Index

Aachen Aphasia Test (AAT) illustrative example of mining diagnostic rules 221–6

Adaptive fuzzy c-elliptotypes (AFCE) 16

Alternating cluster estimation (ACE) 25–7, 36 relational alternating cluster estimation 40–1

Alternating optimization (AO) 6, 25, 27, 34, 39–40, 99

Alternative double fuzzy K-numbers clustering (ADFKNC) model 171–2, 173–6

Alternative Dunn index (ADI) 118

Analysis of residuals 237–42

Ant colony optimization 35

ARCA clustering algorithm 276–7

Artificial life techniques 35

Association rules 418–21

Automotive paint process modeling application of minimum-distance-based clustering 366–7

Average linkage 34, 104

Basic defuzzification distribution (BADD) 36

Beta-spread transform 40

Biomedical data see Fourier transform infrared (FTIR) spectroscopy used with cancer diagnosis

Cancer diagnosis/cancerous cell classification see Fourier transform infrared (FTIR) spectroscopy used with cancer diagnosis

Cauchy membership function 40

Centroid 125–31, 184–6, 375–84, 390

Chameleon clustering system 316

Classification entropy (CE) 118, 204

Classification error 222–4

Classification of objects 97

Classification of risk 205

Classification rules/tasks 123

Classification structures 229, 235–6

Classification via clustering (CVC) 81

Cluster analysis 3, 5–7

Cluster candidates 128, 136

Cluster coincidence 13

Cluster covariance matrix 63

Cluster ensembles 71–5

cluster-based similarity partitioning algorithm (CSPA) 72

diversity in cluster ensembles 74–5

ensembles as a mixture of multinomials 74
evidence accumulation framework 73–4

graphic-theoretic approaches 72–4

hard cluster ensemble problem 71–2

hybrid bipartite graph formulation (HBGF) 73

hypergraph partitioning algorithm (HGPA) 72–3

meta-clustering algorithm (MCLA) 73

see also Soft cluster ensembles

Cluster number determination variants 23

Cluster repulsion 13–14, 24

Cluster validity concept with FTIR spectroscopy for cancer diagnosis 412–13

Xie-Beni validity index 412

Cluster-based similarity partitioning algorithm (CSPA) 72

soft version (sCSPA) 77

Clustering evaluation 27–8

Co-clustering 28

Comparative assessment 173–6

Compatible cluster merging 99

Competitive agglomeration (CA) 288–9

Complete fuzzy informational paradigm (CFIP) 156–7

Complete linkage 34, 104, 411, 423

Comprehensibility problem and postulate 213–14

Concept induction 393–402

Conceptual space 394

Crisp double clustering 221

Crisp informational paradigm (CIP) 156–7

Cross-validation 256–9

Dancing cones 36

Data mining see Dynamic data mining/dynamic fuzzy clustering; Mining diagnostic rules with medical diagnosis; Stream data mining

