Index

adaptive dissipation term, 206–207, 209
aerodynamic design optimization of compressor and turbine blades, 375–427
gradient-based analyzing method, 396, 418, 420–421
response surface method, 376, 379–380, 387, 395, 413, 417, 419, 423, 426, 427
simple gradient method, 376, 413, 417, 422, 423, 424, 426, 427
aerothermodynamics governing equations (governing equations), 10–24
integral form, 10, 21–22
continuity equation, 21
energy equation, 21
momentum equation, 21
tensor form, 20–21
continuity equation, 20
energy equation, 21
entropy equation, 21
momentum equation, 20
approximate calculations using integral boundary layer equation, 59–85
artificial compressibility, 127, 141, 345, 350
axial blade bowing study, 266–277

blade bowing effect (axially bowed blades), 266–277
blade circulation and its derivative, 350–353
blade leaning effect (for low span-diameter ratio turbine nozzle blades), 310–317
blade parameterization, 376–427
blade parameterization and aerodynamic design optimization for a 3D transonic compressor fan rotor blading by GPAM, 395–401
blade parameterization and aerodynamic design optimization for a 3D transonic compressor rotor, 412–426
blade parameters, 377–381
blade angles (geometrical), 378, 384, 387, 396
blade chord, 17, 34, 51, 53, 54, 57, 75, 89, 100, 114, 169, 175, 181, 378, 384
blade meridian width, 378
leading edge thickness, 376, 384, 386, 404–405
length of camber line, 378, 406
maximum camber location, 378, 391, 395–401, 412, 419, 422, 425
maximum thickness, 169, 353–427
location, 376, 387, 389, 407, 409, 422–425, 427
thickness gradient angle of leading or trailing edges, 378, 404, 410, 412
trailing edge thickness, 90–91, 376, 378, 383, 401, 405, 407, 410

Aerothermodynamics of Turbomachinery: Analysis and Design Naixing Chen
© 2010 John Wiley & Sons (Asia) Pte Ltd
blade reconstruction (or blade rebuilding), 376, 377, 381, 384, 415
blade thickness distribution, 352–353, 380–381
annulus wall boundary layer, 17–19
boundary layer on a rotating blade surface, 19–20
boundary layer thickness, 27–28, 33, 43, 60, 74, 87, 92, 95, 101, 124, 249, 290
compressible boundary layer, 41, 64–85
displacement thickness, 27–29, 44
energy thickness, 25, 28–29, 35, 90
boundary layer differential equations
boundary layer differential equations for a cascade on the stream surface of revolution, 41–45
calculation examples, 45–57
laminar boundary layer equations of axisymmetrical flow, 38–39
two-dimensional differential equations of laminar boundary layer flow, 37–38
two-dimensional turbulent boundary layer equations, 39–41
centrifugal force, 61
characteristic length, 17, 34, 64, 75
choking (or choke), 4, 249–250
Christoffel symbol, 13, 23, 121
circumferential blade-bowing study, 252–266, 277
circumferential blade-bowing study for turbine nozzle blade row with low span-diameter ratio, 277–279
blade modification, 283–286, 330
generation of a radial stacking form closing to optimal, 281–283
circumferentially geometric proportional curvilinear coordinate system, 337–338, 361–362, 372
Clauser’s equilibrium coefficient, 44, 47, 57
complexity of the flow in an impeller, 317
compressibility transformation of boundary layer integral equation, 81–83
conductive heat transfer coefficient, 11, 15, 17, 34, 38
convergence gradient, 94, 95–98
arbitrary non-orthogonal coordinates, 15, 17, 127
Coriolis force, 32, 61, 85, 287, 317, 328
corner vortex, 273, 300
critical Reynolds number based on momentum thickness, 30
definition for two kinds of stream function, 110–112
diffusion factor, 99–100
dissipation function, 14, 23, 202
dynamic viscosity, 11, 33, 41–42, 82, 147, 213
effective thermal conductivity, 147
enthalpy, 63, 209
enthalpy damping technique, 209
entropy increment, 9, 124–126, 288–289, 326, 405, 407, 409, 411
examples of simplification of viscous and heat transfer terms, 15–20
annulus wall boundary layer, 17–19
S1 stream-surface flow, 17
S2 stream-surface flow, 17
three-dimensional boundary layer on rotating blade surface, 19–20
finite analytic numerical solution method and calculation examples, 131–140
NASA turbine blade cascade, 139–140
