Contents

Preface XV
List of Contributors XIX

1 General Aspects of the Glycosidic Bond Formation 1
 Alexei V. Demchenko
 1.1 Introduction 1
 1.2 Major Types of O-Glycosidic Linkages 1
 1.3 Historical Development: Classes of Glycosyl Donors 2
 1.4 General Reaction Mechanism 4
 1.5 Anomeric Effects 7
 1.6 Stereoselectivity of Glycosylation 8
 1.6.1 Structure of the Glycosyl Donor 8
 1.6.1.1 Protecting Groups 8
 1.6.1.2 Leaving Group 9
 1.6.2 Structure of the Glycosyl Acceptor 9
 1.6.2.1 Position of the Hydroxyl 9
 1.6.2.2 Protecting Groups 10
 1.6.3 Reaction Conditions 10
 1.6.3.1 Solvent Effect 10
 1.6.3.2 Promoter (Catalyst), Additions 11
 1.6.3.3 Temperature and Pressure 11
 1.6.4 Other Factors 11
 1.7 Special Cases of Glycosylation 12
 1.7.1 Aminosugars 12
 1.7.2 Sialosides 13
 1.7.3 Synthesis of 2-Deoxylglycosides 15
 1.7.4 Synthesis of β-Mannosides 15
 1.7.5 Synthesis of Furanosides 16
 1.8 Glycosylation and Oligosaccharide Sequencing 16
 1.8.1 Leaving-Group-Based Strategies 17
 1.8.2 Two-Step Activation and Preactivation Strategies 18
1.8.3 Protecting-Group-Based Strategies 19
1.9 Conclusions and Outlook 21
References 21

2 Glycoside Synthesis from Anomeric Halides 29
2.1 Glycosyl Fluorides 29
Shin-ichiro Shoda
2.1.1 Background 29
2.1.2 Synthesis of Glycosyl Fluoride Donors 31
2.1.2.1 Fluorinating Reagents 31
2.1.2.2 Glycosyl Fluorides from Hemiacetals 32
2.1.2.3 Glycosyl Fluorides from Glycosyl Esters 33
2.1.2.4 Glycosyl from Glycosyl Halides 34
2.1.2.5 Glycosyl Fluorides from S-Glycosides 35
2.1.2.6 Glycosyl Fluorides from Other Anomeric Moieties 35
2.1.3 Glycosylation Using Glycosyl Fluorides as Glycosyl Donors 36
2.1.3.1 A Weak Lewis Acid Cleaves the C–F Bond. How Was the Glycosyl Fluoride Method Discovered? 36
2.1.3.2 Various Promoters Employed in Glycosylation by the Glycosyl Fluoride Method 38
2.1.3.3 Glycosylations Promoted by Various Promoters 38
2.1.3.4 Glycosylation of Silylated Compounds as Glycosyl Acceptors 41
2.1.3.5 Two-Stage Activation Procedure 42
2.1.3.6 Protecting-Group-Based Strategy 44
2.1.4 Application to Natural Product Synthesis 44
2.1.5 Special Topics 51
2.1.5.1 C-Glycoside Synthesis via O-Glycosylation 51
2.1.5.2 Glycosyl Fluorides for the Synthesis of a Combinatorial Library 51
2.1.5.3 Glycosyl Fluorides as Glycosyl Donors for Chemoenzymatic Synthesis 52
2.1.6 Conclusions and Future Directions 53
2.1.7 Typical Experimental Procedures 53
2.1.7.1 Preparation of the Glycosyl Donors 53
2.1.7.2 Glycosylation Using Glycosyl Fluorides as Glycosyl Donors 54
References 56

2.2 Glycosyl Chlorides, Bromides and Iodides 59
Suvarn S. Kulkarni, Jacquelyn Gervay-Hague
2.2.1 Background 59
2.2.2 Glycosyl Chlorides 60
2.2.2.1 Preparation of Glycosyl Chlorides 60
2.2.2.2 Reactions of Glycosyl Chlorides 62
2.2.3 Glycosyl Bromides 66
2.2.3.1 Preparation of Glycosyl Bromides 66
2.2.3.2 Reactivity Patterns and Some Useful Reactions of Glycosyl Bromides 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3.3 Stereoselective Glycosylations Employing Glycosyl Bromides and Applications</td>
<td>69</td>
</tr>
<tr>
<td>2.2.4 Glycosyl Iodides</td>
<td>74</td>
</tr>
<tr>
<td>2.2.4.1 Preparation of Glycosyl Iodides</td>
<td>75</td>
</tr>
<tr>
<td>2.2.4.2 Reactions of Glycosyl Iodides</td>
<td>77</td>
</tr>
<tr>
<td>2.2.5 Conclusions</td>
<td>89</td>
</tr>
<tr>
<td>2.2.5.1 General Procedure for One-Pot Glycosylation Using Glycosyl Iodides</td>
<td>90</td>
</tr>
<tr>
<td>References</td>
<td>90</td>
</tr>
</tbody>
</table>