Data streams 333–51

about data streams 333–4, 350–1
clustering with data streams 334–5
data stream models 334
discrete fourier transform (DFT) 339
computation of coefficients 339–40
distance approximation and smoothing 340
Euclidean distance computation 340
experimental validation 345–50
ability of FCM-DS to adapt 346–8
scalability of FCM-DS 348–50
fuzzifiers 335
fuzzy clustering of 340–3
normalisation 338–9
probabilistic fuzzy C-means (FCM) 335
quality measures 343–5
fuzzy validity function 343–4
relative evaluation measures 345
similarity between cluster models 345
validity function 345
Xie-Beni index 344
sliding windows 336–8
stream data mining 336
Decision trees 124, 315–16
Degree of belongingness 232–4, 237, 240, 242
Dendograms 106, 407
Density-based clustering 265–6, 278, 363–5
Density-based eClustering systems 367
see also Real-time clustering
Descriptors 125, 132–3, 135–6
Discrete Fourier transform (DFT), and data streams 339–40
Dissimilarity relations used for fuzzy clustering 265–81
about dissimilarity relations 265–7, 281
ARCA clustering algorithm 276–7
dissimilarity modeling 267–75
experimental results
Wine data-set 280–1
Wisconsin Breast Cancer (WBC) data set 280–1
genetic algorithms (GA) 269–70
multilayer perceptron (MLP) 266–7, 268
Takagi-Sugeno (TS) system comparison 270–5
OPTICS density-based algorithm 278–80
parameter identification 268
and relational clustering 275–80
structure identification 268
Takagi-Sugeno (TS) system 268–70, 270–5
Xie and Beni’s index (XB) 269
Distance functions 266, 277, 281
distance function variants 14–18
see also Minkowski distance functions
Distance matrix 32, 40, 96
Distance measures fuzzy multivariate time trajectories 177–8
Diversity in cluster assemblies 74–5
Document categorization 302–5
Double clustering framework (DCf) 217–21
Double Fuzzy K-numbers clustering (DFKNC) model 168–9, 173–6
Drug discovery research 125
Dunn’s index (DI) 118
alternative Dunn index (ADI) 118
Dynamic classes 317, 320–4
Dynamic clustering see Dynamic data mining/dynamic fuzzy clustering
Dynamic data mining/dynamic fuzzy clustering 315–31
about dynamic data mining 315, 331
about recent approaches 317
dynamic classes with static objects 320–4
detailed description 321–4
global view 320–1
dynamic clustering literature 315–17
dynamic data assigning assessment (DDAA) 317
dynamic evolving neural-fuzzy interference system (DENFIS) 317
future perspectives 331
scenario planning applications
innovation 324–6
OPEC crisis 325–6
recession 324–5
status quo 325–6
simulated data application 326–9
static classes with static objects 318–19
functional fuzzy c-means (FFCM) 318–19
trajectory handling 318
traffic state identification application 329–31
Dynamic double fuzzy K-means clustering (D-DFKMC) models 178–80
Dynamic objects 317–19
Eigenvectors 38, 100, 195, 378
Elliptotypes 38
Empirical information and fuzziness 158
Euclidean distance 18
computation of, and data streams 340
Evolution mechanism, and real-time clustering 354
Evolving participatory learning (ePL) modeling 150–2
Exhaustive partitions 5–6
Exploratory data analysis (EDA) 155
about EDA 373–4
of magnetic resonance images using FCM with feature partitions 373–90
see also FCM with feature partitions (FCMP);
Magnetic resonance imaging (MRI)
Exponentially weighted moving average (EWMA) SPC technique 361
FANNY algorithm 232
FCM see Fuzzy C-means (FCM)
FCM based selection algorithm (FBSA) 418–19
FCM with feature partitions (FCMP) 374–90
FCMP parameters 376–7
FCMP specialization 377–8
FCMP/FCM comparisons 384–8
generalizing FCM and FCMP 375–6
partial supervision 378–9
Feature discrimination/selection/weighting and
Fourier transform infrared (FTIR) spectroscopy used
Fitness estimation models 148
Fischer interclass separability criterion 119
about selecting and weighting the best subset
285–7, 309–10
application 1: color image segmentation
with SCAD and feature data clustering 299–301
with SCAD and feature extraction 298–9
with SCAD, and feature data clustering 301–2
with SCAD, and feature extraction and grouping
301
application 2: text document categorization and
annotation 302–5
adapting SCAD to document clustering 303–4
categorization results 304–5
motivation 302–3
application 3: building a multi-modal thesaurus from
annotated images 305–9
categorization and thesaurus construction 307–8
feature extraction and representation 306–7
image annotation 308–9
clustering and subset feature weighting 296–8
competitive agglomeration (CA) 288–9
feature selection and weighting 287
Karush-Kuhn-Tucker (KKT) theorem 291
number of cluster unknown 298
prototype-based clustering 287–8
simultaneous clustering and attribute discrimination
(SCAD) 286–7, 289–96, 297, 309–10
version 1 (SCAD-1) 289–92, 294–6
version 2 (SCAD-2) 292–6
wrapper approach 287
Fischer interclass separability criterion 119
Fitness estimation models 148–50
Fourier transform infrared (FTIR) spectroscopy used
with cancer diagnosis 405–23
about FTIR spectroscopic analysis 405–6,
