Index

a
- adatom balance factor 289
- adatom diffusion about nanotube walls 349
- adatom diffusion equation 331
- adatom evaporation 306
- adatom migration on SWCNT surfaces 365
- adatom mobility and growth patterns 263
- adatoms 36, 304
- adions 36, 104
- adsorbed-layer reaction 366
- adsorption 360
- adsorption energy 366
- advantages of plasma nanocluster deposition of seed nuclei 279
- anionic nuclei 180
- apatite nucleation in SBF 455
- apatite: porous microstructure 447
- Ar + H\textsubscript{2} + C\textsubscript{2}H\textsubscript{2} plasma 118
- Ar + H\textsubscript{2} + C\textsubscript{2}H\textsubscript{2} plasma: reaction rates 486
- Ar + H\textsubscript{2} + CH\textsubscript{4} discharge species 152
- Ar + H\textsubscript{2} + CH\textsubscript{4} plasma 149, 213, 216, 240, 374
- Ar + H\textsubscript{2} + CH\textsubscript{4} plasma: reaction rates 483
- Ar + O\textsubscript{2} plasma 441
- atomic force microscopy 445
- atomic layer deposition (ALD) 417
- Au nanodot development in templated i-PVD 432
- averaged elemental ratio factor 297

b
- benefits of plasma nanoassembly: examples 462
- binary nanoparticle superlattices 238
- binary QD growth: equalization of adatom fluxes 299
- binary QDs: main surface processes 296
- binary quantum dots: control of elemental composition 285
- bio-TiO\textsubscript{2} growth: plasma advantages 460
- bio-TiO\textsubscript{2} synthesis: deterministic parameters 443
- bio-TiO\textsubscript{2}: building units 449
- bio-TiO\textsubscript{2}: characterization 444
- bio-TiO\textsubscript{2}: growth kinetics 449
- bio-TiO\textsubscript{2}: hydroxyl-free surfaces 445
- bio-TiO\textsubscript{2}: nanocrystal size vs apatite formation 447
- bio-TiO\textsubscript{2}: *in vitro* bioactivity tests 446
- bioimplant surfaces 441
- biomimetic response: factors 441
- Bohm velocity 88
- bond formation time 238
- bottom-up approach 10
- bricklayer’s approach 53
- BU delivery module 136
- BU flux: deterministic choice 265
- BU generation module 136
- building blocks of life XVI
- building units XV, XVIII, 2, 50, 171
- building units of carbon nanotips 386
building units: appropriate choice 51
building units: dipole moment 90
building units: effect of collisions 82
building units: external introduction 183
building units: sources 70
building units: stacking into nano-assembly 126
building units: structural incorporation 113
bulk diffusion coefficient 359
carbon atom production on nanotube surface 366
carbon cluster C_{15} 57
carbon diffusion on SWCNT: activation energy 367
carbon diffusion: through and over catalyst 352
carbon dimer C_2 118, 126
carbon extrusion 73
carbon film growth rates 367
carbon nanocone array: growth stages 398
carbon nanocones: critical radius 379
carbon nanocones: growth dynamics 395
carbon nanocones: nanopattern development 396
carbon nanocones: surface diffusion flux 378
carbon nanofiber growth: effect of surface diffusion 362
carbon nanofibers: building units 359
carbon nanofibers: contributions of surface and bulk diffusion 359, 362
carbon nanofibers: growth rate 359, 362
carbon nanofibers: nucleation 131
carbon nanofibers: plasma-related advantages 357
carbon nanofibers: plasma-related effects 357
carbon nanofoam 77
carbon nanoparticle nucleation 192
carbon nanostructure growth: ion and neutral fluxes 159
carbon nanostructure growth: two heating regimes 215
carbon nanostructure synthesis: plasma advantages 131
carbon nanostructure synthesis: problems 132
carbon nanostructures: building units 117
carbon nanostructures: disordered nanostructured state 218
carbon nanostructures: G and D Raman bands 396