3 Glycoside Synthesis from 1-Oxygen Substituted Glycosyl Donors 95

3.1 Hemiacetals and O-Acyl/Carbonyl Derivatives 95

Daniel A. Ryan, David Y. Gin

3.1.1 Introduction 95

3.1.2 Dehydrative Glycosylation via Electrophilic Activation of C1-Hemiacetals 95

3.1.3 Acid Activation of C1-Hemiacetals 96

3.1.4 Hemiacetal Activation with Silicon Electrophiles 100

3.1.5 Hemiacetal Activation with Phosphorus Electrophiles 103

3.1.6 Hemiacetal Activation with Sulfur Electrophiles 107

3.1.7 Hemiacetal Activation with Carbon Electrophiles 111

3.1.8 Other Methods 114

3.1.9 Glycosylation with Anomeric Esters 116

3.1.9.1 Glycosyl Acetate and Glycosyl Benzoate Donors 117

3.1.10 Activation of O-Carbonyl Derivatives 122

3.1.11 Conclusion 128

3.1.12 Representative Experimental Procedures 128

3.1.12.1 Representative Procedure for Preparation of C1-Hemiacetal Donors Through a Peracylation-Selective Anomeric Deacylation Sequence 128

3.1.12.2 Representative Procedure for Brønsted Acid Promoted Glycosylation with C1-Hemiacetal Donors Using Methoxyacetic Acid 128

3.1.12.3 Representative Procedure for Lewis Acid Promoted Glycosylation with C1-Hemiacetal Donors Using Sn(OTf)2 and LiClO4 129

3.1.12.4 Representative Procedure for Silicon Promoted Glycosylation with C1-Hemiacetal Donors Using Me3SiBr and CoBr2 129

3.1.12.5 Representative Procedure for Mitsunobu-Type Glycosylation with C1-Hemiacetal Donors and Phenol Glycosyl Acceptors 129

3.1.12.6 Representative Procedure for Appel-Type Glycosylation with C1-Hemiacetal Donors 129

3.1.12.7 Representative Procedure for Nosyl Chloride Promoted Glycosylation with C1-Hemiacetal Donors 130

3.1.12.8 Representative Procedure for Diphenyl Sulfoxide and Triflic Anhydride Promoted Glycosylation with C1-Hemiacetal Donors 130
3.1.12.9 Representative Procedure for Carbodiimide Promoted Glycosylation with C1-Hemiacetal Donors 130
3.1.12.10 Representative Procedure for Carbonyl Promoted Glycosylation with C1-Hemiacetal Donors Using Trichloroacetic Anhydride 131
3.1.12.11 Representative Procedure for Lewis Acid Promoted Glycosylation with Glycosyl Acetate Donors Using SnCl4 131
3.1.12.12 Representative Procedure for Iodotrimethylsilane and Phosphine Oxide Promoted Glycosylation with Glycosyl Acetate Donors 131
3.1.12.13 Representative Procedure for Lewis Acid Promoted Glycosylation with TOPCAT Glycosyl Donor Using Silver Trflate 131
3.1.12.14 Representative Procedure for TMS Trflate Promoted Glycosylation with Glycosyl N-Tosyl Carbamate Donors 132
3.1.12.15 Representative Procedure for Trityl Salt Promoted Glycosylation with Glycosyl Phenyl Carbonate Donors 132
References 132
3.2 Glycoside Synthesis from 1-Oxygen-Substituted Glycosyl Imidates 143
Xiangming Zhu, Richard R. Schmidt
3.2.1 Introduction 143
3.2.2 Methodological Aspects 144
3.2.2.1 Preparation of Anomeric O-Trichloroacetimidates 144
3.2.2.2 Glycosidation of O-Glycosyl Trichloroacetimidates 145
3.2.3 Synthesis of Oligosaccharides 146
3.2.3.1 β-Glucosides, β-Galactosides, α-Mannosides and Others 146
3.2.3.2 Aminosugar-Containing Oligosaccharides 149
3.2.3.3 1,2-cis Glycosides 155
3.2.3.4 Miscellaneous Oligosaccharides 156
3.2.4 Synthesis of Glycoconjugates 160
3.2.4.1 Glycosphingolipids and Mimics 160
3.2.4.2 Glycosyl Phosphatidyl Inositol Anchors 162
3.2.4.3 Glycosyl Amino Acids and Glycopeptides 163
3.2.4.4 Saponins 166
3.2.4.5 Other Natural Products and Derivatives 168
3.2.4.6 Miscellaneous Glycoconjugates 171
3.2.5 Solid-Phase Oligosaccharide Synthesis 171
3.2.6 Trifluoroacetimidates 174
3.2.6.1 Preparation and Activation 174
3.2.6.2 Application to Target Synthesis 176
3.2.7 Conclusions and Outlook 178
3.2.8 Experimental Procedures 178
3.2.8.1 Typical Procedure for the Preparation of O-Glycosyl Trichloroacetimidates 178
3.2.8.2 Typical Procedure for the Glycosylation with O-Glycosyl Trichloroacetimidates 179
3.2.8.3 Typical Procedure for the Preparation of O-Glycosyl N-Phenyl Trifluoroacetimidates 179
3.2.8.4 Typical Procedure for the Glycosylation with O-Glycosyl N-Phenyl Trifluoracetimidates 179
References 179

