adrenal cortical (HPA) system, 355
Ia inhibitory interneurons, 13–14
IAP shape, approximation of, 85. See also Intracellular action potentials (IAPs)
Ib interneurons, 13
IMNF signals, 298
Impairment syndromes, biofeedback application to, 436–443
Impedance, of electrodes, 110–111
Independent identically distributed (IID) samples, 141
Indexes of performance, 68
Information enhancement, via multifactorial analysis, 393–397
Information extraction, in frequency domain, 145–153. See also Multi-channel information extraction techniques; Single-channel information extraction techniques
Inhibition, 439
learned, 440–441
Innervation number estimate, 419
Innervation processes, 456–457
Innervation ratios, 243
Innervation zones (IZs), 250, 367
atlas of, 126
Input impedance, SEMG amplifier, 116–118
Instantaneous median frequency (IMDF), 280
Instrumentation, principles of, 43
Integrated EMG (iEMG), 7, 336, 346, 368
“Integrative” analytical approach, 206
Intelligent hand, 470
Interdischarge intervals (IDIs), 59
Interelectrode distances (IEDs), 124, 175–176, 250
decrease of, 114–115
Interference attenuation, 142
Interference pattern, 33, 42, 207
Interference surface signal, 76
Interference terms, 272
International Society of Electromyography and
torrente, 13–14
Interpolation, 390
Interpulse intervals (IPIs), across MUs, 220
Intracellular action potentials (IAPs), 82,
101–102, 209–210, 247, 248. See also
IAP shape
generation and extinction of, 85–86
Intracellular muscle-fiber action potentials,
209–210
Intraclass Correlation Coefficient (ICC), 252
Intramuscular electrodes, 89
Intramuscular EMG signals
decomposition of, 47–77
EMG signal decomposition performance,
67–70
Intramuscular recordings, 27–29
modeling of, 207
Intramuscular scanning EMG, 92
Intramuscular spike recordings, 8
Inverse binominal (IB²) filter, 176–177
Inverse modeling, 222
“Inverse problem,” 1
Ion channels
dynamics of, 17–18
dysfunction of, 17
transmembrane, 209
Isokinetic contractions, 299
Isokinetic dynamometer, 298
Isolation training, 444
Isometric constant force contractions, 238
Isometric contractions, effect on surface EMG
variables, 246–250. See also Isometric
voluntary contractions
Isometric exercise, 367
Isometric muscle actions, 11
Isometric voluntary contractions, manifestations
of muscle fatigue in, 238–242
Isotropic transfer function, 90, 217
Isqnonlin function, 291
Jabre, J., 27
Jiggle (degree of instability), 32, 33, 58
Jitter, 58, 416
neuromuscular transmission and, 37–39
value of, 38
Joint analysis of EMG spectrum and amplitude
(JASA) method, 153–154, 351–352
Joint angle patterns, 394
Joint hypermobility/hypomobility,
compensation for, 441–442
Joint kinematics, 384, 387
Joint torque estimation, 141
Journal of Electromyography and Kinesiology,
xvi, xvii
Jull, G., 403
Kadefors, R., 343
Karlsson, S., 259
Kegel exercises, 416
Kinematic control, 470
Kinematic coupling, 469
Kinesiological EMG, 367
Kinesiological studies, force estimation in,
98–99
Kinesiology, electromyography in, 381–382
K-means technique, modified, 56
Knowledge-based expert systems, 44
Lactate paradox, 421
Lactic acid production, 242–243, 246
Lactic acidosis threshold, 15
Lambert-Eaton myasthenic syndrome (LEMS),
38–39, 333
Laplace filters, 174
Laplacian probability density function, 144
Laser-detected MMG (laser-MMG), 311, 315
Laser distance sensors, MMG detected by,
307–308
LDD (longitudinal double differential) filter,
174
“Learned disuse,” 440
Learning (neural) pattern classification
approach, 465
Least-mean-square (LMS) cumulant-based optimization, 290
Left/right equilibration training, 448–449
Level coding, 458
Linear array recording, 339
Linear core-conductor model, 83
Linear electrode arrays, 181–183
Linear envelope (LE), 368, 389–393
EMG profiles and, 390–391
Linear time-invariant (LTI) filter, 135–136
Line source model, 82
LINE value, selecting, 158–159
Linked trains, 66
Load estimation, 346–347
“Local frequency” parameter, 296
Localized fatigue, 349
“Localized muscular fatigue,” 292
Log-periodogram, 280
Longitudinal conductivity, 88
Lorentz–Mackey-Glass differential delay equation, 156