carbon nanostructures: growth conditions 149
carbon nanostructures: nanoparticle management 126
carbon nanostructures: ordered nano-structured state 217
carbon nanostructures: practical approach 123
carbon nanotip arrays: multiscale numerical simulation 385
carbon nanotip microemitters 464
carbon nanotip model: experimental support 391
carbon nanotip reshaping: numerical model 382
carbon nanotip self-sharpening 411
carbon nanotip shape: effect of plasma sheath 383
carbon nanotips: atomistic models 464
carbon nanotips: better aspect ratio in plasma 388
carbon nanotips: better size uniformity in plasma 390
carbon nanotips: self-sharpening 380
carbon nanotube growth model 347
carbon nanotube growth: main scenarios 347
carbon nanotube: manipulation 126
carbon nanotubes XVIII, 13, 52
carbon nanotubes: base (root) growth mode 347
carbon nanotubes: building units 73
carbon nanotubes: catalyst-free growth 132
carbon nanotubes: chirality control 130
carbon nanotubes: effect of atomic hydrogen 365
carbon nanotubes: effect of ions 125
carbon nanotubes: metallic vs semiconducting 129
carbon nanotubes: multiwalled 122
carbon nanotubes: surface-bound vs gas-borne 407
carbon nanotubes: tip (top) growth mode 347
carbon nanowall-like structures 402
carbon nanowalls 127
carbon solubility in catalyst 354
carbon solubility in Ni catalyst 398
carbon surface diffusion flux 359
carbon yield from ion impact 366
catalyst fragmentation 61
catalyst poisoning 353
catalyst: Ni/Fe/Co 120
catalytic probes 436
catalyzed CVD of nanostructures 392
cause and effect approach XVIII, 55, 60
CdO evaporation by plasma exposure 437
CdO nanopyramids 437
CdO nanostructures: nucleation 439
CdO: applications 435
CdO: properties 435
CH$_3$ radical 91, 124
CH$_4$ conversion factor 157
characteristic adatom diffusion time 323
charge exchange reactions 486
charge transfer rates 94
charge transfer time 238
charged cluster theory 68, 76, 449
charged nanoclusters 67, 75
chemical vapor deposition 64, 67
chirality vector 129
cluster beam deposition 78, 85, 238
cluster growth: Winchester mechanism 108
clustering in C$_2$H$_2$ plasmas 119
competition of nano- and amorphous phases 123
complex self-organized system: an example 318
complexity XI, 37
computer and communications revolution 15
conducting and non-conducting nanopatterns 346
continuous film fragmentation 260
core-shell binary quantum dots 300
cosmic dust expansion 188
critical cluster: radius 185
critical clusters 59, 110
d dangling bonds 91
Debye length 88
delivery of building units: two channels 61
density functional theory 99
desorption 360
determinism XVIII, 30, 74
determinism: macroscopic 4
determinism: micro- and macro-levels 385
determinism: microscopic 4
diamond 12
diamond-like carbon 12
diamond: ultrananocrystalline 12
dissociation 52
DMol3 99
doping ZnO nanorods 416
dust creation 23
dust formation 186
e EDX analysis 243
effect of heating on surface morphology 217
effect of ion bombardment 124
effect of ion fluxes: summary 88
effective deposition flux 367
electric field configurations in nanopatterns 346
electric fields of nanodots of different shapes 329
electric potential in nanoarray 419
electron confinement in QDs: requirements 252
electron energy distribution function 110, 152
electron impact reactions 486
electron temperature: 2D distribution 167
electron-neutral reactions 483
electron/ion continuity equation 487
electrostatic interactions of MWCNTs 355
electrostatic potential: 2D distribution 167
energy minimization principle 11
environment complexity vs nano-assembly exoticism 466
exciton’s Bohr radius 17

