CONTENTS

Preface | xix
Preface to the First Edition | xxii

1 Introduction

1.1 Risk in Power Systems / 1
1.2 Basic Concepts of Power System Risk Assessment / 4
 1.2.1 System Risk Evaluation / 4
 1.2.2 Data in Risk Evaluation / 6
 1.2.3 Unit Interruption Cost / 7
1.3 Outline of the Book / 9

2 Outage Models of System Components

2.1 Introduction / 15
2.2 Models of Independent Outages / 16
 2.2.1 Repairable Forced Failure / 17
 2.2.2 Aging Failure / 18
 2.2.3 Nonrepairable Chance Failure / 24
 2.2.4 Planned Outage / 24
 2.2.5 Semiforced Outage / 27
 2.2.6 Partial Failure Mode / 28
 2.2.7 Multiple Failure Mode / 30
2.3 Models of Dependent Outages / 31
 2.3.1 Common-Cause Outage / 31
 2.3.2 Component-Group Outage / 36
 2.3.3 Station-Originated Outage / 37
 2.3.4 Cascading Outage / 39
 2.3.5 Environment-Dependent Failure / 40
2.4 Conclusions / 42
3 Parameter Estimation in Outage Models 45

3.1 Introduction / 45
3.2 Point Estimation on Mean and Variance of Failure Data / 46
 3.2.1 Sample Mean / 46
 3.2.2 Sample Variance / 48
3.3 Interval Estimation on Mean and Variance of Failure Data / 49
 3.3.1 General Concept of Confidence Interval / 49
 3.3.2 Confidence Interval of Mean / 50
 3.3.3 Confidence Interval of Variance / 53
3.4 Estimating Failure Frequency of Individual Components / 54
 3.4.1 Point Estimation / 54
 3.4.2 Interval Estimation / 55
3.5 Estimating Probability from a Binomial Distribution / 56
3.6 Experimental Distribution of Failure Data and Its Test / 57
 3.6.1 Experimental Distribution of Failure Data / 58
 3.6.2 Test of Experimental Distribution / 59
3.7 Estimating Parameters in Aging Failure Models / 60
 3.7.1 Mean Life and Its Standard Deviation in the Normal Model / 61
 3.7.2 Shape and Scale Parameters in the Weibull Model / 63
 3.7.3 Example / 66
3.8 Conclusions / 70

4 Elements of Risk Evaluation Methods 73

4.1 Introduction / 73
4.2 Methods for Simple Systems / 74
 4.2.1 Probability Convolution / 74
 4.2.2 Series and Parallel Networks / 75
 4.2.3 Minimum Cutsets / 78
 4.2.4 Markov Equations / 79
 4.2.5 Frequency-Duration Approaches / 81
4.3 Methods for Complex Systems / 84
 4.3.1 State Enumeration / 84
 4.3.2 Nonsequential Monte Carlo Simulation / 87
 4.3.3 Sequential Monte Carlo Simulation / 89
4.4 Correlation Models in Risk Evaluation / 91
 4.4.1 Correlation Measures / 92
 4.4.2 Correlation Matrix Methods / 93
 4.4.3 Copula Functions / 95
4.5 Conclusions / 102
5 Risk Evaluation Techniques for Power Systems 105

5.1 Introduction / 105
5.2 Techniques Used in Generation-Demand Systems / 106
 5.2.1 Convolution Technique / 106
 5.2.2 State Sampling Method / 110
 5.2.3 State Duration Sampling Method / 112
5.3 Techniques Used in Radial Distribution Systems / 114
 5.3.1 Analytical Technique / 114
 5.3.2 State Duration Sampling Method / 117
5.4 Techniques Used in Substation Configurations / 118
 5.4.1 Failure Modes and Modeling / 119
 5.4.2 Connectivity Identification / 121
 5.4.3 Stratified State Enumeration Method / 123
 5.4.4 State Duration Sampling Method / 127
5.5 Techniques Used in Composite Generation and Transmission Systems / 129
 5.5.1 Basic Procedure / 130
 5.5.2 Component Failure Models / 131
 5.5.3 Load Curve Models / 131
 5.5.4 Contingency Analysis / 133
 5.5.5 Optimization Models for Load Curtailments / 135
 5.5.6 State Enumeration Method / 138
 5.5.7 State Sampling Method / 139
5.6 Conclusions / 141