Low back pain (LBP), 405, 439. See also Back Analysis System (BAS) rehabilitation for, 407–408
Low-pass differentiation, 50–51
Low-pass filtering effect, 89
Low-pass filters, 121, 140
Macro EMG, 39–40, 75–76
Macro intramuscular signals, averaging of, 75
Macro MUAPs, 39, 75–76
Mainframe, 44
Mallat’s pyramid, 275–276
MA (moving average) model, 136, 268
Markov chains, 260
“Mathematical microscope,” 298
Mathematical models, 205–206
Matthews/Kleine synchronization model, 221–222
Maximal voluntary contractions (MVCs), 7, 10, 50, 71, 194, 234, 316, 347
EMG signal during, 145
Maximal voluntary electrical activation (MVE), 347
Mean frequency of the power spectrum (MNF), 295. See also IMNF signals;
Mean frequency (MNF); Mean power frequency (MPF) as a fatigue indicator, 299
Mean power frequency (MPF), 7, 10, 346, 350–352, 410–411. See also Mean frequency (MNF); Mean frequency of the power spectrum (MNF)
Mean spike frequency, 152–153
Mean square error (MSE), 144, 187–188, 192
Mean value of consecutive differences (MCD), 37
Measured variables, in multifactorial analysis, 393–397
Measurement, repeatability of, 367
MEC strategies, emerging, 463–471. See also Myoelectric control (MEC)
Mechanical muscle response, hypoxia and, 421
Mechanomyogram (MMG), 305–307. See also MMG entries; Surface mechanomyogram
Median frequency (MDF), 149, 221, 224, 237, 240, 346, 350–351, 376, 410–411
properties of, 150
Median load level, 348
Melin, B., 343
Membrane potential, plot of, 211
Membrane voltage phenomenon, 17
Mental stress, EMG activity and, 356
Merletti, R., 1, 81, 107, 169, 205, 233
MES control, pattern-recognition-based approach to, 463–468. See also Myoelectric signal (MES)
MES measurement strategies, 464–465
Metal-electrolyte contact, 110
Method of images, 88
Microgravity, 423
Microgravity effects, 424–425
on neuromuscular system, 423–425
Microphones, MMG detected by, 310
Mihelin, M., 27
MIMO decomposition, 291. See also Multiple-input, multiple-output (MIMO) models
Minimum description length criterion (MDL), 136
MMG detection techniques, 307–310. See also Mechanomyogram (MMG)
MMG detectors, comparison of, 310–312
MMG generation (MMGg), 307, 312
MMG sensors, comparison of, 307–310
Modeling, 64
goal of, 206
Modified beamforming, 191
Moment-angle loop, 396
Moments, 264–265
Monochromatic wave, 269
Monopolar needle electrode (MNE), 31, 35–36
“Monopolar” potential distribution, 108
Monopolar recording system, 92
Monopolar signals, 97, 223
Monosynaptic stretch reflex, 12
Monte Carlo method, 260
Moritani, T., 1
Mother wavelet, 273, 277
Motoneurons (MNs), 2
synaptic input to, 221
Motor axon stimulation, jitter measurement during, 38
Motor control, 3
physiology of, 2–16
Motor control strategies, study of, 47, 384
Motor control system, peripheral, 11–15
Motor copy training, 449
Motor nerve conduction (MNC), compound
muscle action potential and, 326–328
Motor nerve conduction testing, 328
Motor nerve testing, 328
Motor programs, chronic faulty, 442–443
Motor unit action potential conduction velocity
(MUAPCV), 350
Motor unit action potentials (MUAPs), xv, 28, 29, 47, 182, 210. See also MUAP entries;
MUAPT entries; Superimposed MUAPs
certainty-based classification of, 60
clustering of, 53–57
defined, 31
duration of, 33
multiply-detected, 64, 66
representation of, 84
shape similarity of, 70
single-surface, 93
supervised classification of, 58–62
Motor unit activation pattern, 316, 318
“Motor unit counting,” 333
Motor unit modeling, inclusion of force in, 213–214
Motor unit recruitment, modeling, 218–222
Motor unit remodeling, 419
Motor units (MUs), 2–6, 27–28. See also MU entries
de-recruitment of, 248
double discharge of, 73–74
firing rates of, 7–9
“fractions” of, 42
interpulse intervals across, 220
physiological properties of, 6
recruitment and firing frequency of, 6–11
reference and detected, 67–68
representation of, 84
scanning EMG of, 42
structure of, 213–214
types of, 3
“Motter plan,” 465
Movement analysis. See also Gait analysis
biofeedback and, 389
occupational biomechanics and, 388–389
SEMG applications in, 381–397