faceted nanocrystals 182
features of plasma environment 462
field effect transistor 16
field emission display technology 200
flat-grain CdO surface morphology 436
floating temperature growth regime 394
flux of carbon through catalyst 360
fluxes of hydrocarbon radicals 360
formation of new carbon sheets 376
fractal growth patterns 262
Frank-van der Merwe growth mode 258
FTIR spectroscopy 444

gas temperature gradient 220
Ge nanocluster size distribution: plasma-related effects 320
Ge nanoislands: plasma-assisted crystallization 326
Ge/Si nanodots 258
Ge/Si QD growth: characteristic energies 306
Ge/Si QDs: improving positional uniformity 310

Ge/Si QDs: improving size uniformity 308
graphite 12
graphitic nanofragments 118
growth functions 387
growth mode selectivity: energetics 259
growth of CdO nanostructures: main tendencies 437
guided self-assembly 13

high-density plasmas 346
high-rate nanoparticle nucleation 468
high-resolution transmission electron microscopy 108, 115, 375
highest occupied molecular orbital (HOMO) 464
homogeneous nucleation 185
hybrid multiscale simulation 385
hydrocarbon plasmas 117
hydrocarbon polymerization 192
hydrogenated amorphous silicon 57

ICT market estimates 16
impalfection of cancerous cells 126

in vitro bio-activity of TiO₂ 442
in vitro bioreponse: tradeoffs 455
incoming flux: deterministic choice 102
inductively coupled plasma 165, 240, 374, 393, 436, 490
inductively coupled plasma reactor 150
information age 15
integrated plasma-aided nano-fabrication facility 32, 115
interaction of neutrals with nanostructured surfaces 436
interfacial tension 439
interstellar space 188
ion bombardment 63
ion conditioning of catalyst 407
ion drag force 82
ion flux 34
ion flux control in nanoarrays: effect of plasma sheath 421
ion flux control: requirements 201
ion flux distribution around nanotubes in arrays 351
ion focusing by nanostructures 205
ion focusing by nanotips 388
ion motion equation 203
ion penetration into small gaps 424
ion sputtering 399
ion surface processing 36
ion trajectories in nanoarrays of different density 419
ion trajectories in nanopatterns 346
ion-assisted dissociation 360
ion-induced nucleation 185, 192
ion-neutral reactions 483
ionization degree 33
ionized physical vapor deposition (i-PVD) 429
island coalescence 270
island dissolution 270
island nucleation 452

k
kinetic Monte Carlo simulations 99, 322

l
L-shaped nanotubes 128
laser plasma: better nanocluster uniformity 190
laser plasma: faster nanocluster growth 190
laser plasma: nanocluster generation 189
lowest unoccupied molecular orbital (LUMO) 464

m
mass balance on catalyst surface 360
metal oxide nanowires 440
microscopic electric field: topography 104
microscopic electric field: effect on surface diffusion 329
microscopic ion flux topography 387
microscopic ion flux topography: conducting pattern 205
microscopic ion flux topography: effect of plasma parameters 211
microscopic ion flux topography: non-conducting pattern 209
microscopic ion fluxes in nanorod arrays 423
molecular clouds 188
molecular dynamics simulations 99
monolayer coating of nanorod array: time optimization 422
monolayer coating of nanorods: plasma advantages 457
monolayer coating rates: nanorods vs nanotubes 426
monolayer coating: rates vs uniformity 427
monolayer coating: temporal dynamics 424
monolayer deposition time 264
Monte Carlo simulations 204, 382, 419, 430
multiwalled carbon nanotubes 347

n
nano-scale electric field 203
nanoarrays: order and disorder 252
nanoassembly XII, XVI
nanoassembly growth module 137
nanoassembly: balancing demand and supply of BUs 315
nanoassembly: definitions 4
nanoassembly: macroscopic vs microscopic models 390
nanoassembly: non-equilibrium conditions 13
nanoassembly: plasma-related issues 64
nanocluster deposition 77, 85
nanocluster disintegration 87
nanocluster seed nuclei: deposition model 274
nanocluster-nanowire interaction 117
nanocluster-surface interactions 76
nanocluster-surface interactions: summary 94
nanocrystal growth rate: plasma-related factors 317
nanodevice interconnects: requirements for self-organization 256
nanodot array fabrication: common approaches 428
nanodot pattern development: self-ordering 271
nanodot pattern development: size uniformization 271
nanodot quasi-displacement 306
nanodots: definition 252
nanofabrication using templates: problems 428
nanofabrication: definition 5
nanoisland growth and dissolution 267
nanoisland growth modes 63
nanolithography 10
nanomanipulation 10, 253
nanopanography 10
nanoparticle agglomerates 182
nanoparticle agglomeration 110
nanoparticle BU: control of impact energy 112
nanoparticle charge reversal point 220
nanoparticle crystallization: plasma-related improvement 323
nanoparticle deposition 84
nanoparticle dynamics in sheath and pre-sheath 222
nanoparticle filter 241
nanoparticle focusing by microstructures 237
nanoparticle growth and crystallization: elementary processes 322
nanoparticle growth in stellar environments 188
nanoparticle liquid precursors 183
nanoparticle manipulation 84
nanoparticle manipulation: control parameter choice 246
nanoparticle nucleation 183
nanoparticle nucleation: effect of ions 184
nanoparticle post-processing 90
nanoparticle potential energy 222
nanoparticle radii distribution function 219, 225
nanoparticle solid precursors 183
nanoparticle synthesis 29
nanoparticles 3
nanoparticles: thermophoretic manipulation 113, 214, 226
nanopattern development submodule 137
nanopattern: smooth development 270
nanoporous template: relative deposition rate 430
nanoporous templates 9
nanopowder generation 181
nanopowder generation onset 110
nanorod array: monolayer coating 422
nanorods: square and hexagonal arrays 422
nanoscale XI
nanoscale processing XIII
nanoscale synthesis: recipes XIII
nanoscience: aims 13
nanoscience: ultimate crux 11
nanosized cavities, pores and trenches 405
nanostructures of various dimensionality: examples 343
nanostructures: examples of post-processing 417
nanostructures: geometrical and structural requirements 343
nanotechnology research directions 25
nanotechnology: aims XII
nanotechnology: two basic approaches 8
nanotip array development 389
nanotip radii distribution function 211, 390
nanotip shape control: two-stage process 383
nanotips: ion flux distribution 207
nanotube growth in a plasma: features 353
nanotube growth rate 352
nanotube growth rates on surface and arc plasma 353
nanotube growth: important plasma species 371
nanotubes: electric field alignment 128
nanotubes: surface functionalization 417
nanowall growth: electric field-related controls 405
nanowall growth: plasma vs neutral gas 404
nanowall topology: plasma-related features 405
nanowalls: plasma-related improvements 403
nanowires: Si 115
nanoworld 7
nanoworld: examples 8
Nature’s nano-mastery 23
Nature’s nanofab XVII, 466
Nature’s nanofab: basic formula 24
Nature’s nanofab: reproduction 188
neutral flux 33
neutral-neutral reactions 483
Ni catalyst nanoparticle 360
nine-order-of-magnitude gap 4
non-equilibrium vs thermal plasmas 467
non-uniform Ni catalyst fragmentation 397
nucleation 25, 59
nucleation rate 184
nucleation sub-module 136
nucleation: ion sign effect 185

