CONTENTS

Preface xiii

Acknowledgments xvii

1 Fundamentals of Planar Transmission Lines 1

1.1 Planar Transmission Lines, Distributed Circuits, and Artificial Transmission Lines, 1

1.2 Distributed Circuit Analysis and Main Transmission Line Parameters, 5

1.3 Loaded (Terminated) Transmission Lines, 8

1.4 Lossy Transmission Lines, 16

1.4.1 Dielectric Losses: The Loss Tangent, 19

1.4.2 Conductor Losses: The Skin Depth, 25

1.5 Comparative Analysis of Planar Transmission Lines, 28

1.6 Some Illustrative Applications of Planar Transmission Lines, 31

1.6.1 Semilumped Transmission Lines and Stubs and Their Application to Low-Pass and Notch Filters, 31

1.6.2 Low-Pass Filters Based on Richard’s Transformations, 39

1.6.3 Power Splitters Based on $\lambda/4$ Lines, 40

1.6.4 Capacitively Coupled $\lambda/2$ Resonator Bandpass Filters, 42

References, 44

2 Artificial Transmission Lines based on Periodic Structures 47

2.1 Introduction and Scope, 47

2.2 Floquet Analysis of Periodic Structures, 48
2.3 The Transfer Matrix Method, 53
 2.3.1 Dispersion Relation, 54
 2.3.2 Bloch Impedance, 56
 2.3.3 Effects of Asymmetry in the Unit Cell through an Illustrative Example, 60
 2.3.4 Comparison between Periodic Transmission Lines and Conventional Lines, 62
 2.3.5 The Concept of Iterative Impedance, 63
2.4 Coupled Mode Theory, 64
 2.4.1 The Cross-Section Method and the Coupled Mode Equations, 65
 2.4.2 Relation between the Complex Mode Amplitudes and S-Parameters, 69
 2.4.3 Approximate Analytical Solutions of the Coupled Mode Equations, 71
 2.4.4 Analytical Expressions for Relevant Parameters of EBG Periodic Structures, 77
 2.4.5 Relation between the Coupling Coefficient and the S-Parameters, 79
 2.4.6 Using the Approximate Solutions of the Coupled Mode Equations, 80
2.5 Applications, 86
 2.5.1 Applications of Periodic Nonuniform Transmission Lines, 86
 2.5.1.1 Reflectors, 86
 2.5.1.2 High-Q Resonators, 92
 2.5.1.3 Spurious Suppression in Planar Filters, 93
 2.5.1.4 Harmonic Suppression in Active Circuits, 95
 2.5.1.5 Chirped Delay Lines, 99
 2.5.2 Applications of Reactively Loaded Lines: The Slow Wave Effect, 102
 2.5.2.1 Compact CPW Bandpass Filters with Spurious Suppression, 105
 2.5.2.2 Compact Microstrip Wideband Bandpass Filters with Ultrawideband Spurious Suppression, 108
References, 114

3 Metamaterial Transmission Lines: Fundamentals, Theory, Circuit Models, and Main Implementations 119

 3.1 Introduction, Terminology, and Scope, 119
 3.2 Effective Medium Metamaterials, 122
 3.2.1 Wave Propagation in LH Media, 123
 3.2.2 Losses and Dispersion in LH Media, 125
 3.2.3 Main Electromagnetic Properties of LH Metamaterials, 127
 3.2.3.1 Negative Refraction, 128
 3.2.3.2 Backward Cerenkov Radiation, 129
3.2.4 Synthesis of LH Metamaterials, 131
 3.2.4.1 Negative Effective Permittivity Media: Wire Media, 132
 3.2.4.2 Negative Effective Permeability Media: SRRs, 136
 3.2.4.3 Combining SRRs and Metallic Wires: One-Dimensional LH Medium, 139

3.3 Electrically Small Resonators for Metamaterials and Microwave Circuit Design, 141
 3.3.1 Metallic Resonators, 142
 3.3.1.1 The Non-Bianisotropic SRR (NB-SRR), 142
 3.3.1.2 The Broadside-Coupled SRR (BC-SRR), 142
 3.3.1.3 The Double-Slit SRR (DS-SRR), 143
 3.3.1.4 The Spiral Resonator (SR), 144
 3.3.1.5 The Folded SIR, 144
 3.3.1.6 The Electric LC Resonator (ELC), 145
 3.3.1.7 The Open Split-Ring Resonator (OSRR), 146
 3.3.2 Applying Duality: Complementary Resonators, 146
 3.3.2.1 Complementary Split-Ring Resonator (CSRR), 147
 3.3.2.2 Open Complementary Split-Ring Resonator (OCSRR), 149

3.4 Canonical Models of Metamaterial Transmission Lines, 149
 3.4.1 The Dual Transmission Line Concept, 150
 3.4.2 The CRLH Transmission Line, 154
 3.4.3 Other CRLH Transmission Lines, 158
 3.4.3.1 The Dual CRLH (D-CRLH) Transmission Line, 158
 3.4.3.2 Higher-Order CRLH and D-CRLH Transmission Lines, 159