3.3 Anomeric Transglycosylation 185
Kwan-Soo Kim, Heung-Bae Jeon

3.3.1 Introduction 185

3.3.2 Alkyl Glycosides 187
3.3.3 Silyl Glycosides 187
3.3.4 Heteroaryl Glycosides 190
3.3.5 2-Hydroxy-3,5-Dinitrobenzoate (DISAL) Glycosides 193
3.3.6 Vinyl Glycosides 194
3.3.7 n-Pentenyl Glycosides 200
3.3.8 2'-Carboxybenzyl Glycosides 212
3.3.9 Conclusions and Outlook 217

3.3.10 Experimental Procedures 218
3.3.10.1 Glycosylation Employing Vinyl Glycosides 218
3.3.10.2 Glycosylation Employing n-Pentenyl Glycosides with NIS/TESOTf 219
3.3.10.3 Glycosylation Employing n-Pentenyl Glycosides with IDCP 219
3.3.10.4 Preparation of n-Pentenyl Glycosides from Glycosyl Bromides 219
3.3.10.5 Glycosylation Employing CB Glycosides with Tf2O 219
3.3.10.6 Preparation of BCB Glycosides from Glycosyl Bromides 220
3.3.10.7 Preparation of CB Glycosides from BCB Glycosides 220
References 220

3.4 Phosphates, Phosphites and Other O–P Derivatives 223
Seiichi Nakamura, Hisanori Nambu, Shunichi Hashimoto

3.4.1 Introduction 223
3.4.2 Glycosyl Phosphates 224
3.4.2.1 Preparation of Glycosyl Phosphates 224
3.4.2.2 Glycosidation Using Glycosyl Phosphates 228
3.4.2.3 Mechanism of Glycosidation Reaction with Glycosyl Phosphates 231
3.4.3 Glycosyl Phosphites 232
3.4.3.1 Preparation of Glycosyl Phosphites 232
3.4.3.2 Glycosidation Using Glycosyl Phosphites 233
3.4.3.3 Mechanism of Glycosidation Reaction with Glycosyl Phosphites 237
3.4.4 Glycosyl Donors Carrying Other Phosphorus-Containing Leaving Groups 238
3.4.4.1 Glycosyl Dimethylphosphinothioates 238
3.4.4.2 Glycosyl Phosphinimidates and Other N=P Derivatives 238
3.4.4.3 Glycosyl N,N',N'-Tetramethylphosphorodiamidates 239
3.4.4.4 Miscellaneous O–P Derivatives 240
3.4.5 Construction of Other Types of Glycosidic Linkages 241
3.4.5.1 Construction of the β-Mannosidic Linkage 241
3.4.5.2 Construction of 2-Acetamido-2-deoxyglycosidic Linkages 241
3.4.5.3 Construction of 2-Deoxyglycosidic Linkages 243
3.4.5.4 Construction of α-Sialosidic Linkages 244
3.4.6 Chemoselective Glycosidation Strategies 246
3.4.7 Application to the Synthesis of Natural Products 248
3.4.8 Conclusion 249
3.4.9 Experimental Procedures 249
3.4.9.1 Preparation of the Glycosyl Donors 249
3.4.9.2 Glycosidation 252
References 254