thermal conduction problem, 137
turbine blade cascade, 137–139
Fourier’s law, 11, 15
general concepts of boundary layer, 25–35
geometric (parameter) effect on blade performance, 401–410
effect of leading edge circle radius, 404
effect of maximum thickness, 404
effect of the location of the maximum thickness, 406
effect of the trailing edge thickness gradient angle, 407
energy equation, 10–11, 16–17, 21–22, 38, 40, 42, 119, 130, 146–147, 202, 215
gradient parameter based on momentum thickness, 30
gradient parameter of laminar boundary layer separation, 32
heat flux, 33, 35
heat transfer coefficient, 11, 15, 17, 33–34, 38
heat transfer terms, 10–12, 15, 17–20, 24, 106, 127, 203
horseshoe vortex, 273, 290, 292, 294, 322–324, 328
hybrid problem solution, 336–343
implicit residual-averaging technique, 209
inverse problem solution, 329–359, 361–373
laminar boundary layer, 26, 28–30, 32–33, 37, 38–39, 45, 49, 51, 52, 59, 66, 80, 83, 84
laminar boundary layer momentum integral equations, 66–68
laminar-turbulent boundary layer prediction, 51–52
local heat transfer coefficient, 33–34
mechanism of loss reduction by bowed blades, 306–309
metrical tensor, 22, 106–107, 151, 339–340, 363, 368–369
mixing length, 71, 213, 249
model of secondary flow vortices (axial turbine blade cascade), 309
modified multi-stage Runge–Kutta time-marching scheme, 208, 216, 251
multi-grid technique, 200, 209
nature of boundary layer flow, 25–26, 35
Navier–Stokes solver (N. S. solver), see Navier–Stokes equations
numerical study on three-dimensional flow pattern and vortex motions in a centrifugal impeller, 317–326
Nusselt’s number, 34
optimization of a low aspect ratio turbine by GPAM, 401–412
parameter effect on the geometry of a blade profile, 384–393, see also aerodynamic design optimization method of compressor and turbine blades
inlet blade angle effect, 387
leading edge thickness effect, 387
maximum camber effect, 387
maximum camber location effect, 387
maximum thickness effect, 384
maximum thickness location effect, 387
outlet blade angle effect, 387
stagger angle effect, 401
permeable wall, 40, 63–64, 330
post-processing algorithm, 288
Prandtl number, 22, 33, 38, 42, 82, 147, 202
laminar Prandtl number, 33
turbulent Prandtl number, 42
pressure correction method, 3, 4, 89, 103, 124, 131, 145–198, 220, 317 see also three-dimensional turbulent flow calculation examples by the pressure correction method and calculation examples and two-dimensional turbulent flow calculation examples by pressure correction method
quasi-three-dimensional, 3, 42, 106, 200, 261, 330–331
rates of work done by the viscous stresses, 14
recovery coefficient, 32–33
recovery temperature, 32, 40
relationship between stress and strain tensors, 11, 13
residual correction technique, 330, 353–354, 359, 362
rothalpy, 10–11, 20, 42, 61, 109, 111, 121, 123, 147, 156, 202, 334, 336, 339, 344–345, 365
Runge–Kutta time-marching method, 209, 216, 226–227, 238, 254, see also time-marching method
saddle point, 290, 292–294, 302
secondary vortices (in axial turbine), 289–309
corner vortex, 273, 300
development of tip-clearance vortex in the turbine blade cascade channel, 305
model of the secondary flow vortices in a turbine blade cascade, 309
tip clearance vortex, 301–306
secondary vortices (in centrifugal impeller), 317–326
self-adaptive grid, 199
separation vortex (in vaneless diffuser), 319, 320, 325–326
shape parameter, 28, 29, 32, 46, 51, 53, 65, 68, 72, 77–78, 80, 82, 84, 89–92
approximate formula for prediction of shape parameter, 78–80
shear stress, 28, 32, 38, 44–46, 51, 61, 65, 68–72, 74–77, 82, 84, 157, 209, 211, 213, 214, 215, 312, 314
simplification of viscous and heat transfer terms, 15–20, see also examples of simplification of viscous and heat transfer terms
simulation coefficient, 34
skin friction coefficient, 25, 28, 29, 35, 51, 53
averaged skin friction coefficient, 28
local skin friction coefficient, 28–29
smoothing coefficient, 209
specific heat, 32–34, 38, 42, 82–83, 109, 122, 147, 155, 202, 289
constant pressure specific heat, 33
specific heat ratio of gas, 109
staff-spring system (ASSS), 216