423–4
application experiments 409–12
automatic cluster merging method 418–23
application 421–3
finding the two most similar clusters 419–20
cluster validity concept 412–13
dendograms 407
FCM based selection algorithm (FBSA) 418–19
fuzzy C-means (FCM) clustering 408–12
hierarchical clustering 406–7, 410–12
K-means (KM) clustering 407–8, 409–12
simulated annealing fuzzy clustering (SAFC)
algorithm 413–18
application 416–18
variable string length fuzzy clustering using simulated
annealing (VFC-SA) algorithm 413–14
Xie-Beni validity index 412
fSPC learning algorithm 359–62, 368
FTIR see Fourier transform infrared (FTIR)
spectroscopy used with cancer diagnosis
Functional fuzzy c-means (FFCM) 318–19
Functional magnetic resonance imaging (fMRI) 373–4,
380–4
about fMRI 373–4, 380
adding spatial context to FCMP 381
data-sets 382–4
spatially separated clusters with
noise 382
visual cortex study 382–4
extending spatial context to FCMP 381–2
fMRI analysis with FCMP 381
parameters and typical use 381
Fuzzifier variants 22–3
Fuzzifier/weighting exponent 9
Fuzzifiers 335
FUZZSAM mapping 113–16, 117
Fuzzy c-elliptotypes (FCE) 16, 38, 53
Fuzzy C-means (FCM) 6–10, 35
with FTIR for cancer diagnosis 408–9
functional fuzzy c-means (FFCM) 318–19
with PCM variants 24–5
see also FCM with feature partitions
Fuzzy c-medoids, relational 39
Fuzzy c-quadratic shells algorithm (FCQS) 16
Fuzzy c-shells 16, 38
Fuzzy c-varieties (FCV) 15–16, 38, 53
Fuzzy clustering fundamentals 3–23
about clustering/clustering analysis
3–5, 27–8
alternating cluster estimation (ACE) 25–7
basic algorithms 4–5
cluster coincidence 13
cluster number determination variants 23
cluster repulsion 13–14
clustering evaluation 27–8
coclustering 28
distance function variants 14–18
exhaustive partitions 5–6
fuzzifier variants 22–3
fuzzifier/weighting exponent 9
fuzzy c-means (FCM) 6–10
fuzzy c-varieties (FCV) 15–16
fuzzy partition matrices 7
fuzzy shell clustering 15–16
Gustafson-Kessel algorithm/model 15
hard c-means 5–6
iterative optimization 6
kernel-based fuzzy clustering 17–18
membership degrees concept 7
noise clustering (NC) algorithms 19–20
noise handling variants 19–22
objective function 11
objective function variants 18–25
Fuzzy clustering fundamentals (continued)
objective functions 4–5
partitioning clustering algorithms 23
positions and shapes recognition 14
possibilistic c-means (PCM) 10–14
variants 23–5
probabilistic c-means 12–14, 20
probabilistic partitions 8
relational clustering 28
robust clustering/estimators 20–1
semisupervised clustering 28
shape and size regularization 28
weight modelling 21–2
Fuzzy clustering of fuzzy data 155–89
about fuzziness in data 160–1
about fuzzy clustering of fuzzy data 155–6, 165–8, 187–9
alternative double fuzzy K-numbers clustering (ADFKNC) model 171–2, 173–6
applicative examples 180–7
comparative assessment of clustering models 173–6
crisp K-means model 158–9
double fuzzy K-numbers clustering (DFKNC) model 168–9, 173–6
double fuzzy weighted K-means clustering (DFWKMC) model 172–3, 173–6
and empirical information 158
fuzzy K-means clustering model for conical fuzzy vectors (FKMCCFV) 169–70, 173–6
fuzzy K-means clustering model for mixed data (FKMCMD model) 170–1, 173–6
and imperfect information 156
informational paradigm 155, 156–60
K-means clustering 158–9
mathematical and geometrical representation 161–3
membership function 163–4
metrics for 164–5
multivariate case example
blood pressure data 184–5
wine data set 185–6
preprocessing fuzzy data 164
three-way case example, internet banner data 186–7
univariate case example
tea data-set 180–3
wine data-set 183–4
see also Fuzzy data time arrays
Fuzzy data matrix 158, 161–3, 170, 172, 176
Fuzzy data partitions 6
Fuzzy data time arrays 176–80
about fuzzy data time arrays 176
algebraic and geometric representation 176–7
distance measures fuzzy multivariate time trajectories 177–8
dynamic double fuzzy K-means clustering (D-DFKMC) models 178–80
other dynamic double fuzzy clustering models 180
Fuzzy double clustering 221
Fuzzy hyper volume index 119
Fuzzy inclusion clustering algorithm (FIC) 201–5
see also Inclusion-based fuzzy clustering
Fuzzy K-means clustering model for conical fuzzy vectors (FKMCCFV) 169–70, 173–6
Fuzzy K-means clustering model for mixed data (FKMCMD model) 170–1, 173–6
Fuzzy membership functions 124, 128–31
Fuzzy nonlinear projection (FNP) 42–4
Fuzzy partition matrices 7
Fuzzy regression clustering 229–45
about fuzzy regression clustering 229–30, 245
analysis of residuals on models 237–42
FANNY algorithm 232
fuzzy c regression model 232–3
fuzzy c-means (FCM) algorithm used 232
fuzzy cluster loading model 233
heteroscedastic residuals, avoiding 230
kernel fuzzy cluster loading model 234–5
numerical examples 242–5
statistical weighted regression models 230–1
weighted fuzzy regression model 235–6
see also Mining diagnostic rules with medical diagnosis
Fuzzy set merging 254–5, 257–9
Fuzzy shell clustering 15–16
Fuzzy validity function 343–4

