Contents

Preface xv
Series Preface xix
Acknowledgments xxi
Symbols and Acronyms xxiii

1 Aircraft Design Fundamentals 1
1.1 Introduction to Design 1
1.2 Engineering Design 4
1.3 Design Project Planning 8
1.4 Decision Making 10
1.5 Feasibility Analysis 12
1.6 Tort of Negligence 15
References 17

2 Systems Engineering Approach 19
2.1 Introduction 19
2.2 Fundamentals of Systems Engineering 20
2.3 Conceptual System Design 23
 2.3.1 Definition 23
 2.3.2 Conceptual Design Flowchart 24
 2.3.3 Technical Performance Measures 25
 2.3.4 Functional Analysis 26
 2.3.5 System Trade-Off Analysis 27
 2.3.6 Conceptual Design Review 28
2.4 Preliminary System Design 29
2.5 Detail System Design 30
2.6 Design Requirements 33
2.7 Design Review, Evaluation, and Feedback 34
2.8 Systems Engineering Approach in Aircraft Design 37
 2.8.1 Implementation of Systems Engineering 37
3 Aircraft Conceptual Design

3.1 Introduction

3.2 Primary Functions of Aircraft Components

3.3 Aircraft Configuration Alternatives

3.3.1 Wing Configuration

3.3.2 Tail Configuration

3.3.3 Propulsion System Configuration

3.3.4 Landing Gear Configuration

3.3.5 Fuselage Configuration

3.3.6 Manufacturing-Related Items Configuration

3.3.7 Subsystems Configuration

3.4 Aircraft Classification and Design Constraints

3.5 Configuration Selection Process and Trade-Off Analysis

3.6 Conceptual Design Optimization

3.6.1 Mathematical Tools

3.6.2 Methodology

Problems

References

4 Preliminary Design

4.1 Introduction

4.2 Maximum Take-Off Weight Estimation

4.2.1 The General Technique

4.2.2 Weight Build-up

4.2.3 Payload Weight

4.2.4 Crew Weight

4.2.5 Fuel Weight

4.2.6 Empty Weight

4.2.7 Practical Steps of the Technique

4.3 Wing Area and Engine Sizing

4.3.1 Summary of the Technique

4.3.2 Stall Speed

4.3.3 Maximum Speed

4.3.4 Take-Off Run

4.3.5 Rate of Climb

4.3.6 Ceiling

4.4 Design Examples

Problems

References
5 Wing Design 161
5.1 Introduction 161
5.2 Number of Wings 164
5.3 Wing Vertical Location 165
 5.3.1 High Wing 165
 5.3.2 Low Wing 168
 5.3.3 Mid-Wing 169
 5.3.4 Parasol Wing 169
 5.3.5 The Selection Process 169
5.4 Airfoil Section 170
 5.4.1 Airfoil Design or Airfoil Selection 171
 5.4.2 General Features of an Airfoil 173
 5.4.3 Characteristic Graphs of an Airfoil 176
 5.4.4 Airfoil Selection Criteria 182
 5.4.5 NACA Airfoils 183
 5.4.6 Practical Steps for Wing Airfoil Section Selection 188
5.5 Wing Incidence 195
5.6 Aspect Ratio 198
5.7 Taper Ratio 203
5.8 The Significance of Lift and Load Distributions 206
5.9 Sweep Angle 209
5.10 Twist Angle 223
5.11 Dihedral Angle 226
5.12 High-Lift Device 230
 5.12.1 The Functions of a High-Lift Device 230
 5.12.2 High-Lift Device Classification 232
 5.12.3 Design Technique 235
5.13 Aileron 241
5.14 Lifting-Line Theory 242
5.15 Accessories 246
 5.15.1 Strake 247
 5.15.2 Fence 247
 5.15.3 Vortex Generator 248
 5.15.4 Winglet 248
5.16 Wing Design Steps 249
5.17 Wing Design Example 250
Problems 259
References 264

6 Tail Design 265
6.1 Introduction 265
6.2 Aircraft Trim Requirements 268
 6.2.1 Longitudinal Trim 270
 6.2.2 Directional and Lateral Trim 276
6.3 A Review on Stability and Control 278
Contents

6.3.1 Stability 278
6.3.2 Control 282
6.3.3 Handling Qualities 284

6.4 Tail Configuration 285
6.4.1 Basic Tail Configuration 285
6.4.2 Aft Tail Configuration 288

6.5 Canard or Aft Tail 294
6.6 Optimum Tail Arm 298

6.7 Horizontal Tail Parameters 301
6.7.1 Horizontal Tail Design Fundamental Governing Equation 301
6.7.2 Fixed, All-Moving, or Adjustable 304
6.7.3 Airfoil Section 306
6.7.4 Tail Incidence 308
6.7.5 Aspect Ratio 311
6.7.6 Taper Ratio 312
6.7.7 Sweep Angle 313
6.7.8 Dihedral Angle 313
6.7.9 Tail Vertical Location 314
6.7.10 Other Tail Geometries 315
6.7.11 Control Provision 316
6.7.12 Final Check 316