4 Glycoside Synthesis from 1-Sulfur/Selenium-Substituted Derivatives 261
4.1 Thioglycosides in Oligosaccharide Synthesis 261
Wei Zhong, Geert-Jan Boons
4.1.1 Preparation and O-Glycosidation of Thioglycosides 261
4.1.2 Preparation of Thioglycosides 261
4.1.3 Indirect Use of Thioglycosides in Glycosidations 263
4.1.4 Direct Use of Thioglycosides in Glycosidations 264
4.1.5 Anomeric Control in Glycosidations of Thioglycosides 267
4.1.6 Glycosylation Strategies Using Thioglycosides 274
4.1.6.1 Chemoselective Glycosylations 274
4.1.6.2 Orthogonal and Semiorthogonal Glycosylations 282
4.1.6.3 Two-Directional Glycosylation Strategies 288
4.1.7 Aglycon Transfer 292
4.1.8 General Procedure for Synthesis of Thioglycosides from Peracetylated Hexapyranosides Promoted by BF₃-Etherate 292
4.1.9 General Procedure for Synthesis of Thioglycosides by Displacement of Acylated Glycosyl Bromide with Thiolate Anion 293
4.1.10 General Procedure for Synthesis of Sialyl Thioglycosides Using TMSSMe and TMSOTf 293
4.1.11 General Procedure for Activation of Thioglycosides with Ph₂SO/Tf₂O 293
4.1.12 General Procedure for Activation of Thioglycosides with BSP/TTBP/Tf₂O 294
4.1.13 General Procedure for Activation of Sialyl Thioglycosides with NIS/TfOH 294
References 294
4.2 Sulfoxides, Sulfinides and Sulfones 303
David Crich, Albert A. Bowers
4.2.1 Introduction 303
4.2.2 Donor Preparation 303
4.2.2.1 Sulfoxides 303
4.2.2.2 Sulfinides 306
4.2.2.3 Sulfones 306
4.2.2.4 Other Oxidized Derivatives of Thioglycosides 307
4.2.2.5 1,2-Cyclic Sulfites 307
4.2.3 Glycosylation 307
4.2.3.1 Sulfoxides 307
4.2.3.2 Sulfimides 315
4.2.3.3 Sulfones 316
4.2.3.4 Cyclic Sulfites 316
4.2.4 Applications in Total Synthesis 317
4.2.5 Special Topics 319
4.2.5.1 Intramolecular Aglycone Delivery (IAD) 319
4.2.5.2 Polymer-Supported Synthesis 321
4.2.5.3 Ring Closing and Glycosylation 321
4.2.5.4 Activation of Thioglycosides by Sulfoxides and Related Reagents 323
4.2.6 Experimental Procedures 324
4.2.6.1 General Procedure for the Preparation of Glycosyl Sulfoxides 324
4.2.6.2 General Procedure for Sulfoxide Glycosidation 325
4.2.7 Conclusion 325
References 325

4.3 Xanthates, Thioimidates and Other Thio Derivatives 329
Wiesław Szeja, Grzegorz Gryniewicz
4.3.1 Introduction 329
4.3.2 Dithiocarbonates – Preparation and Application as Glycosyl Donors 330
4.3.3 Glycosyl Thioimidates – Preparation and Application as Glycosyl Donors 335
4.3.4 Glycosyl Thiocyanates as Glycosyl Donors 349
4.3.5 Glycosyl Dithiophosphates as Glycosyl Donors 350
4.3.6 Conclusions 352
4.3.7 Typical Experimental Procedures 353
4.3.7.1 Preparation of Xanthates 353
4.3.7.2 Glycosidation of Xanthates 353
4.3.7.3 Preparation of Thioimidates 356
4.3.7.4 Synthesis of Glycosyl Thiocyanates 356
4.3.7.5 Glycosidation of Thiocyanates 357
4.3.7.6 Synthesis of S-(2-Deoxyglycosyl) Phosphorodithioates 357
4.3.7.7 Glycosidation of Glycosyl Phosphorodithioates 357
References 357

4.4 Selenoglycosides 361
Robert A. Field
4.4.1 Background 361
4.4.2 Selenoglycoside Preparation 362
4.4.3 Selenides as Donors 365
4.4.3.1 Promoters for Selenoglycoside Activation 365
4.4.4 Selenoglycosides as Acceptors 371
4.4.5 Exploiting Selenoglycoside Relative Reactivity in Oligosaccharide Synthesis 372
4.4.6 Summary 375
4.4.7 Examples of Experimental Procedures