Moving-average (MA) system response, 268
MUAP classification, certainty-based, 60. See also Motor unit action potentials (MUAPs)
MUAP parameters, 32–34
MUAP raster plots, 62
MUAP recognition, 49
MUAP shapes, 49
distribution of, 50
nonstationarity of, 60
variability in, 58
MUAP summation, 329
MUAP trains, 137, 207, 221
MUAPTs, 53, 56
defined, 52
firing times of, 65–66
MUAP temporal relationships, 64–66
defining and measuring, 65–66
MUAP waveforms/shapes, 63, 208, 210
MU architecture, 32. See also Motor units
(MUs)
MU CV distribution, automatic estimation of, 182
MU firing patterns, 10, 66, 67
correlation between, 74–75
MU firing processes, 220
MU firing rates, 247
MU interpulse intervals, 220
Multichannel information extraction
techniques, 169–199
muscle-fiber conduction velocity estimation, 185–196
spatial filtering, 170–180
spatial sampling, 180–185
Multichannel models, of compound signals, 261–263
Multichannel recording, high-density, 338–341
Multichannel surface EMG signals, 184
Multichannel surface potentials, extraction of, 76
Multi-electrodes, 36
Multifactorial analysis, information enhancement via, 393–397
Multi-joint artificial limbs, 470. See also Prostheses
Multi-joint movement, 469–470
Multimodal parametric search (MPS), 281–283
Multi-MUAP EMG analysis, 41
Multi-pass certainty-based supervised classification algorithm, 60
Multiple bipolar channels, 464
Multiple-input, multiple-output (MIMO) models, 262–263, 281, 287. See also MIMO decomposition
Multiple-input, single-output (MISO) model, 262, 281
Multiple MES channels, 464
Multiple myoelectric channels, 460
Multiply-detected MUAPs, 64, 66
Multiresolution analysis (MRA), 276, 277, 279
Multivariable approach, in stochastic processes, 265
MU recruitment threshold, 247
Muscle(s), 1–2
architecture of, 331
force production in, 97–98, 153
frequency response of, 315
mechanical model of, 314–315
Muscle activation, modalities of, 405
Muscle activity, 5
bioelectric, 209–210
effect on motor unit recruitment and firing frequency, 9–10
isolation of, 443–444
mechanical outcome of, 397
“Muscle belly-montage,” 125
Muscle cartography, 330–332
Muscle cell membrane, electrophysiology of, 17–20
Muscle contractions, 2–16
detecting, 305
mechanical effect of, 385–386
Muscle control procedures, training in, 446–448
Muscle damage, EC-induced, 375
Muscle damage studies, SEMG, 375–377
Muscle deactivation, 13
Muscle disease, MUAP and, 34
Muscle dysfunction, 435
Muscle endurance, aging and, 420
Muscle energetics, 15–16
Muscle energy metabolism, 16
Muscle fatigue, 234–235. See also Fatigue during dynamic contractions, 296–300
effect on motor unit recruitment and firing frequency, 10
electromyographic signal alterations indicating, 348–352
estimates of EMG variables and fatigue indexes, 251–252
fiber typing and, 242–246
during isometric voluntary contractions, 238–242
mechanical manifestations of, 292
modeling, 222–226
monitoring, 295–296
myoelectric manifestations of, 222–226, 233–253, 292–300, 419–420
during static contractions, 293–296
surface EMG variables and, 236–238, 246–251
Muscle fatigue modification, hypoxia-induced, 421–422
Muscle-fiber action potentials, 209–210
Muscle-fiber conduction velocity (CV), 39, 242–243, 410. See also Conduction velocity (CV)
estimation of, 185–196
Muscle-fiber propagation velocity, 39
Muscle fibers, 4
action potential propagation along, 19–20
model of, 20
types of, 3, 4
Muscle force, 98–99
surface EMG spectral variables and, 153
Muscle function, biofeedback and, 443
Muscle geometry, 367
Muscle kinematics, 385, 397
Muscle overload, 375, 408
Muscle pathology studies, 40
Muscle physiology, age-related effects on, 417–420
Muscle sensor, orientation on, 125
Muscle signals, crosstalk, 91
Muscle spasm, reflexive, 439
Muscle stimulation, selective, 93, 94
Muscle strength, aging and, 417–418
Muscle surface displacement, 308
Muscle surface oscillation, 306–307
Muscle synergy, 386
Muscle tension, 356
psychological stress and, 358
“Muscle tension model,” 405
Muscle thickness, recording changes of, 305
Muscle transverse diameter changes, 314
Muscular contractile function, 16