Gatt talks 396
Gaussian membership function 23, 129–31, 196, 201, 219–20
Genetic algorithms (GA) 148–50, 216, 269, 272
Geometric mean ratio (GMR) 81–3
Gustafson-Kessel (GK) algorithm/model 14–15, 38, 44
and participatory learning 145–8
relational Gustafson-Kessel clustering 44–5
Hard c-means (HCM) 5–6, 9–10, 34–5
Hard cluster ensemble problem 71–2
see also Cluster ensembles
Hausdorff metric 164–5
Hidden Markov model (HMM) 316
Hierarchical clustering procedures/methods/schemes, algorithms 104, 221, 248–50, 316, 406–11
Hierarchical fuzzy clustering in fuzzy modeling 247–61
about hierarchical fuzzy clustering 247–8, 261
with FTIR spectroscopy in cancer diagnosis 406–7
merging of fuzzy sets 254–5
model parameter initialization 253
model parameter optimization 253–4
model simplification 254–5
modeling algorithm 249–55
preprocessing clustering unit design 251–2
rule elimination and combination 255
self-organizing map (SOM) for preprocess of data 248, 250, 251–2
simulation studies 256–61
Mackey-Glass system 259–61
nonlinear static function approximation 256–8
Takagi and Sugeno’s (TS) fuzzy model 248–9
weighted fuzzy c-means, implementation 252–3
High-dimensional semantic space 395–6
HIV data 132–5
Hölder’s inequality 57
Hybrid bipartite graph formulation (HBGF) 73
soft version (sHBGF) 78
Hybrid genetic algorithms (HGA) 148–50
Hyperconic functions 36
Hypergraph partitioning algorithm (HGPA) 72–3
Hyperspace analogue to language (HAL) model about the HAL model and semantic space 393–402
for construction of a high-dimensional semantic space 395–6
word clustering on a HAL space case study 399–402
about the case study 399–400, 401–2
data 400–1
fuzzy clustering of HAL vectors 401
HAL space construction 400
see also Semantic space via the hyperspace analogue to language (HAL) model