6 Application of Risk Evaluation to Transmission Development Planning 143

6.1 Introduction / 143
6.2 Concept of Probabilistic Planning / 144
 6.2.1 Basic Procedure / 144
 6.2.2 Cost Analysis / 145
 6.2.3 Present Value / 146
6.3 Risk Evaluation Approach / 146
 6.3.1 Risk Evaluation Procedure / 147
 6.3.2 Risk Cost Model / 147
6.4 Example 1: Selecting the Lowest-Cost Planning Alternative / 149
 6.4.1 System Description / 149
 6.4.2 Planning Alternatives / 151
 6.4.3 Risk Evaluation / 152
 6.4.4 Overall Economic Analysis / 155
 6.4.5 Summary / 157
6.5 Example 2: Applying Different Planning Criteria / 158
 6.5.1 System and Planning Alternatives / 158
 6.5.2 Study Conditions and Data / 159
 6.5.3 Risk and Risk Cost Evaluation / 161
 6.5.4 Overall Economic Analysis / 163
 6.5.5 Summary / 166
6.6 Conclusions / 167

7 Application of Risk Evaluation to Transmission Operation Planning / 169
 7.1 Introduction / 169
 7.2 Concept of Risk Evaluation in Operation Planning / 170
 7.3 Risk Evaluation Method / 173
 7.4 Example 1: Determining the Lowest-Risk Operation Mode / 175
 7.4.1 System and Study Conditions / 175
 7.4.2 Assessing Impacts of Load Transfer / 177
 7.4.3 Comparing Different Reconfigurations / 177
 7.4.4 Selecting Operation Mode under the N−2 Condition / 179
 7.4.5 Summary / 181
 7.5 Example 2: A Simple Case by Hand Calculation / 181
 7.5.1 Basic Concept / 181
 7.5.2 Case Description / 182
 7.5.3 Study Conditions and Data / 183
 7.5.4 Risk Evaluation / 185
 7.5.5 Summary / 188
 7.6 Conclusions / 188

8 Application of Risk Evaluation to Generation Source Planning / 191
 8.1 Introduction / 191
 8.2 Procedure of Reliability Planning / 192
 8.3 Simulation of Generation and Risk Costs / 193
 8.3.1 Simulation Approach / 193
 8.3.2 Minimization Cost Model / 194
 8.3.3 Expected Generation and Risk Costs / 195
 8.4 Example 1: Selecting Location and Size of Cogenerators / 196
 8.4.1 Basic Concept / 196
 8.4.2 System and Cogeneration Candidates / 197
 8.4.3 Risk Sensitivity Analysis / 199
 8.4.4 Maximum Benefit Analysis / 201
 8.4.5 Summary / 205
8.5 Example 2: Making a Decision to Retire a Local Generation Plant / 205
8.5.1 Case Description / 206
8.5.2 Risk Evaluation / 206
8.5.3 Total Cost Analysis / 208
8.5.4 Summary / 210
8.6 Conclusions / 210

9 Application of Risk Evaluation to Selecting Substation Configurations
9.1 Introduction / 211
9.2 Load Curtailment Model / 212
9.3 Risk Evaluation Approach / 215
 9.3.1 Component Failure Models / 215
 9.3.2 Procedure of Risk Evaluation / 215
 9.3.3 Economic Analysis Method / 216
9.4 Example 1: Selecting Substation Configuration / 217
 9.4.1 Two Substation Configurations / 217
 9.4.2 Risk Evaluation / 218
 9.4.3 Economic Analysis / 222
 9.4.4 Summary / 223
9.5 Example 2: Evaluating Effects of Substation Configuration Changes / 223
 9.5.1 Simplified Model for Evaluating Substation Configurations / 223
 9.5.2 Problem Description / 224
 9.5.3 Risk Evaluation / 227
 9.5.4 Summary / 228
9.6 Example 3: Selecting Transmission Line Arrangement Associated with Substations / 229
 9.6.1 Description of Two Options / 229
 9.6.2 Risk Evaluation and Economic Analysis / 230
 9.6.3 Summary / 233
9.7 Conclusions / 233