Stanton number, 34
state equation of perfect gas, 42
Stone’s strongly implicit procedure, its improvement and calculation examples, 128–131
compressor blade cascade (DCA 2-8-10), 130
transonic compressor rotor blades, 130–131
strain tensor, 11, 13, 23
stream surface
main S2 stream surface, 17, 331, 334
S1 stream surface, 17, 41–42, 105–107, 114, 118–119, 121, 141, 331, 333–334, 339, 343–344, 362
S2 stream surface, 3, 17, 104–107, 140, 331, 334, 343, 362
stream-function method for 2D flow computations, 118–127, see also Stone’s strongly implicit procedure
stream-function method for 3D flow computations (two-stream–function method), 104–118
stream-function methods for 2D viscous fluid flow computations, 123–127
stream-function-coordinate method (inverse solution), 343–354, 372
stress components of different variances for three-dimensional problem, 12
stress tensor, 11–12, 14, 23, 120–121, 202–203, 205, 209
Sutherland’s formula, 42, 121, 147
theoretical optimum plane turbine profile cascade, 93
thermal boundary layer, 32–33
thermal loss coefficient, 376, 394, 417–423
three-dimensional aerodynamic inverse problem solution study, 361–373
potential function hybrid solution method, 364–372
two-stream-function-coordinate-equation method and calculation example, 362–365
three-dimensional boundary layer, 19, 85
three-dimensional boundary layer on rotating blade surface, 19
three-dimensional flow calculation examples by time-marching method and calculation examples, 199–250, see also time-marching method
centrifugal impeller, 192, 195, 197, 238, 243–248, 317–326
single rotor compressor (NASA Rotor 37), 4, 201, 227, 232–237, 249, 381, 413, 424
transonic single rotor compressor (inviscid flow), 227, 230–232
turbulent flow in a turbine stage, 233, 237–241
three-dimensional turbulent flow calculation examples by the pressure correction method and calculation examples, 169–170, 172–198
annular turbine blade cascade, 175–180
BUAA single rotor test compressor, 185–193
centrifugal impeller, 192–197
high turning turbine blade cascade (for annular blade cascade wind tunnel), 181–183
linear compressor blade cascade, 182–184, 186–187
linear turbine blade cascade, 173–175, 176
time-marching method, 3, 199–249, 254, 289, 317, see also two-dimensional flow calculation examples by time-marching method and three-dimensional flow calculation examples by time-marching method and calculation examples
topology of passage vortex in centrifugal compressor impeller, 322, 323, 324
transitional boundary layer momentum integral equation, 70–81, 84
turbulence modeling, 3, 9, 44, 57, 147, 156, 179, 213, 249, 289
turbulent boundary layer, 3, 26, 28, 29, 32–33, 39, 46–49, 51–52, 64, 66, 68, 70–81, 83, 84, 91, 100–101
turbulent boundary layer momentum integral equation, 70–81, 84
turbulent viscosity prediction, 52
two-dimensional aerodynamic inverse problem solution study, 329–359
inverse method by using a direct solver with residual correction technique, 353–354, 357–358
stream function equation method with prescribed target velocity and calculation examples, 336–343
active turbine blade cascade, 341–342
compressor blade cascade, 342–343
reactive turbine blade cascade, 340–341
stream-function-coordinate method for the blade cascades on the surface of revolution and calculation examples, 343–350
compressor blade cascade, 347–348
mixed-flow impeller, 347, 349–350
turbine blade cascade, 346–348
two-dimensional boundary layer, 26, 63
two-dimensional flow calculation examples by time-marching method, 216, 217, 218–229, see also time-marching method
supersonic inlet flow compressor blade cascade, 225–227
transonic steam turbine blade cascade (VKI-LS59ST), 220, 221–223
turbine blade cascade (VKI-LS59), 220–223
two-dimensional turbulent flow calculation examples by pressure correction method, 145–173
compressor blade cascade (T1), 166, 171–173
low speed subsonic turbine blade cascade (NACA TN-3802), 159, 160–162, 163
supersonic turbine blade cascade, 165, 169–170
symmetric airfoil, 157–158, 159, 160
transonic turbine blade cascade with large round leading edges (T12), 164–165, 168