Muscular disorders, 179
Muscular weakness, progressive, 418
Musculoskeletal disorders, 352–353
 psychological stress and, 355
work-related, 388
Musculoskeletal injuries, 374–375
Musculoskeletal tension, psychological factors in, 357
MU synchronization, 223, 224, 373–374
Mutual information concepts, 66
M-waves, 148, 208, 225–226
M-wave scale factor, 148
Myalgia, work-related, 298
Myasthenia gravis (MG), 333
Myoelectric channels, 455–460
Myoelectric control (MEC), 453–455. See also MEC strategies
 conventional, 460–463
Myoelectric controllers, 455
Myoelectric signal (MES), 453, 471. See also MES entries
 “slowing” of, 344
Myofibril protein degradation, 424
Myopathic MUAP, 34
Myopathy, congenital, 244
Myosin isoforms, 424
Myotonia congenita (MC), 337–338
NDD (normal double differentiating) filter, 174–176, 179–180
NDD-filtered channels, 182–183
Neck muscle activity, patterns of, 409
Neck pain, EMG and, 404–411
Needle and wire detection techniques, 27–45
 conventional needle EMG, 30–36
 needle electrode recording characteristics, 29–30
 special needle recording techniques, 36–42
 needle EMG signal characteristics, 42–43
 recording equipment, 43–45
Needle electrodes, 29–30
 concentric, 34–35
 monopolar, 35–36
Needle electromyography, 28
 conventional, 30–36
 at increasing voluntary contraction, 34
 techniques of, xvi, xvii
Neonatal neuronal exuberance, 14
Nerve conduction testing, 335
Nerve lesions, 33
Nerve stimulation, 327
Nervous system, 323–324. See also Neural entries
Network connections, 44
Neural excitation processes, 16
Neural network approaches, 470
Neural networks, self-organizing, 56
Neural projections, 14
Neuroendocrine systems, psychological stress and, 355
Neurogenic disorders, 28
Neurological diseases, 17
Neurological rehabilitation, 411–417
Neurology, 324
central nervous system disorders, 324–326
clinical applications in, 332–335
CMAP and motor nerve conduction, 326–328
CMAP generation and, 328–332
high-density multichannel recording and, 338–341
surface EMG applications in, 323–341
Neuromuscular disorders, diagnosis of, 179
Neuromuscular electrical stimulation (NMES), SEMG-triggered, 448
Neuromuscular fatigue, 234–235
Neuromuscular jitter, 37–39
Neuromuscular regulation, 15–16
Neuromuscular system, 10
 microgravity effects on, 423–425
Newton algorithm, 291
Noise
electronic voltage, 119
 of electrodes, 110–111
Noise attenuation, 142
“Noisy” control information, 458–459
Nonisometric exercise (NIE), 366, 367
Nonlinear projection methods, 468
Nonlinear techniques, 154–155
Nonparametric approaches, 260–261
Nonpoint electrodes, 177–179
Nonpropagating potentials, 180
Nonpropagating signal components, 97
Nonreciprocal inhibition, 13
Nonstationary signals, 260
Nonstationary stochastic processes, 137
Normalized standard error of the mean (NSEM), 251
Nyquist sampling theorem, 45, 121, 274
Occupational biomechanics, workload assessment in, 388–389
Ohm’s equation, 215
On Asymmetry in Sphincters (OASIS) project, 411
Operational amplifier (OA), 116
 input current noise in, 119
INDEX

Operation Everest II (OEII), 421
Optical distance sensor, 307–308
Orizio, C., 305
Orthogonal MRA, 277
Orthogonal wavelet transform, 275
Oxford intelligent hand, 470
Oxygen availability, effect on motor unit recruitment and firing frequency, 10–11

Pain. See Back pain; Chronic pain; Neck pain
Parametric based spectral estimators, 135–136
Parametric decomposition, 281–286
Parametric methods, 136, 150, 260, 293 for modeling, 294
Parametric search, multimodal, 281–283
Parasitic capacitances, 120
Parker, P. A., 453
Parseval’s theorem, 269, 270
Partially superimposed MUAPs, 63
Partitioning methods, 54–56
Pathological fatigue, 335–338
Pathophysiological profile, 388
Pattern classification methodologies, 465–466
Pattern recognition, feature extraction for, 52–53
Pattern-recognition-based control, 463–465
Pattern-recognition-based systems, evolution of, 466–468
Paynter finite-time integrator, 390
PC technology, 44
Peak load level, 348
Peel-off approach, 63–64, 283
Pelvic floor, 412
EMG of, 411–417
evaluation of, 412–417
rehabilitation of, 416