3.5 Implementation of Metamaterial Transmission Lines and Lumped-Element Equivalent Circuit Models, 162
 3.5.1 CL-Loaded Approach, 162
 3.5.2 Resonant-Type Approach, 166
 3.5.2.1 Transmission Lines based on SRRs, 167
 3.5.2.2 Transmission Lines based on CSRRs, 177
 3.5.2.3 Inter-Resonator Coupling: Effects and Modeling, 183
 3.5.2.4 Effects of SRR and CSRR Orientation: Mixed Coupling, 191
 3.5.2.5 Transmission Lines based on OSRRs and OCSRRs, 195
 3.5.2.6 Synthesis Techniques, 203
 3.5.3 The Hybrid Approach, 204

References, 206

4 Metamaterial Transmission Lines: RF/Microwave Applications 214
 4.1 Introduction, 214
 4.2 Applications of CRLH Transmission Lines, 215
 4.2.1 Enhanced Bandwidth Components, 215
 4.2.1.1 Principle and Limitations, 215
5.3 Tunable and Reconfigurable Metamaterial Transmission Lines and Applications, 347
 5.3.1 Tunable Resonant-Type Metamaterial Transmission Lines, 347
 5.3.1.1 Varactor-Loaded Split Rings and Applications, 347
 5.3.1.2 Tunable SRRs and CSRRs Based on RF-MEMS and Applications, 362
 5.3.1.3 Metamaterial Transmission Lines Based on Ferroelectric Materials, 375
 5.3.2 Tunable CL-Loaded Metamaterial Transmission Lines, 377
 5.3.2.1 Tunable Phase Shifters, 378
 5.3.2.2 Tunable Leaky Wave Antennas (LWA), 381
5.4 Nonlinear Transmission Lines (NLTLs), 385
 5.4.1 Model for Soliton Wave Propagation in NLTLs, 386
 5.4.2 Numerical Solutions of the Model, 391
References, 395

6 Other Advanced Transmission Lines 402

6.1 Introduction, 402
6.2 Magnetoinductive-wave and Electroinductive-wave Delay Lines, 402
 6.2.1 Dispersion Characteristics, 403
 6.2.2 Applications: Delay Lines and Time-Domain Reflectometry-Based Chipless Tags for RFID, 406
6.3 Balanced Transmission Lines with Common-Mode Suppression, 411
 6.3.1 Strategies for Common-Mode Suppression, 411
 6.3.1.1 Differential Lines Loaded with Dumbbell-Shaped Slotted Resonators, 412
 6.3.1.2 Differential Lines Loaded with CSRRs, 412
 6.3.2 CSRR- and DS-CSRR-Based Differential Lines with Common-Mode Suppression: Filter Synthesis and Design, 414
 6.3.3 Applications of CSRR and DS-CSRR-Based Differential Lines, 418
 6.3.3.1 Differential Line with Common-Mode Suppression, 418
 6.3.3.2 Differential Bandpass Filter with Enhanced Common-Mode Rejection, 421
 6.3.4 Balanced Filters with Inherent Common-Mode Suppression, 421
 6.3.4.1 Balanced Bandpass Filters Based on OSRRs and OCSRRs, 423
 6.3.4.2 Balanced Bandpass Filters Based on Mirrored SIRs, 425
6.4 Wideband Artificial Transmission Lines, 429
 6.4.1 Lattice Network Transmission Lines, 429
 6.4.1.1 Lattice Network Analysis, 430
 6.4.1.2 Synthesis of Lattice Network Artificial Transmission Lines, 434
 6.4.1.3 The Bridged-T Topology, 437
6.4.2 Transmission Lines Based on Non-Foster Elements, 439
6.5 Substrate-Integrated Waveguides and Their Application to Metamaterial Transmission Lines, 441
6.5.1 SIWs with Metamaterial Loading and Applications to Filters and Diplexers, 444
6.5.2 CRLH Lines Implemented in SIW Technology and Applications, 445
References, 454

Appendix A. Equivalence between Plane Wave Propagation in Source-Free, Linear, Isotropic, and Homogeneous Media; TEM Wave Propagation in Transmission Lines; and Wave Propagation in Transmission Lines Described by its Distributed Circuit Model 460
Appendix B. The Smith Chart 468
Appendix C. The Scattering Matrix 474
Appendix D. Current Density Distribution in a Conductor 480
Appendix E. Derivation of the Simplified Coupled Mode Equations and Coupling Coefficient from the Distributed Circuit Model of a Transmission Line 482
Appendix F. Averaging the Effective Dielectric Constant in EBG-Based Transmission Lines 484
Appendix G. Parameter Extraction 486
Appendix H. Synthesis of Resonant-Type Metamaterial Transmission Lines by Means of Aggressive Space Mapping 491
Appendix I. Conditions to Obtain All-Pass X-Type and Bridged-T Networks 503
Acronyms 505
Index 508