CONTENTS

About the Authors
Preface
Acknowledgments
Acronyms
Symbols
About the Companion Website

PART I GENERAL ASPECTS OF CONVENTIONAL MMC

1. **Review of High-Power Converters**
 1.1 Introduction
 1.2 Overview of High-Power Converters
 1.3 Voltage Source Converters
 1.3.1 Neutral-Point Clamped Converter
 1.3.2 Active Neutral-Point Clamped Converter
 1.3.3 Flying Capacitor Converter
 1.3.4 Nested Neutral-Point Clamped Converter
 1.3.5 Cascaded H-bridge Converter
 1.3.6 Cascaded Neutral-Point Clamped Converter
 1.4 Current Source Converters
 1.4.1 Load-Commutated Current Source Converter
 1.4.2 PWM Current Source Converter
 1.5 Matrix Converters
 1.5.1 Direct Matrix Converter
 1.5.2 Indirect Matrix Converter
 1.5.3 Multi-Modular Matrix Converter
CONTENTS

1.6 Modular Multilevel Converters 23
 1.6.1 Converter Technology 24
 1.6.2 Applications 24
 1.6.3 Technical Challenges 31

1.7 Summary 33

References 34

2 Fundamentals of Modular Multilevel Converter 37

2.1 Introduction 37

2.2 Modular Multilevel Converter 38
 2.2.1 Converter Configuration 39
 2.2.2 Configuration of Submodules 39
 2.2.3 Comparison of Submodules 46
 2.2.4 Principle of Operation 48

2.3 Pulse Width Modulation Schemes 49
 2.3.1 Phase-Shifted Carrier Modulation 51
 2.3.2 Level-Shifted Carrier Modulation 59
 2.3.3 Sampled Average Modulation 60
 2.3.4 Space Vector Modulation 65
 2.3.5 Staircase Modulation 73

2.4 Summary 77

References 77

3 Classical Control of Modular Multilevel Converter 79

3.1 Introduction 79

3.2 Overview of Classical Control Method 80

3.3 Submodule Capacitor Voltage Control 82
 3.3.1 Leg Voltage Control 82
 3.3.2 Voltage Balance Strategy 83

3.4 Output Current Control 88
 3.4.1 Reference Frame Theory 88
 3.4.2 Control of MMC with Passive Load 92

3.5 Circulating Current Control 95
 3.5.1 Mathematical Model 96
 3.5.2 Control in Synchronous-dq Reference Frame 97
 3.5.3 Control in Stationary-abc Reference Frame 100

3.6 Summary 101

References 101
4 Model Predictive Control of Modular Multilevel Converter 103

4.1 Introduction 103

4.2 Mathematical Model of MMC 105
 4.2.1 Continuous-Time Model 105
 4.2.2 Discretization Methods 108
 4.2.3 Discrete-Time Model 110

4.3 Extrapolation Techniques 113
 4.3.1 Vector Angle Extrapolation 113
 4.3.2 Lagrange Extrapolation 113

4.4 Cost Function and Weight factors 114
 4.4.1 Formulation of Cost Function 114
 4.4.2 Selection of Weight Factors 116

4.5 Direct Model Predictive Control 117
 4.5.1 Design Procedure 117
 4.5.2 Control Algorithm 120

4.6 Indirect Model Predictive Control 124
 4.6.1 Design Procedure 125
 4.6.2 Control Algorithm 127

4.7 Summary 128

References 128

PART II ADVANCED MODULAR MULTILEVEL CONVERTERS

5 Passive Cross-Connected Modular Multilevel Converters 133

5.1 Introduction 133

5.2 Passive Cross-Connected MMC 134
 5.2.1 Configuration of Power Circuit 134
 5.2.2 Switching States and Output Voltage 135

5.3 Principle of Operation 138
 5.3.1 Modeling of PC-MMC 138
 5.3.2 Phase-Shifted Carrier Modulation for PC-MMC 140

5.4 Low/Zero Frequency Operation of PC-MMC 144
 5.4.1 Equivalent Circuit 145
 5.4.2 Design of Cross-Connected Capacitor 146
 5.4.3 Submodule Capacitor Voltage Ripple 148
 5.4.4 Common-Mode Voltage 151

5.5 Classical Control of PC-MMC 153
 5.5.1 Output Current Control 154
5.5.2 Submodule Capacitor Voltage Control 156
5.5.3 Synthesis of Modulation Signals 159
5.6 Summary 162
References 162