Pelvic floor disorders, 404, 413, 414
“Pennate” fibers, 330
Percentage of determinism (%DET), 158, 159, 161, 373
Percentage of recurrence structures (%REC), 158
Percentage of the reference voluntary electrical activity (%RVE), 347
Percentile frequencies, analysis of, 149
%MVC contractions, 50, 347, 351
Performance, 68–69
amplitude estimator, 141
Performance indexes, 68
Perineal muscles, needle EMG of, 413, 414
Periodogram, 135, 151, 279
Peripheral fatigue, 292–293
Peripheral motor control system, 11–15
Peripheral nervous system (PNS), 323–324
pH, intracellular, 16
Phase method of CV estimation, 189
Phase representation, 33, 284–286
Phenomenological intramuscular EMG signal model, 70
Phenomenological models, 206
Physical parameters, 196
effect on EMG variables, 249–250
Physical stress, 354
chronic, 437
Piezoelectric contact sensors, 305, 307, 310
MMG detected by, 309–310
Plantarflexion, 394, 397
Point electrodes, 173–174. See also Nonpoint electrodes
two-dimensional spatial filters with,
174–177
Poisson’s equation, 87, 88, 215
Polypestral decomposition, 290
Polymerography, 324, 327
Postural dysfunction, 437–438
Postural perturbations, 384
Postural tension, 435
Postural training, with SEMG feedback, 449
two-dimensional, 108
Powered upper limb prostheses, 453–471
c conventional myoelectric control and,
460–463
emerging MEC strategies and, 463–471
intelligent subsystems and, 468–471
myoelectric signal and, 455–460
Power spectral density (PSD), 101, 134, 161,
162. See also PSD estimation
surface EMG, 153
of a synthesized EMG signal, 294–295
time-varying, 137
Power training, 372–375
Prehension rule, 469
Prevention of Neuromuscular Disorders in the Use of Computer Input Devices (PROCID), xvii, 353
Principal components analysis, 467–468
Probability density function (PDF), 144
Progressively dynamic movement, generalization to, 446–448
Progressive relaxation, 444–445
Projection pursuit, 467
Propagating signal components, 97
Proportional control, 462
Prostheses. See also Powered upper limb prostheses
multifunction, 462–463
multifunctional control of, 470
myoelectric, 145, 454–455
PSD estimation, 135, 142. See also Power spectral density (PSD)
during voluntary contractions, 146
using wavelet packets, 279
using wavelet shrinkage, 279–280
Pseudorandom electrical activity, 42
Psychological stress, 354
musculoskeletal disorders and, 355
neuroendocrine systems sensitive to, 355
trapezius muscle response to, 356–357
Psychophysiological stress-related hyperactivity, 436–437
Psychosocial stress, 353
Quadratic time-frequency methods, 468
Quadrifilar needle electrode (QNE), 41
“Quasi-stationary” signal, 144, 293
Race walking, 371–372
Radial conductivity, 88
RADIUS value, selecting, 158–159
Rainoldi, A., 233, 403, 417, 420, 423
Ramp contractions, 154
Random processes, 264
cumulants of, 266
Raster plots, MUAP, 62
Rate coding, 458, 462
motor unit, 6–9
Reciprocal inhibition, 14
Recorded signal, frequency content of, 42
Recording equipment, EMG, 43–45
Recordings, 72–73
high-density multichannel, 338–341
Recruitment (REC), 101
influence on MMG, 316–318
Recruitment threshold, 9
Recruitment threshold force, 71
Recurrence histograms, 66
Recurrence map (RM), 157, 158
Recurrence quantification analysis (RQA), 134, 154–162, 373–374
application to surface EMG signal analysis, 159–162
mathematical basis of, 155–159
Recurrence representation (RM), 159
Reference decomposition, 67, 70
Reference MUs, association with detected MUs, 67–68
Reference signal, 191
Reflexes, 11–12
Reflexive spasm, acute, 439
Reflex overflow, 14
Reflex responses, 15
Rehabilitation medicine, 403–425
EMG in back and neck pain, 404–411
EMG of the pelvic floor, 411–417
hypobaric hypoxia, 420–423
microgravity effects on neuromuscular system, 423–425
Reinnervation, collateral, 33, 34
Relaxation-based downtraining, 444–445
Relinearization, 143–144
Renewal point process, 65
Renshaw cell mediated inhibition, 14
Repetitive stimulation, 334
“Representing efforts,” 435–436
Ring electrode, 177, 178
Romberg test, 423
Root mean square (RMS), 346
indicators of, 140
value of, 236
Running, 372
Satellite potential, 66