Image annotation 306, 308–9
Imperfect information 156
Inclusion index construction 196–8
Inclusion-based fuzzy clustering 193–208
about the inclusion concept 193–5, 206
about relevant fuzzy clustering 195–6
fuzzy C-means (FCM) algorithm comparisons 201–5
fuzzy clustering with an inclusion index 198–201
inclusion index clustering algorithm (PIC) 201–5
inclusion index construction 196–8
inclusion-based fuzzy clustering algorithm 200–5
Railtrack safety prediction example 205–6
synthetic data example 201–5
Information-theoretic k-means (ITK) 71, 82–3
compared with sHBGF and sMCLA algorithms 83–6
and soft cluster ensembles 76–7
Informational paradigm 155–9, 156–60
Intelligent data analysis 136
Interactive exploration of fuzzy clusters 123–36
about interactive exploration 123–5, 136
cluster candidates/clustering algorithm 128
decision trees 123
learning schemes 123
membership functions 129–31
Nation Cancer Institute (NCI) HIV data 132–4
Neighborgrams/Neighborgram clustering 125–31
and basic clustering algorithm 127
Neighorgram visualization 131–2
properties 127–8
parallel universes 135–6
Internet attitudes, and Minkowski distance 62–5
Interpretability issues in fuzzy medical diagnosis 213–16
see also Mining diagnostic rules with medical diagnosis
Interpretability issues when implementing hierarchical fuzzy clustering 248, 257–8, 261
Inverse document frequency (IDF) 303
Iterative optimization 6
K-means (KM) clustering 158–9
with FTIR spectroscopy for cancer diagnosis 407–8
k-nearest neighbors (k-NN) real-time clustering 354
Karush-Kuhn-Tucker (KKT) theorem 291
Kernel fuzzy cluster loading model 234–5
Kernel-based fuzzy clustering 17–18
Kernelization, kernelized relational clustering 41–2
KL-divergence 76–7
Knowledge discovery in databases (KDD) 95, 316
Kruskal’s minimal spanning tree algorithm 104
Lagrange multiplier 22
Latent semantic analysis (LSA) 393
Lexical semantic space models 393
Mackey-Glass system 259–61
Magnetic resonance imaging (MRI) 379–80
about MRI 379
functional magnetic resonance imaging (fMRI) 380–2
image acquisition and noise 380
nuclear magnetic resonance 380
Mahalanobis distance 15, 37, 44, 143, 265–6, 297
Majorizing function/algorithm 56–60
Mamdani-type fuzzy model 355
simplified Mamdani (sM) model 355, 358–62, 367
Medical diagnosis see Mining diagnostic rules with medical diagnosis
Medoid approach 41
Membership degrees concept 7, 158
Membership functions 26–7, 36, 40, 129–31, 161–77
Gaussian membership function 130
Mercer’s theorem 41
Meta-clustering algorithm (MCLA) 72–3, 82–90
soft version (sMCLA) 77–8
Metrics for fuzzy data 164–5
MIMO systems 360–1
Minimum-distance-based clustering applied to modeling of automotive paint process 366–7
Minimum-distance-based clustering approach 354–5
Mining diagnostic rules with medical diagnosis 211–26
Aachen Aphasia Test (AAT) illustrative example 221–6
about fuzzy medical diagnosis 211–13, 226