o
O2 plasma 436
optical emission spectroscopy 118, 151
orbit motion limited approximation 221
ordered QD networks: requirements 254

p
pattern self-organization module 137
pattern transfer 9
penetration of ions/neutrals into dense nanoarrays 420
peripheral carbon bond termination by hydrogen 376
phase purity of TiO2 vs apatite nucleation 455
photo-induced nucleation 189
plasma applications at nanoscales XI
plasma catalyst activation 123
plasma current through substrate 62
plasma enhanced atomic layer deposition (PEALD) 417
plasma enhanced chemical vapor deposition 51, 241, 391
plasma forces on nanoparticles 221
plasma interactions with metal surfaces 438
plasma nanoassembly: summary of advantages 468
plasma nanofabrication environment 314
plasma nanofabrication: environment 32
plasma nanoscience XV, XIX
plasma nanoscience and origin of life 477
plasma nanoscience research: ultimate crux 470
plasma nanoscience: aims and approaches 462
plasma nanoscience: central question 15
plasma nanoscience: main aim 30
plasma nanotools: controlling BU supply 316
plasma nanotools: future prospects 27
plasma nanotools: outlook 471
plasma quasineutrality 32
plasma sheath 81
plasma sources: RF 18
plasma substrate heating 63
plasma-aided nanofabrication: main issues 54
plasma-assisted RF magnetron sputtering 115
plasma-building unit approach 35, 448
plasma-surface interactions 36, 66
plasma: definition 2
platelet-structured nanocones: experimental observations 375
platelet-structured ZnO 374
Poisson’s equation 490
polymorphous silicon 78, 108
post-processing of dense nanoarrays: problems 417
post-processing of dense nanotube arrays: plasma advantages 418
power balance equation 489
Index

pre-sheath 69
prebiotic nanoassembly 477
precursor dissociation 132
precursor influx ratio 289
primary and secondary nanocones 395
primary nanoparticle coalescence onset 181
proton impact ionization reactions 486
pulsed laser ablation 189

q
QD growth: control of surface fluxes 282
QDs for nanodevices: some requirements 302
quadrupole mass spectrometry 150
quantum dot nuclei distributions 279
quantum dot seed nuclei 261
quantum dots 78, 101, 103, 252
quantum dots: AlxIn1-xN 115
quantum dots: applications 255
quantum dots: growth model 305
quantum dots: photoluminescence 115
quantum dots: plasma-related effects 104
quantum dots: stoichiometric composition 283

r
radical adsorption and desorption on nanotubes 366
Raman spectroscopy 396
reactive magnetron sputtering 441
reactive plasmas: examples 69
red giant stars 23, 186
remote plasmas 71