10 Application of Risk Evaluation to Renewable Energy Systems
10.1 Introduction / 235
10.2 Risk Evaluation of Wind Turbine Power Converter System (WTPCS) / 237
 10.2.1 Basic Concepts / 237
10.2.2 Power Losses and Temperatures of WTPCS Components / 238
10.2.3 Risk Evaluation of WTPCS / 240
10.2.4 Case Study / 245
10.2.5 Summary / 251
10.3 Risk Evaluation of Photovoltaic Power Systems / 251
10.3.1 Two Basic Structures of Photovoltaic Power Systems / 251
10.3.2 Risk Parameters of Photovoltaic Inverters / 254
10.3.3 Risk Evaluation of Photovoltaic Power System / 258
10.3.4 Case Study / 263
10.3.5 Summary / 270
10.4 Conclusions / 272

11 Application of Risk Evaluation to Composite Systems with Renewable Sources 275
11.1 Introduction / 275
11.2 Risk Assessment of a Composite System with Wind Farms and Solar Power Stations / 276
11.2.1 Probability Models of Renewable Sources and Bus Load Curves / 276
11.2.2 Multiple Correlations among Renewable Sources and Bus/Regional Loads / 279
11.2.3 Risk Assessment Considering Multiple Correlations / 282
11.2.4 Case Study / 283
11.2.5 Summary / 295
11.3 Determination of Transfer Capability Required by Wind Generation / 296
11.3.1 System, Conditions, and Method / 296
11.3.2 Wind Generation Model / 298
11.3.3 Equivalence of Wind Power in Generation Systems / 299
11.3.4 Transfer Capability Required by Wind Generation / 303
11.3.5 Summary / 309
11.4 Conclusions / 310

12 Risk Evaluation of Wide Area Measurement and Control System 313
12.1 Introduction / 313
12.2 Hierarchical Structure and Failure Analysis of WAMCS / 314
12.2.1 Hierarchical Structure of WAMCS / 314
12.2.2 Failure Analysis Technique for WAMCS / 315
12.3 Risk Evaluation of Phasor Measurement Units / 317
 12.3.1 Markov State Models of PMU Modules / 317
 12.3.2 Equivalent Two-State Model of PMU / 324
12.4 Risk Evaluation of Regional Communication Networks in WAMCS / 325
 12.4.1 Classification of Regional Communication Networks / 325
 12.4.2 Survival Mechanisms of Regional Networks / 328
 12.4.3 Risk Evaluation in Two Survival Mechanisms / 329
 12.4.4 Equivalent Two-State Model of a Regional Communication Network / 334
12.5 Risk Evaluation of Backbone Network in WAMCS / 335
 12.5.1 Equivalent Risk Model of Backbone Communication Network / 336
 12.5.2 Risk Evaluation of Optic Fiber System / 337
12.6 Numerical Results / 343
 12.6.1 Risk Indices of PMU / 343
 12.6.2 Risk Indices of Regional Communication Networks / 345
 12.6.3 Risk Indices of the Backbone Communication Network / 347
 12.6.4 Risk Indices of Overall WAMCS / 348
12.7 Conclusions / 349

13 Reliability-Centered Maintenance 351

13.1 Introduction / 351
13.2 Basic Tasks in RCM / 352
 13.2.1 Comparison between Maintenance Alternatives / 352
 13.2.2 Lowest-Risk Maintenance Scheduling / 353
 13.2.3 Predictive Maintenance versus Corrective Maintenance / 353
 13.2.4 Ranking Importance of Components / 354
13.3 Example 1: Transmission Maintenance Scheduling / 355
 13.3.1 Procedure of Transmission Maintenance Planning / 355
 13.3.2 Description of the System and Maintenance Outage / 357
 13.3.3 The Lowest-Risk Schedule of the Cable Replacement / 358
 13.3.4 Summary / 359
13.4 Example 2: Workforce Planning in Maintenance / 360
 13.4.1 Problem Description / 360
 13.4.2 Procedure / 361
 13.4.3 Case Study and Results / 362
 13.4.4 Summary / 363
xiv CONTENTS

13.5 Example 3: A Simple Case Performed by Hand Calculations / 363
 13.5.1 Case Description / 363
 13.5.2 Study Conditions and Data / 365
 13.5.3 EENS Evaluation / 365
 13.5.4 Summary / 367
13.6 Conclusions / 367