Scaling function, 276–277
Scanning EMG, 41–42
Screen quality, 45
SD signal, 115. See also Single differential (SD)
Segmentation phase performance, 68–69
“Segmentation” strategy, 408
Selective muscle stimulation, 93, 94
Selective recruitment, 9
SEMG amplifier, input impedance of, 116–118
SEMG amplitude normalization procedures, 368
SEMG biofeedback. See also SEMG feedback;
Surface electromyography (SEMG)
in ergonomics, 352
techniques of, 443–450
SEMG decomposition, 301
SEMG feedback. See also SEMG biofeedback;
Surface electromyography (SEMG)
functional activity performance with, 450
postural training with, 449
therapeutic exercise with, 449
SEMG measurements, 338–341
SEMG models, structure-based, 207–209
SEMG normalization/calibration, 346–347
SEMG sensors, recommendations for, 123–127
SEMG signal conditioning system, 120–121
SEMG signals. See also Surface electromyography (SEMG)
amplitude of, 335–336
comparing, 385–386
rectified and smoothed, 370–371
SEMG-triggered neuromuscular electrical stimulation (NMES), 448
Semiperiodic electrical activity, 42
SENIAM (Surface Electromyography for Noninvasive Assessment of Muscle), xvii, 227, 251, 411
recommendations for, 127
standards, 123
Sensor-muscle coupling, 309–310
Sensors, 123
construction of, 124–125
location and orientation of, 125–127
Sensory-based discrimination, 445–446
Sensory receptor organs, 13
Sequential clustering techniques, 56
Sequential control, 468
Shiavi, R., 381
Short-time Fourier transform (STFT), 137, 269–271, 296–297, 467
Short time synchronization (STS), 208
Shwedyk model, 294
Signal amplitude, 116
Signal decomposition, 281–292
Signal detection protocol, 49–50
Signal models, 137–139, 207
Signal nonstationarity, 59
Signal processing, 133, 383. See also Advanced signal processing techniques
SEMG, 345–346
statistical, 264–265
Signals, 45
compound, 261–263
delay estimation for, 186–187
Signal sampling, 121–122
Signal segmentation, 50–52
Signal theory, 261
Signal-to-noise ratio (SNR), 141, 142, 144, 298, 459–460
“Silent areas,” 42
Simulation. See EMG modeling
Simulation studies, 35, 99, 150
Simultaneous coordinated control, 468
Sinc function, 269
Single bipolar channel, 464
Single-channel EMG, 134
Single-channel information extraction techniques, 133–163
information extraction in frequency domain, 145–153
joint analysis of spectrum and amplitude method, 153–154
recurrence quantification analysis, 154–162
spectral estimation, 134–137
SEMG amplitude estimation, 139–145
SEMG signal models, 137–139
Single-channel SEMG signals, 365
Single differential (SD), 111, 112. See also SD signal
Single-fiber action potentials (SFAPs), 37, 89, 90, 211, 261, 281, 282–283, 284–285
simulated, 95, 96, 98
Single-fiber EMG (SFEMG), 36, 38, 39
Single-fiber macro electrode, 40
Single-input, multiple-output (SIMO) model, 291
Single-input, single-output (SISO) model, 261, 267
Single-linkage distance metric, 54
Single-MU action potentials, 192, 193–194
Single-MU action potential trains, 199
Single-MU CV estimation, 186
Single myoelectric channel, 455–458. See also Multiple myoelectric channels
limitations of, 458–460
Single-pass supervised classification algorithm, 59
Single-surface MU action potentials, 93
“Size principle,” 6–7, 373
Skeletal muscle fiber membrane, 17
Skeletal muscles
aging and, 10, 417
analyzing EMG signals from, 297
functional differentiation in, 385
Skin-AgCl contact, 110
Skin-electrode contact, stability of, 110
Skin-electrode interface, 108–109
Skin impedance, 383. See also Electrode-skin impedance
Slow-twitch (S) motor units, 3, 242
Slow-twitch muscle fibers, 4
Slow-twitch muscles, 423
“Smart terminals,” 323
Smoothing, 144–145
Software, EMG machine, 44
Søgaard, K., 47
Spaceflight, effects of, 423–424
Spasm, reflexive, 439
Spatial filtering, 89, 170–180, 196–197, 250
applications of, 179–180
2-D, 217
Spatial filters. See also Two-dimensional spatial filters
crosstalk and, 180
with nonpoint electrodes, 177–179
with point electrodes, 173–174
Spatial frequencies, 95
Spatial sampling, 170, 180–185, 197
two-dimensional, 183–185
Spectral analysis, 148, 153, 163