Objective functions 4–5, 12, 18–19, 25

Online data clustering see Real-time clustering

Objective functions 4–5, 12, 18–19, 25

variants 18–25

Parallel coordinates 63–5

Parallel data streams see Data streams

Parallel universes, and interactive exploration 135–6

Parameter initialization 250, 253, 376

Parameter optimization 6, 253–4

Partial fuzzy informational paradigm (PFIP) 156–7

Participatory learning fuzzy clustering (PL) 139–52

about PL 139–42, 152

evolving participatory learning (ePL) modeling

150–2

experimental results 145–8

with the Gustafson-Kessel (GK) algorithm 145–8

with modified fuzzy k-means (MFKM) algorithm

145–8

in fitness estimation models for genetic algorithms

148–50

as a fuzzy clustering algorithm 142–5

Mahalanobis distance 143

Takagi-Sugeno (TS) models 150

eTS models 151

Particle swarm optimization 35

Partition coefficient (PC) 117

Partition index (SC) 118

Partitioning clustering algorithms 23

Positions and shapes recognition 14

Possibilistic c-means (PCM) 10–14

and noise clustering 20, 35–6

variants 23–5

Prediction 316–17

railtrack issues 205–6

Preprocessing clustering unit 248–9, 251–2

Preprocessing fuzzy data 164

Prim’s algorithm 104

Principal component analysis (PCA) 97, 113–14, 117,

375, 378, 406

Probabilistic c-means 12–14

Probabilistic fuzzy C-means (FCM) 335

Probabilistic partitions 8

Purity issues 127–33

Quality measures, data streams 343–5

Radial-basis function (RBF) 42, 355

Railtrack safety prediction with inclusion-based fuzzy

clustering 205–6

Real-time clustering 353–68

about real-time clustering 353–5, 367–8

automotive paint process modeling application of

minimum-distance-based clustering 366–7

density of data 354

density-based 355–8

Object data clustering models 34–8

alternating cluster estimation 36

fuzzy c-means (FCM) 35

(hard) c-means (HCM) 34–5

non-spherical prototypes 36–8

possibilistic c-means and noise clustering 35–6

sequential agglomerative hierarchical clustering

(SAHN) 34

Object and relational data 31–4

object features 33

relational datasets 32

Sammon mapping 33–4

National Cancer Institute (NCI) HIV data, and

interactive exploration 132–4

NEFCLASS 223–6

Neighborgrams/neighborgram clustering 125–32

Neural networks 140, 205–7, 266–8, 316, 355

Noise clustering (NC) 19–20

and possibilistic c-means (PCM) 20, 35–6

Noise handling variants 19–22

Non-Euclidean relational fuzzy c-means 40

Non-spherical prototypes 36–8

Normalisation, data streams 338–9

Normalized cardinality 252

Normalized mutual information (NMI) 74, 80–1

Nuclear magnetic resonance 380

Neural networks 140, 205–7, 266–8, 316, 355

Noise clustering (NC) 19–20

and possibilistic c-means (PCM) 20, 35–6

Noise handling variants 19–22

Non-Euclidean relational fuzzy c-means 40

Non-spherical prototypes 36–8

Normalisation, data streams 338–9

Normalized cardinality 252

Normalized mutual information (NMI) 74, 80–1

Nuclear magnetic resonance 380

Object data clustering models 34–8

alternating cluster estimation 36

fuzzy c-means (FCM) 35

(hard) c-means (HCM) 34–5

non-spherical prototypes 36–8

possibilistic c-means and noise clustering 35–6

sequential agglomerative hierarchical clustering

(SAHN) 34

Object and relational data 31–4

object features 33

relational datasets 32

Sammon mapping 33–4
data normalization 356–7
potential and scatter definitions 355–6
procedure 357–8
evolution mechanism 354
and higher levels of adaptation 354
k-nearest neighbors (k-NN) clustering 354
Mamdani-type fuzzy model 355
simplified Mamdani (sM) model 355, 358–62, 367
mean-based approach 354
minimum-distance-based clustering approach 354–5
model structure evolution 354
mountain/subtractive clustering 353–4
potential value 354
robotic application of density-based clustering to
landmark recognition and novelty detection
363–5
statistical process control (SPC) 358–61
fSPC learning algorithm 359–62, 368
Recursive cluster merging technique 99–100
Regression model see Fuzzy regression clustering
Relational alternating cluster estimation (ACE) 40–1
Relational clustering 28, 38–45
and dissimilarity relations 275–80
see also Relational fuzzy clustering
Relational data 38–50
see also Object and relational data
Relational datasets 32
Relational fuzzy c-means 39–40
Relational fuzzy c-medoids 39
Relational fuzzy clustering 31–50
about relational fuzzy clustering 31, 46, 49–50
experiments 46–9
fuzzy nonlinear projection (FNP) 42–4
non-Euclidean relational fuzzy c-means 40
with non-spherical prototypes 41–5
kernelized relational clustering 41–2
relational alternating cluster estimation (ACE) 40–1
relational data interpreted as object data 45–6
relational fuzzy c-means 39–40
relational fuzzy c-medoids 39
relational Gustafson-Kessel clustering 44–5
see also Object data clustering models; Object and
relational data