4.4.7.1 Typical Procedure for the Preparation of Selenoglycosides from Glycosyl Bromides

4.4.7.2 Typical Procedure for the Preparation of Selenoglycosides from Glycals

4.4.7.3 Typical Procedure for NIS/TfOH-Promoted Glycosylation with Selenoglycosides

4.4.7.4 Typical Procedure for BAHA-Promoted Glycosylation with Selenoglycosides

References

5 Other Methods for Glycoside Synthesis

5.1 Orthoesters and Related Derivatives

Bert Fraser-Reid, J. Cristóbal López

5.1.1 Introduction

5.1.2 Sugar 1,2-Orthoesters

5.1.2.1 1,2-O-Alkyl Orthoesters as Glycosyl Donors – Early Developments

5.1.2.2 1,2-O-Cyanoethylidene Derivatives

5.1.2.3 1,2-Thioorthoester Derivatives

5.1.2.4 Internal Orthoesters

5.1.2.5 Miscellaneous Orthoesters

5.1.3 Orthoester to Glycoside Rearrangement – The Two-Stage Glycosylation Method Revisited

5.1.3.1 Self-Condensation of Mannose 1,2-Orthoesters: Ready Access to (1 → 2)-Linked Mannose Oligosaccharides

5.1.3.2 Rearrangement of Sugar–Sugar Orthoesters Leading to 1,2-cis-Glycosidic Linkages

5.1.4 n-Pentenyl-1,2-Orthoesters: Glycosyl Donors with Novel Implications

5.1.4.1 Divergent–Convergent Synthesis of Glycosylaminoglycan 120 from Glycosyl Donors and Acceptors Ensuing from NPOEs

5.1.4.2 From NPOEs to the 1,2-ß-Linked Oligomannans of Candida albicans

5.1.4.3 From NPOEs to the Synthesis of a Malaria Candidate Glycosylphosphatidylinositol (GPI)

5.1.4.4 From NPOEs to the Preparation of Glycolipids for Multivalent Presentation

5.1.4.5 The Lipoarabinomannan Components of the Cell Wall Complex of Mycobacterium tuberculosis: NPOEs in Chemoselective, Regioselective and Three-Component Double Differential Glycosidations

5.1.4.6 Relevance of NPOEs to the Regioselectivity in the Glycosylation of Primary Versus Secondary Hydroxyls

5.1.4.7 Iterative Regioselective Glycosylations of Unprotected Glycosyl Donors and Acceptors
5.1.4.8 NPOEs of Furanoses: Key Intermediates in the Elaboration of the Arabino Fragment of LAM 408

5.1.5 Conclusions and Future Directions 410

5.1.6 Typical Experimental Procedures 411

5.1.6.1 General Procedure for the Preparation of Orthoesters 411

5.1.6.2 General Procedure for Glycosidation with n-Pentenyl Orthoesters 411

References 412

5.2 Other Methods for Glycoside Synthesis: Dehydro and Anhydro Derivatives 416

5.2.1 Introduction 416

5.2.2 Glycals in Glycoside Synthesis 417

5.2.2.1 Preparation of Glycals 417

5.2.2.2 Glycals as Glycosyl Donors 420

5.2.3 Anhydro Sugars as Glycosyl Donors 436

5.2.3.1 1,2-Anhydro Sugars 436

5.2.3.2 1,6-Anhydro Sugars as Glycosyl Donors 441

5.2.4 Conclusion 443

5.2.5 General Experimental Procedures 444

5.2.5.1 General Method for the Preparation of 2-Deoxy-2-Iodoglycosides from Glycals 444

5.2.5.2 Preparation of 1,2-Anhydro-tri-O-Benzyl-α-D-Glucose and General Method for Its Use as a Glycosyl Donor in the Formation of β-Glycosides 444

5.2.5.3 General Method for the Preparation of 2-Deoxy-2-Iodoglycosylbenzenesulfonamides from Glycals and Its Use as Glycosyl Donors in the Synthesis of 2-Benzenesulfamido-2-Deoxy-β-Glycosides 444

References 445

5.3 Miscellaneous Glycosyl Donors 449

5.3.1 Introduction 449

5.3.2 1-O-Silyl Glycoside 449

5.3.3 Diazirine 450

5.3.4 Telluroglycoside 452

5.3.5 Carbamate 452

5.3.6 2-Iodosulfonamide 453

5.3.7 N-Glycosyl Triazole 453

5.3.8 N-Glycosyl Tetrazole 454

5.3.9 N-Glycosyl Amide 456

5.3.10 DNA and RNA Nucleosides 457

5.3.11 Oxazoline 457

5.3.12 Oxathiine 458

5.3.13 1,6-Lactone 459