role in muscular fatigue studies, 146
techniques using, 137
Spectral changes, evaluating, 134
Spectral compression, descriptors of, 148–152
Spectral dips, 89–91, 113–114
Spectral estimation, 134–137
Spectral estimators
Fourier-based, 134–135
parametric-based, 135–136
Spectral matching CV estimation, 187–188
Spectral shape indicators, 280
Spectral variables, 101, 153
Spectrograms, 269–271
Sphincter function, 414
Spike recordings, intramuscular, 8
Spikes, defined, 152
Spike-triggered averaging, 48, 115, 192, 210
of the force signal, 75
of the surface EMG signal, 76
Spinal loading, estimation of, 407
Spinal motor control, EMG and, 404–408
Spindles, 12
Spondylosis, 408
Square law device, 460–461
Standard deviation, 71–72
Stashuk, D. W., 47
Static contractions, muscle fatigue during,
293–296
Static hypothesis, 87
Static load level, 348
Stationary signals, 260
“Statistical bandwidth,” 140
Statistical identification methods, 287–289
Statistical signal processing, 264–265
Statistics, second-order, 260. See also Higher
order statistics
Steady-state MES, 464
Stegeman, D., 1, 81, 205, 323
Sternocleidomastoid (SCM) muscle, 409
Stimulated contraction, 305–307
Stochastic processes, 264–269
spectral estimation of, 134–137
time-varying PSD of nonstationary, 137
Stop motors to prevent collision damage rule,
469
Strength training, 372–375
aging and, 417
Stress, 354. See also Physical stress
EMG and, 355–356
Stressful situations, maladaptive coping to, 436
Stress-induced muscular tension, 353
“Stress profiling,” 437
Stress reaction, 355
Stress-related hyperactivity, 436–437
Stretch reflex, 11–12, 13
Stroop color-word test (CWT), 356
Structural models, 206, 208, 227
Subcutaneous tissue layer, thickness of, 250
Subtractive wavelet transform, 283–284
Superimposed MUAPs, resolving, 63–64
Supervised classification, of MUAPs, 58–62
Supervised classification algorithm, 59–60
Supervised classification techniques, 49
Surface-detected signal, 121
Surface electrodes, 28, 89
Surface electrode systems, 47–48
Surface electromyography (SEMG), xvi. See
also Multi-channel information extraction
techniques; SEMG entries; Surface EMG
entries
asymmetrical, 438
biofeedback applications of, 435–450
central nervous system disorders and,
324–326
exercise physiology applications of,
365–377
hypobaric hypoxia and, 420–423
load estimation and, 346–347
muscle damage studies via, 375–377
musculoskeletal disorders and, 352–353
in the study of motor performances,
365–377
time and frequency domain analysis of,
368–369
versus needle and wire methodology, 382
Surface EMG amplitude estimation, 139–145
Surface EMG applications
in central nervous system disorders,
324–326
clinical, 332–335
CMAP and motor nerve conduction,
326–328
CMAP generation, 328–332
high-density multichannel recording,
338–341
in movement and gait analysis, 381–397
in neurology, 323–341
pathological fatigue, 335–338
Surface EMG decomposition, 289–292
Surface EMG features, developed force and,
97–101
Surface EMG recordings, 447
Surface EMG signal(s). See also Single-channel information extraction techniques
A/D conversion and, 121–122
applications of spectral analysis of, 153
detection and conditioning of, 107–127
electrode configuration and, 111–115
electrode impedance and, 110–111
electrode transfer function and, 108–109
EMG filters and, 120–121
estimation of PSD of, 146
European recommendations on electrodes, 123–127
frequency compression of, 410
front-end amplifiers and, 115–120
models of, 137–139
during muscle isometric contraction, 160–161
recurrence quantification analysis of, 154–162
sampling and, 121–122
spike-triggered averaging of, 76
Surface EMG signal processing, 345–346
Surface EMG spectral analysis, 227
Surface EMG variables, 236–238
factors affecting, 246–251
force level and, 248
Surface mechanomyogram, 305–318
application of, 318
detection techniques and sensor comparison with, 307–310
detector comparison, 310–312
simulation and, 312
versus EMG, 316–318
versus force, 313–315
Surface potential distribution, 88
Sympathetic-adrenal medullary (SAM) system, 355
Synchronization, 208