Relative evaluation measures 345
Robotics application of density-based clustering to
landmark recognition and novelty detection
363–5
Robust clustering/estimators 20–1, 377–8
Robustness parameter α 60–2
Rule combination-elimination process 249, 254–5, 258, 259
SAHN 34
Sammon mapping 33–4, 97, 109–13
FUZZSAM mapping 113–16
modified Sammon mapping algorithm 120
Scenario planning 324–6
Schwefel function 149–50
Segmentation 286–7
with SCAD 298–302
Self-organizing map (SOM) for preprocess of data 248,
250, 251–2
Semantic space via the hyperspace analogue to language
(HAL) model 393–4
about semantic space and the HAL model 393–5, 402
concept induction 394
construction of a high-dimensional semantic space
via HAL 395–6
and fuzzy C-means clustering 397–9
dissimilarity measures 398–9
initialization 399
Gatt Talks 396
see also Hyperspace analogue to language (HAL)
model
Semi-linear defuzzification (SLIDE) 36
Separation index (S) 118
Sequential agglomerative hierarchical clustering
(SAHN) 34
Shape and size regularization 28
Similarity measures see Visualization of fuzzy clusters
based on fuzzy similarity measures
Similarity relations 32
see also Dissimilarity relations used for fuzzy
clustering
Simplified Mamdani (sM) model 358–62, 367
Simulated annealing fuzzy clustering (SAFC) algorithm
413–18
variable string length fuzzy clustering using simulated
annealing (VFC-SA) algorithm 413–18
Simultaneous clustering and attribute discrimination
(SCAD) 286–7, 289–96, 297, 309–10
see also Feature discrimination/selection/weighting
and simultaneous clustering
Single linkage 100–6
Sliding windows, and data streams 336–8
Soft cluster ensembles 69–90
about ensembles of soft clusters 69–71, 90
about the soft cluster ensemble problem 75
experimental setup
classification via clustering (CVC) 81
data-sets used 79
evaluation criteria 80–1
gemetric mean ratio (GMR) 81
normalized mutual information (NMI) 80–1
test-set creation 79–80
future work 90
information-theoretic k-means (ITK) solution method
76–7
intuition behind soft ensembles 76
soft version of (CSPA) (sCSPA) 77
soft version of HBGF (sHBGF) 78
soft version of MCLA (sMCLA) 77–8
soft/hard ensemble comparisons
information-theoretic k-means 83–6
Soft cluster ensembles (continued)
performance variation with increasing attributes
86–7
performance variation with increasing ensemble
size 86–90
soft versions of existing algorithms 82–4
see also Cluster ensembles
Spatial features 229, 381, 390
Statistical process control (SPC) 358–61
fSPC learning algorithm 359–62, 368
Statistical weighted regression models 230–1
Stream data mining 336
see also Data streams
Support vector machines (SVM) 41, 234, 266–7
Synthetic data sets 101
Takagi and Sugeno’s (TS) fuzzy model 248–9
Takagi-Sugeno (TS) models/system 150, 268–70, 270–5, 355
eTS models 151
Termination criterion 35, 127–8, 408–9
Text corpus 396
Theoretical fuzziness 158
Time series data streams see Data streams
Time series forecasting 148
Time trajectory 177–9
Traffic management 324, 329
Trajectory, time trajectory 177–9
Triangle inequality based approximations (TIBA),
minimax TIBA 107
Triplot 64–6
Unsupervised clustering 139, 142, 148, 353, 406–12
User interaction 128
Validity function Q 345
Validity indexes 99, 117–20, 268–9, 412–13, 417–18
Variable string length fuzzy clustering using simulated
annealing (VFC-SA) algorithm 413–18
Vectors
association vectors 73, 78
center vectors 4, 5, 9, 126, 304
data vectors 249, 251
feature vectors 31–2, 286–8, 316–18
fuzzy vectors 164, 166–9
HAL vectors 394–6, 399–400
inputs vector 364–6
output vectors 360–2
prototype vectors 201–2
see also Eigenvectors
Visual assessment of (cluster) tendency (VAT) 96, 103–6
Visual cluster validity (VCV) 96, 106–9
Visual exploration 125, 136
Visualization of fuzzy clusters based on fuzzy similarity
measures 95–120
about visualizing fuzzy clusters 95–7, 116–17
benchmark examples 113–16
classical methods for cluster validity and merging
99–100
compactness and separation properties 99
compatible cluster merging 99
dendrograms 106
FUZZSAM mapping 113–16, 117
Iris data 101–2, 105, 108, 110, 114
minimax TIBA 107
ordering procedures 106
principal component analysis (PCA) 97
problem definition 97–9
recursive cluster merging technique 99–100
Sammon mapping 109–13
modified Sammon mapping algorithm 120
similarity of fuzzy clusters 100–3
synthetic data sets 101, 104–5, 107–8, 110, 113
validity indices 117–20
visual assessment of (cluster) tendency (VAT) 96, 103–6
visual cluster validity (VCV) 96, 106–9
Weight modelling 21–2
Weighted fuzzy C-means, for implementing hierarchical
fuzzy clustering 247–61
Weighted fuzzy regression model 235–6
Weighting/fuzziﬁer exponent 9
Wine data 101–3, 105–6, 280–1
Wisconsin Breast Cancer (WBC) data set 280–1
Wrapper approach 287
Xie-Beni validity index (XB) 118, 269, 344, 412

Index compiled by Dave Tyler