Contents

Preface xi
Acknowledgements xv
Introduction xvii
An Appetizer: Logical Paradoxes and Self-Reference xxi

1 Understanding Propositional Logic 1
1.1 Propositions and logical connectives: truth tables and tautologies 1
 1.1.1 Propositions 1
 1.1.2 Propositional logical connectives 2
 1.1.3 Truth tables 3
 1.1.4 The meaning of the connectives in natural language and in logic 4
 1.1.5 Computing truth values of propositions 5
 1.1.6 Propositional formulae and their truth tables 6
 1.1.7 Tautologies 11
1.2 Propositional logical consequence: logically correct inferences 18
 1.2.1 Propositional logical consequence 18
 1.2.2 Logically sound rules of propositional inference and logically correct propositional arguments 21
 1.2.3 Fallacies of the implication 23
1.3 Logical equivalence: negation normal form of propositional formulae 28
 1.3.1 Logically equivalent propositional formulae 28
 1.3.2 Basic properties of logical equivalence 29
 1.3.3 Some important logical equivalences 29
1.4 Supplementary: Inductive definitions and structural induction and recursion 34
 1.4.1 Inductive definitions 34
 1.4.2 Induction principles and proofs by induction 36
 1.4.3 Basics of the general theory of inductive definitions and principles 37
 1.4.4 Inductive definitions and proofs in well-founded sets 39
 1.4.5 Recursive definitions on inductively definable sets 40
2 Deductive Reasoning in Propositional Logic

2.1 Deductive systems: an overview
 2.1.1 The concept and purpose of deductive systems
 2.1.2 Brief historical remarks on deductive systems
 2.1.3 Soundness, completeness and adequacy of deductive systems

2.2 Axiomatic systems for propositional logic
 2.2.1 Description
 2.2.2 Derivations in the axiomatic system H

2.3 Semantic Tableaux
 2.3.1 Description of the deductive system ST of Semantic Tableaux
 2.3.2 Some derivations in ST
 2.3.3 Unsigned version of the system of Semantic Tableaux

2.4 Natural Deduction
 2.4.1 Description
 2.4.2 Examples of derivations in Natural Deduction

2.5 Normal forms and Propositional Resolution
 2.5.1 Conjunctive and disjunctive normal forms of propositional formulae
 2.5.2 Clausal Resolution
 2.5.3 Resolution-based derivations
 2.5.4 Optimizing the method of resolution

2.6 Supplementary: The Boolean satisfiability problem and NP-completeness

2.7 Supplementary: Completeness of the propositional deductive systems

3 Understanding First-order Logic

3.1 First-order structures and languages: terms and formulae of first-order logic
 3.1.1 First-order structures
 3.1.2 First-order languages
 3.1.3 Terms and formulae

3.2 Semantics of first-order logic
 3.2.1 The semantics of first-order logic: an informal outline
 3.2.2 Interpretations of first-order languages
 3.2.3 Variable assignment and evaluation of terms
 3.2.4 Truth of first-order formulae
 3.2.5 Evaluation games
 3.2.6 Translating first-order formulae to natural language

3.3 Basic grammar and use of first-order languages
 3.3.1 Translation from natural language to first-order languages: warm-up
 3.3.2 Restricted quantification
 3.3.3 Free and bound variables, and scope of a quantifier
 3.3.4 Renaming of a bound variable in a formula and clean formulae
 3.3.5 Substitution of a term for a variable in a formula, and capture of a variable
 3.3.6 A note on renamings and substitutions in a formula
Deductive Reasoning in First-order Logic

4.1 Axiomatic system for first-order logic
 - Axioms and rules for the quantifiers
 - Derivations from a set of assumptions
 - Extension of the axiomatic system H with equality

4.2 Semantic Tableaux for first-order logic
 - Some derivations in Semantic Tableaux
 - Semantic Tableaux for first-order logic with equality
 - Discussion on the quantifier rules and on termination

4.3 Natural Deduction for first-order logic
 - Natural Deduction rules for the quantifiers
 - Derivations in first-order Natural Deduction
 - Natural Deduction for first-order logic with equality

4.4 Prenex and clausal normal forms
 - Prenex normal forms
 - Skolemization
 - Clausal forms

4.5 Resolution for first-order logic
 - Propositional Resolution rule in first-order logic
 - Substitutions of terms for variables revisited
 - Unification of terms
 - Resolution with unification in first-order logic
 - Examples of resolution-based derivations
 - Resolution for first-order logic with equality
 - Optimizations and strategies for the method of Resolution

4.6 Supplementary: Soundness and completeness of the deductive systems for first-order logic
 - First-order theories
 - Soundness
 - Herbrand structures and interpretations
 - Henkin theories and Henkin extensions
 - Completeness theorem
 - Semantic compactness of first-order logic
5 Applications: Mathematical Proofs and Automated Reasoning 222
5.1 Logical reasoning and mathematical proofs 223
 5.1.1 Proof strategies: direct and indirect proofs 223
 5.1.2 Tactics for logical reasoning 227
5.2 Logical reasoning on sets, functions, and relations 231
 5.2.1 Zermelo–Fraenkel axiomatic theory of sets 231
 5.2.2 Basic operations on sets and their properties 234
 5.2.3 Functions 236
 5.2.4 Binary relations and operations on them 237
 5.2.5 Special binary relations 239
 5.2.6 Ordered sets 240
5.3 Mathematical Induction and Peano Arithmetic 246
 5.3.1 Mathematical Induction 247
 5.3.2 Peano Arithmetic 250
5.4 Applications: automated reasoning and logic programming 254
 5.4.1 Automated reasoning and automated theorem proving 254
 5.4.2 Logic programming and Prolog 255

6 Answers and Solutions to Selected Exercises 263
Answers and solutions: Section 1.1 263
Answers and solutions: Section 1.2 266
Answers and solutions: Section 1.3 268
Answers and solutions: Section 1.4 270
Answers and solutions: Section 2.2 270
Answers and solutions: Section 2.3 272
Answers and solutions: Section 2.4 281
Answers and solutions: Section 2.5 287
Answers and solutions: Section 3.1 293
Answers and solutions: Section 3.2 296
Answers and solutions: Section 3.3 297
Answers and solutions: Section 3.4 299
Answers and solutions: Section 3.5 305
Answers and solutions: Section 4.1 306
Answers and solutions: Section 4.2 308
Answers and solutions: Section 4.3 325
Answers and solutions: Section 4.4 328
Answers and solutions: Section 4.5 329
Answers and solutions: Section 4.6 338
Answers and solutions: Section 5.1 339
Answers and solutions: Section 5.2 339
Answers and solutions: Section 5.3 344
Answers and solutions: Section 5.4 347

References 348

Index 351