models of, 221–222
of firing instants between motor units, 220–222
Synchronized trains, 66
Syntactic pattern classification approach, 465
Synthesis wavelets, 275
Synthesized EMG signal
analyzing, 298
estimating PSD of, 294–295
Synthetic SEMGs, decomposition of, 290–291
Synthetic waveforms, 71
System identification, using cumulants, 267–269
System resolution, selecting, 122
System sensitivity parameter, 44
Target muscle activity, isolation of, 443–444
Temporal frequency, 95
Temporal relationships, between MUAPTs, 64–66
Tension discrimination training, 446
Tension recognition training, 445–446
Therapeutic exercise, with SEMG feedback, 449
Three-layer model, 88
Three-state myoelectric controller, 454
Threshold-based tension recognition training, 445–446
Threshold-based uptraining/downtraining, 445
Thresholding, 280
Thresholds, clustering algorithms and, 56
Threshold values, 51–52
Time and frequency domain analysis, 368–369
Time delay, estimating, 189–190
Time domain technique, 149
Time-frequency distributions, 251
Time-frequency representations (TFRs), 269–272, 298, 300
bilinear, 271–272
Time-frequency resolution, 272, 301
Time resolution, of EMG equipment, 45
Time-scale EMG fingerprints, 284
Time-scale phase representation, 284–286
Time-scale phase transform (TSFT), 285–286
Time-varying autoregressive (TVAR) approach, 137
Time-varying power spectral density, 137
Totally Modular Prosthetic Arm with high Workability (TOMPAW), 470
Total workload, stress and, 354
Training strategies, biofeedback, 443–450
Trajectories, predefined, 469
Transfer function, 112–113, 114, 175, 177, 178, 216
Transmembrane current, 82, 84
Transmembrane ion channels, 209
Trapezius muscle, psychological stress and, 356–357
Tripole equations, 210
Trontelj, J. V., 27
True positives/negatives, 68–70
Trunk movement studies, 406–407
Trunk muscle recruitment, 405
Trunk muscles, 404–408
Tubular system (T-system), 17, 20
Two-dimensional Fourier transform, 178, 212–213, 217
Two-dimensional spatial filters, 174–177
Two-dimensional spatial sampling, 183–185
Type I muscle fibers, 3–5
Type II muscle fibers, 3, 5–6, 9

Ultrasonography, 375, 376
Upper limb prostheses. See Powered upper limb prostheses
Upper motor neurone disorders, 298
Up-sampling, 275
Up-training, 443, 445
Utah arm, 462

van Dijk, J. G., 323
Variance-to-signal (V/S) ratio, 391, 392
Ventilatory studies, 15–16
Video-oriented biofeedback systems, 436
Visual feedback, 443
Viterbi algorithm, 60
Voltage turns, number of, 33
Volume conduction, 214–215
Volume conductor, 81, 87–89, 101
 finiteness of, 89
 spatial low-pass filter characteristics of, 170, 171
Voluntary contraction(s)
 aging and, 420
 diminished ability for, 336–337
 effect on EMG signal features, 247–248
 mechanomyogram during, 305–307
 muscle fatigue during, 222–224, 238–242
 muscle surface oscillations and, 306–307
 PSD estimation during, 146
 surface EMG frequency content changes during, 152–153

Walking, versus race walking and running, 370–371
Wavelet functions, 272–273, 277
Wavelet packets, 278–279, 301
Wavelet packet tree, 278
Wavelet series expansion (WSE), 275

Wavelet shrinkage, PSD estimation using, 279–280
Wavelet smoothing techniques, 280
Wavelet transform (WT), 272–279, 298. See also Subtractive wavelet transform
 EMG signal decomposition using, 281–286
Weakness
 learned, 440–441
 SEMG and, 438
Weight-lifting, 373–375
 “Weight-shifting,” 440
Welch method, 279, 294
Whiplash-associated disorders, 410
Whitening, 142–143
 of the myoelectric signal, 459–460
 Whitening filter, 142, 143
White noise, 119
Wide-sense stationary (WSS), 134
Wigner-Ville distribution (WVD), 297, 300–301
Wigner-Ville transform, 271, 298–299
Window length, optimal, 144–145
Window shape, 150
Workload assessment, in occupational biomechanics, 388–389
Workload concepts, in ergonomics, 344–345
Work-related musculoskeletal disorders (WMSDs), 345
WP periodogram, 279
Wrist rotation rule, 469
w-slice method, 290
WSS stochastic process, 137

Yao/Fuglevand synchronization model, 221
Yielding flexion, 394

Zazula, D., 259
Zero crossings (ZC), 152, 346
Zwarts, M. J., 323