14 Probabilistic Spare-Equipment Analysis 369
 14.1 Introduction / 369
 14.2 Spare-Equipment Analysis Based on Reliability Criteria / 370
 14.2.1 Unavailability of Components / 370
 14.2.2 Group Reliability and Spare-Equipment Analysis / 372
 14.3 Spare-Equipment Analysis Using the Probabilistic Cost Method / 373
 14.3.1 Failure Cost Model / 373
 14.3.2 Unit Failure Cost Estimation / 374
 14.3.3 Annual Investment Cost Model / 375
 14.3.4 Present Value Approach / 375
 14.3.5 Procedure of Spare-Equipment Analysis / 376
 14.4 Example 1: Determining Number and Timing of Spare Transformers / 376
 14.4.1 Transformer Group and Data / 376
 14.4.2 Spare-Transformer Analysis Based on Group Failure Probability / 377
 14.4.3 Spare-Transformer Plans Based on the Probabilistic Cost Model / 378
 14.4.4 Summary / 381
 14.5 Example 2: Determining Redundancy Level of 500 kV Reactors / 381
 14.5.1 Problem Description / 381
 14.5.2 Study Conditions and Data / 383
 14.5.3 Redundancy Analysis / 385
 14.5.4 Summary / 387
 14.6 Conclusions / 387

15 Asset Management Based on Condition Monitoring and Risk Evaluation 389
 15.1 Introduction / 389
 15.2 Maintenance Strategy of Overhead Lines / 390
 15.2.1 Risk Evaluation Using Condition Monitoring Data / 391
 15.2.2 Overhead Line Maintenance Strategy / 397
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.3</td>
<td>Case Study</td>
<td>399</td>
</tr>
<tr>
<td>15.2.4</td>
<td>Summary</td>
<td>401</td>
</tr>
<tr>
<td>15.3</td>
<td>Replacement Strategy for Aged Transformers</td>
<td>402</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Transformer Aging Failure Unavailability Using Condition Monitoring Data</td>
<td>403</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Transformer Replacement Strategy</td>
<td>407</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Case Study</td>
<td>410</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Summary</td>
<td>413</td>
</tr>
<tr>
<td>15.4</td>
<td>Conclusions</td>
<td>414</td>
</tr>
<tr>
<td>16</td>
<td>Reliability-Based Transmission-Service Pricing</td>
<td>417</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>417</td>
</tr>
<tr>
<td>16.2</td>
<td>Basic Concept</td>
<td>418</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Incremental Reliability Value</td>
<td>419</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Impacts of Customers on System Reliability</td>
<td>420</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Reliability Component in Price Design</td>
<td>421</td>
</tr>
<tr>
<td>16.3</td>
<td>Calculation Methods</td>
<td>422</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Unit Incremental Reliability Value</td>
<td>422</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Generation Credit for Reliability Improvement</td>
<td>423</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Load Charge for Reliability Degradation</td>
<td>423</td>
</tr>
<tr>
<td>16.3.4</td>
<td>Load Charge Rate Due to Generation Credit</td>
<td>424</td>
</tr>
<tr>
<td>16.4</td>
<td>Rate Design</td>
<td>424</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Charge Rate for Wheeling Customers</td>
<td>424</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Charge Rate for Native Customers</td>
<td>425</td>
</tr>
<tr>
<td>16.4.3</td>
<td>Credit to Generation Customers</td>
<td>425</td>
</tr>
<tr>
<td>16.5</td>
<td>Application Example</td>
<td>425</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Calculation of the UIRV</td>
<td>427</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Calculation of the GCRI</td>
<td>427</td>
</tr>
<tr>
<td>16.5.3</td>
<td>Calculation of the LCRD</td>
<td>427</td>
</tr>
<tr>
<td>16.5.4</td>
<td>Calculation of the LCRGC</td>
<td>428</td>
</tr>
<tr>
<td>16.5.5</td>
<td>Calculations of Charge Rates</td>
<td>428</td>
</tr>
<tr>
<td>16.6</td>
<td>Conclusions</td>
<td>430</td>
</tr>
<tr>
<td>17</td>
<td>Voltage Instability Risk Assessment and Its Application to System Planning</td>
<td>431</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>431</td>
</tr>
<tr>
<td>17.2</td>
<td>Method of Assessing Voltage Instability Risk</td>
<td>432</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Maximum Loadability Model for System States</td>
<td>432</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Models for Identifying Weak Branches and Buses</td>
<td>436</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Determination of Contingency System States</td>
<td>443</td>
</tr>
<tr>
<td>17.2.4</td>
<td>Procedure of Calculating Voltage Instability Risk Indices</td>
<td>444</td>
</tr>
</tbody>
</table>
17.3 Tracing and Locating Voltage Instability Risk for Planning Alternatives / 447
17.4 Case Studies / 448
 17.4.1 Results of the IEEE 14-Bus System / 448
 17.4.2 Results of the 171-Bus Utility System / 453
17.5 Conclusions / 456