6 Active Cross-Connected Modular Multilevel Converters 165

6.1 Introduction 165

6.2 Active Cross-Connected MMC 166
6.2.1 Circuit Configuration of AC-MMC 166
6.2.2 Switching States and Output Voltage 166

6.3 Principles of Operation 169
6.3.1 Modeling of AC-MMC 170
6.3.2 Phase-Shifted Carrier Modulation for AC-MMC 171

6.4 Low-Frequency Operation of AC-MMC 176
6.4.1 Equivalent Circuit 176
6.4.2 Submodule Capacitor Voltage Ripple 178
6.4.3 Common-Mode Voltage 181
6.4.4 Current Stress on Semiconductor Devices 184

6.5 Classical Control of AC-MMC 185
6.5.1 Output Current Control 186
6.5.2 Submodule Capacitor Voltage Control 186
6.5.3 Synthesis of Modulation Signals 189

6.6 Summary 192
References 192

7 Star and Delta-Channel Modular Multilevel Converters 195

7.1 Introduction 195

7.2 Star-Channel Modular Multilevel Converter 196
7.2.1 Circuit Configuration of Star-Channel MMC 196
7.2.2 Switching States and Output Voltage 197

7.3 Principles of Operation 200
7.3.1 Modeling of Star-Channel MMC 200
7.3.2 Phase-Shifted Carrier Modulation for Star-Channel MMC 203

7.4 Low-Frequency Operation of Star-Channel MMC 207
7.4.1 Equivalent Circuit 208
7.4.2 Submodule Capacitor Voltage Ripple 209
7.4.3 Common-Mode Voltage 213
CONTENTS

7.5 Classical Control of Star-Channel MMC
7.5.1 Output Current Control
7.5.2 Submodule Capacitor Voltage Control
7.5.3 Synthesis of Modulation Signals
7.6 Delta-Channel Modular Multilevel Converter
7.7 Comparison of Advanced Modular Multilevel Converters
7.8 Summary
References

PART III APPLICATIONS OF MODULAR MULTILEVEL CONVERTERS

8 Modular Multilevel Converter Based Medium-Voltage Motor Drives
8.1 Introduction
8.2 Fundamentals of MMC-Based Motor Drive
8.2.1 System Configurations
8.2.2 Control Schemes
8.3 Voltage-Oriented Control of Grid-Side MMC
8.3.1 Principle of voltage orientation
8.3.2 Implementation of PLL
8.3.3 Block diagram of VOC
8.4 Indirect Field-Oriented Control of Motor-side MMC
8.4.1 Principle of Field Orientation
8.4.2 Rotor Flux Vector Estimator
8.4.3 Block diagram of IFOC approach
8.5 Low-Speed Operation of MMC-based Motor Drive
8.5.1 Analysis of Submodule Capacitor Voltage Ripple
8.5.2 Analysis of MMC with High-Frequency Voltage and Current Injection
8.5.3 Estimation of High-Frequency Voltage and Current Magnitude
8.5.4 Minimization of Submodule Capacitor Voltage Ripple
8.6 Common-Mode Voltage Issues and Blocking Schemes
8.6.1 Definition of Common-Mode Voltage
8.6.2 Blocking of Common-Mode Voltage
8.7 Transformer-less MMC-based Motor Drive
8.8 Summary
References
Role of Modular Multilevel Converters In The Power System

9.1 Introduction

9.2 MMC-Based HVDC Transmission Systems

9.2.1 Two-Terminal System

9.2.2 Multi-Terminal System

9.2.3 DC-Side Short-Circuit Fault Protection

9.2.4 HVDC Circuit Breakers

9.3 Control of Two-Terminal MMC-Based HVDC System

9.3.1 Sending-End Converter Control

9.3.2 Receiving-End Converter Control

9.4 Control of Multi-Terminal MMC-Based HVDC System

9.4.1 Voltage Margin Control Scheme

9.4.2 Voltage Droop Control Scheme

9.5 MMC-based Static Synchronous Compensator

9.5.1 System Configuration

9.5.2 Reactive Power Compensation

9.5.3 Compensation of Unbalanced AC-Grid Currents

9.6 MMC-based Unified Power Quality Conditioner

9.7 Summary

References

Appendix A MATLAB Demo Projects

References

Index