s
S-curve of technology 15
Saha-Langmuir ionization 67
scanning electron microscopy 216, 241, 375, 395, 436, 447
selected-area nanoparticle deposition 228
selective delivery of ionic BUs 421
selective nanoparticle deposition 213
self-assembly 14, 253
self-assembly vs self-organization 253
self-catalytic nanostructure growth 436
self-organization 14
self-organization approach: the Holy Grail 257
self-organization in nanocone arrays: simulation 400
self-organization on plasma-exposed surfaces: outlook 473
self-organization on plasma-exposed surfaces: three stages 318
self-organized interconnected networks 473
self-organized nanoworld 14
sheath voltage drop 155
sheath width 87
sheath: collisional 82
sheath: collisionless 82
Si nanotips 416
Si_xH_y nanoclusters 78
Si_xH_y polymerization pathways 179
Si_xH_y radicals 57
Si:H nanoparticles: charge 180
Si:H nanoparticles: nucleation 180
SiC nanoislands 266
SiC QD growth: characteristic energies 297
SiC QD: stoichiometric composition 285
SiC quantum dots: growth dynamics 327
SiC: applications 283
SiC: nanoislanded nanocrystalline 114
SiC: polymorphous hydrogenated 114
SIESTA 99
SiH₂ - anion precursor 110, 179
SiH₃ radical 91
SiH₅ anion precursor 110, 179
silane-based plasmas 78
simulated body fluid 446
single-crystalline carbon nanocones: growth stages 376
single-crystalline nanoparticles 79
single-crystalline platelet-structured carbon nanocones 374
single-walled carbon nanotubes 347
single-walled carbon nanotubes: bandgap 129
single-walled carbon nanotubes: cap lift-off nucleation 131
single-walled carbon nanotubes: polarizability 355
single-walled carbon nanotubes: zig-zag and armchair configurations 130
single-walled nanotubes: why vertical alignment 355
site-selective nanoparticle deposition: practical hints 239
solar cells 78, 108, 114
solid-liquid phase 438
spatially averaged (global) discharge model 152
stellar nucleosynthesis 22
stoichiometric SiC QDs: balancing surface fluxes 292
stoichiometric SiC QDs: two-step strategies 293
stoichiometric SiC QDs: working points 293
stoichiometric SiC QDs: difficulties 283
strain relaxation 260
Stranski-Krastanov growth mode 258, 428
supercritical island 268
suppression of higher hydrocarbons 193
surface activation 91
surface bond activation/passivation 173
surface charge calculation 203
surface conditions module 136
surface coverage 264, 395
surface coverage: deterministic approach 280
surface coverage: time dependence 265
surface defects and dislocations 261
surface diffusion 36, 304
surface diffusion activation energy: plasma-related change 320
surface diffusion coefficient 305, 360, 367
surface diffusion coefficient: plasma effect 329
surface diffusion length 367
surface diffusion: activation energy 103
surface diffusion: characteristic time 104
surface hydroxyl groups and biomimicry 441
surface micro-structures 228
surface microstructures as electrostatic lenses 236
surface passivation 91
surface plasmonics 471
surface potential 81
surface preparation 50, 61, 90
surface processes: characteristic energies 320
surface processes: plasma effects 98
surface reconstruction 126
surface roughness vs wettability 446
surface science of plasma exposed surfaces 99
surface science: analytical tools 100
surface science: main aims 249
SWCNT growth: effect of ions and atomic hydrogen 368
SWCNT growth: elementary processes on surface 365
SWCNT growth: plasma-related features 409
SWCNT growth: role of plasma 368
synergy of nanoassembly routes 466
tapered carbon nanocones 375
temperature gradient probe 216
templated nanodot growth: process optimization 434
thermal dissociation 360
thermal dissociation: activation energy 366
thermal plasma-based nanoassembly: features 468
thermokinetic growth mode selection 129
thermophoretic force 113
three-dimensional self-organization in nanocone arrays 401
time evolution numerical method 484
TiO₂: anatase and rutile phases 442
TiO₂: effect of ions on crystalline structure 453
top-down approach 8
top-down nanofabrication:
 physical limits 17
 α→γ' transition 181
transport of building units 62
trial and error approach XII
triple-alpha reaction 23
two-dimensional adatom field 305, 331
two-dimensional diffusion equation 305
two-dimensional evaporation 270
two-dimensional fluid model 166

u
undercritical island 268
uniform surface activation from non-uniform plasma 173

v
vertical alignment of nanostructures: explanation 354, 408
vertically aligned nanostructures:
 aspect ratio 380
voided nanostructures: profile evolution 406
Volmer-Weber growth mode 258, 452

w
wet chemical growth of bio-TiO₂: problems 442
working units XV, XVIII, 50, 171

x
X-ray diffractometry (XRD) 396, 444