6.8 Vertical Tail Design 317
6.8.1 Vertical Tail Design Requirements 317
6.8.2 Vertical Tail Parameters 319

6.9 Practical Design Steps 329
6.10 Tail Design Example 331

Problems 336
References 340

7 Fuselage Design 341

7.1 Introduction 341
7.2 Functional Analysis and Design Flowchart 341
7.3 Fuselage Configuration Design and Internal Arrangement 345
7.4 Ergonomics 346
7.4.1 Definitions 346
7.4.2 Human Dimensions and Limits 348

7.5 Cockpit Design 350
7.5.1 Number of Pilots and Crew Members 351
7.5.2 Pilot/Crew Mission 353
7.5.3 Pilot/Crew Comfort/Hardship Level 353
7.5.4 Pilot Personal Equipment 354
7.5.5 Control Equipment 355
7.5.6 Measurement Equipment 356
7.5.7 Level of Automation 357
7.5.8 External Constraints 359
7.5.9 Cockpit Integration 359
7.6 Passenger Cabin Design 360
7.7 Cargo Section Design 368
7.8 Optimum Length-to-Diameter Ratio 372
7.8.1 Optimum Slenderness Ratio for Lowest f_{LD} 372
7.8.2 Optimum Slenderness Ratio for Lowest Fuselage Wetted Area 378
7.8.3 Optimum Slenderness Ratio for the Lightest Fuselage 380
7.9 Other Fuselage Internal Segments 380
7.9.1 Fuel Tanks 381
7.9.2 Radar Dish 385
7.9.3 Wing Box 386
7.9.4 Power Transmission Systems 387
7.10 Lofting 388
7.10.1 Aerodynamics Considerations 388
7.10.2 Area Ruling 390
7.10.3 Radar Detectability 392
7.10.4 Fuselage Rear Section 392
7.11 Fuselage Design Steps 394
7.12 Design Example 395
Problems 406
References 410

8 Propulsion System Design 413
8.1 Introduction 413
8.2 Functional Analysis and Design Requirements 414
8.3 Engine Type Selection 416
8.3.1 Aircraft Engine Classification 417
8.3.2 Selection of Engine Type 428
8.4 Number of Engines 436
8.4.1 Flight Safety 437
8.4.2 Other Influential Parameters 438
8.5 Engine Location 439
8.5.1 Design Requirements 439
8.5.2 General Guidelines 441
8.5.3 Podded versus Buried 443
8.5.4 Pusher versus Tractor 444
8.5.5 Twin-Jet Engine: Under-Wing versus Rear Fuselage 446
8.6 Engine Installation 448
8.6.1 Prop-Driven Engine 450
8.6.2 Jet Engine 452
8.7 Propeller Sizing 456
8.8 Engine Performance 461
8.8.1 Prop-Driven Engine 461
8.8.2 Jet Engine 462
8.9 Engine Selection 462
9 Landing Gear Design

9.1 Introduction

9.2 Functional Analysis and Design Requirements

9.3 Landing Gear Configuration

9.3.1 Single Main
9.3.2 Bicycle
9.3.3 Tail-Gear
9.3.4 Tricycle
9.3.5 Quadricycle
9.3.6 Multi-Bogey
9.3.7 Releasable Rail
9.3.8 Skid
9.3.9 Seaplane Landing Device
9.3.10 Human Leg
9.3.11 Landing Gear Configuration Selection Process
9.3.12 Landing Gear Attachment

9.4 Fixed, Retractable, or Separable Landing Gear

9.5 Landing Gear Geometry

9.5.1 Landing Gear Height
9.5.2 Wheel Base
9.5.3 Wheel Track

9.6 Landing Gear and Aircraft Center of Gravity

9.6.1 Tipback and Tipforward Angle Requirements
9.6.2 Take-Off Rotation Requirement

9.7 Landing Gear Mechanical Subsystems/Parameters

9.7.1 Tire Sizing
9.7.2 Shock Absorber
9.7.3 Strut Sizing
9.7.4 Steering Subsystem
9.7.5 Landing Gear Retraction System

9.8 Landing Gear Design Steps

9.9 Landing Gear Design Example

Problems

References

10 Weight of Components

10.1 Introduction

10.2 Sensitivity of Weight Calculation

10.3 Aircraft Major Components

10.4 Weight Calculation Technique

10.4.1 Wing Weight
Contents

12.5.4 *Longitudinal Trim Requirement* 680
12.5.5 *Elevator Design Procedure* 683

12.6 **Rudder Design** 685
12.6.1 *Introduction to Rudder Design* 685
12.6.2 *Fundamentals of Rudder Design* 688
12.6.3 *Rudder Design Steps* 709

12.7 **Aerodynamic Balance and Mass Balance** 713
12.7.1 *Aerodynamic Balance* 715
12.7.2 *Mass Balance* 722

12.8 **Chapter Examples** 723
12.8.1 *Aileron Design Example* 723
12.8.2 *Elevator Design Example* 729
12.8.3 *Rudder Design Example* 738

Problems 745
References 752

Appendices 755
Appendix A: Standard Atmosphere, SI Units 755
Appendix B: Standard Atmosphere, British Units 756

Index 757