18 Probabilistic Transient Stability Assessment / 459
 18.1 Introduction / 459
 18.2 Probabilistic Modeling and Simulation Methods / 460
 18.2.1 Selection of Pre-Fault System States / 460
 18.2.2 Fault Models / 461
 18.2.3 Monte Carlo Simulation of Fault Events / 463
 18.2.4 Transient Stability Simulation / 464
 18.3 Procedure / 464
 18.3.1 Procedure for the First Type of Study / 465
 18.3.2 Procedure for the Second Type of Study / 465
 18.4 Examples / 465
 18.4.1 System Description and Data / 465
 18.4.2 Transfer Limit Calculation in the Columbia River System / 470
 18.4.3 Generation Rejection Requirement in the Peace River System / 472
 18.4.4 Summary / 475
 18.5 Conclusions / 475

Appendix A Basic Probability Concepts / 477
 A.1 Probability Calculation Rules / 477
 A.1.1 Intersection / 477
 A.1.2 Union / 477
 A.1.3 Full Conditional Probability / 478
 A.2 Random Variable and Its Distribution / 478
 A.3 Important Distributions in Risk Evaluation / 479
 A.3.1 Exponential Distribution / 479
 A.3.2 Normal Distribution / 479
 A.3.3 Log-Normal Distribution / 481
 A.3.4 Weibull Distribution / 481
 A.3.5 Gamma Distribution / 482
 A.3.6 Beta Distribution / 483
 A.4 Numerical Characteristics / 483
 A.4.1 Mathematical Expectation / 483
 A.4.2 Variance and Standard Deviation / 484
 A.4.3 Covariance and Correlation Coefficients / 484
A.5 Nonparametric Kernel Density Estimator / 485
 A.5.1 Basic Concept / 485
 A.5.2 Determination of the Bandwidth / 486

Appendix B Elements of Monte Carlo Simulation 489
 B.1 General Concept / 489
 B.2 Random Number Generators / 490
 B.2.1 Multiplicative Congruent Generator / 490
 B.2.2 Mixed Congruent Generator / 491
 B.3 Inverse Transform Method of Generating Random Variates / 491
 B.4 Important Random Variates in Risk Evaluation / 492
 B.4.1 Exponential Distribution Random Variate / 492
 B.4.2 Normal Distribution Random Variate / 493
 B.4.3 Log-Normal Distribution Random Variate / 494
 B.4.4 Weibull Distribution Random Variate / 494
 B.4.5 Gamma Distribution Random Variate / 495
 B.4.6 Beta Distribution Random Variate / 495

Appendix C Power Flow Models 497
 C.1 AC Power Flow Models / 497
 C.1.1 Power Flow Equations / 497
 C.1.2 Newton–Raphson Method / 497
 C.1.3 Fast Decoupled Method / 498
 C.2 DC Power Flow Models / 499
 C.2.1 Basic Equation / 499
 C.2.2 Line Flow Equation / 500

Appendix D Optimization Algorithms 503
 D.1 Simplex Methods for Linear Programming / 503
 D.1.1 Primal Simplex Method / 503
 D.1.2 Dual Simplex Method / 505
 D.2 Interior Point Method for Nonlinear Programming / 506
 D.2.1 Optimality and Feasibility Conditions / 506
 D.2.2 Procedure of the Algorithm / 508

Appendix E Three Probability Distribution Tables 511

References 515

Further Reading 523

Index 525