Index

Abelson (ABL) tyrosine kinase gene, 4
Acute lymphoblastic leukemia (ALL), 31–32
Adenomatous polyposis coli (APC) gene, 19
ADH. See Atypical ductal hyperplasia
Adjuvant, 246
Akt pathway, 41, 53
ALL. See Acute lymphoblastic leukemia
Ambros, Victor, 27
American Gastroenterological Association (AGA), 291
American Society for Gastrointestinal Endoscopy (ASGE), 291
American Society of Clinical Oncology (ASCO), 137
Analytical validity, of biomarkers for cancer diagnosis, 209
Androgen receptor (AR), 55
Antigens, tumor-associated, 43–44
APC gene, 283
AR. See Androgen receptor
Arhgap1 gene, 68
ASCO. See American Society of Clinical Oncology
ATP-binding cassette transporters (ABC transporters), 120–121
AT-rich interactive domain containing protein 1A (ARID1A), 124
Atypical ductal hyperplasia (ADH), 79
Autoantibodies (AAb), 82, 173
Autophagy, 66
Barrett’s esophagus (BE), biomarkers for, 40
discovery, obstacles to, 113
for early detection, 106–110
methylated genes, 106–107
miRNA, 107–110
molecular alterations in, 105–106
for predicting risk of progression to EAC, 110–111
to predict treatment response, 111–113
for prognosis and disease recurrence, 111
protein biomarkers, 110
somatic mutations, 106
BBD. See Benign breast disease
BE. See Barrett’s esophagus
Benign breast disease (BBD), 78
candidate risk biomarkers for progression from, 85
prognostic tissue biomarkers of, 84–85
Benign prostatic hyperplasia (BPH), 55–56
Bioethics
case study, 278–279
validation, 279–280
Biofluids-based biomarkers, for lung cancer, 168
blood-based markers, 168–174
autoantibodies, 173
circulating DNA, 174
circulating tumor cells, 173–174
microRNAs, 168, 173
proteomic profiles, 173
exhaled breath condensate, 174–175
spurum, 175
urine, 175
Biomarker Database (BMDDB), 7
Biomarker research, in cancer detection
analytical validity in, 209–210
background, purpose and organization, 209
CEA blood test for colon cancer, 210
clinical utility in, 210
clinical validity in, 209–210
external validity in, 210
internal validity in, 210
lessons for future, 217
practical issues I, 213
case study, 214
design, 213
interpretation, 214
reporting, 214
practical issues II, 214
bias in observational research, 215
critical importance of internal validity, 215
principles, 215
validation study terminology, 216
validity of discovery research, 216–217
proteomics blood tests for ovarian cancer, 210–211
banked specimens in both discovery and validation, 212–213
initial promising claims, 211
later promising claims, 211
NCI’s study to assess clinical validity, 211–212
Biomarkers, 3, 256–257
application, 5
for breast cancer, 77–88
for cancer pancreatic, 130–137
categories of, 151–152
characteristics of, 258
CLIA certified diagnostic tests, 8
for colorectal cancer, 142–148
datasets, 261–262
definitions, 3, 151–152
development, 247–248, 248
development of, 6, 246–248
discovery, 250–251
DNA methylation as cancer, 20–21
evaluation, 249
exosomes and, 50–58

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Index

Biomarkers (Continued)
FDA approved diagnostic tests, 7
tissue-based, 85
for lung cancer, 164–178
internal validity of, 210
NCI’s EDRN and the five-phase schema, 6–9
negative predictive value and, 3
non-invasive tests, 5
power analysis of, 251–252
protein-based, 4–5
reproducibility and generalizability, 252
research, 4–6, 11–12, 209–217
research in, 209–210
for breast cancer, 77–88
colorectal, 141–148
detection of, 4
development of, 4
epigenetic test for, 21
epigenetic therapeutics in, 21–22
genes methylated in, 19
hemoglobin, 67
hypermethylation in, 18
immunosurveillance, 44–45
inflammation and, 37–46
intrinsic hypo-methylation in, 18
lung, 163–178
methylation biomarkers in, 20–21
microRNA biomarkers for early detection of, 27–33
ovarian, 93–101
prostate, 197–203
screening for, 210
surveillance, 4
treatments/surveillance, 4
types of, 4
BMDP. See Biomarker Database
Bone morphogenetic protein 3 gene, 144
Bootstrap method, 262
BPH. See Benign prostatic hyperplasia
BRAF, 238
BRAF inhibitor vemurafenib, 4
Breakpoint cluster region (BCR) gene, 4
Breast cancer, 77
BBM, prognostic tissue biomarkers of, 84–85
biologic heterogeneity of, 82
circulating tumor markers, 80–81
clinical applications of biomarkers for, 86–87
DCIS, prognostic tissue biomarkers of, 84–85
development of, 78–79
early detection, blood-based biomarkers for
autoantibodies, 82
cell-free DNA, 83–84
circulating tumor cells, 83
current clinical practice, 79–81
eosinophils, 83
glycosylation, 82–83
microRNA, 84
protein biomarkers, 81–82
familial risk in, 77
genome-wide association studies, 77–78
genomic biomarkers of risk, 77–78
invasive carcinoma, prognostic tissue biomarkers of, 85–86
mammographic screening for, 87
multigene parameters in, 86
overdiagnosis, evidence for, 222–224
pathological models of, 79
predictors of, 77
Brca1, 19–20
Bromodomain inhibitor JQ1 (GSK525762), 22
Burkitt’s lymphoma, 53
CA 19-9 biomarker, 131–133, 134–135, 145
CA 125 biomarker
for ovarian cancer, 97–100
for PDA, 131–133
CACC. See Colitis associated colon cancer
Caffeic acid phenethyl ester (CAPE), 70
CAFs. See Cancer-associated fibroblasts; Carcinoma-associated fibroblasts
CagA. See Cytotoxin-associated gene A
Cancer, 4
biomarkers and, 4–5
breast, 77–88
colorectal, 141–148
detection of, 4
development of, 4
and DNA methylation, 17–20
epigenetic test for, 21
epigenetic therapeutics in, 21–22
epigenome, 23
genomes methylated in, 19
hemoglobin, 67
hypermethylation in, 18
immunosurveillance, 44–45
inflammation and, 37–46
intrinsic hypo-methylation in, 18
lung, 163–178
methylated DNA, 146
microRNA biomarkers for early detection of, 27–33
ovarian, 93–101
prostate tumor, 197–203
treatments/surveillance, 4
types of, 4
Cancer-associated fibroblasts (CAFs), 42–43
Candidatemethylated gene biomarkers, for BE, 106–107
CAPE. See Caffeic acid phenethyl ester
CAPP-seq, 174
Carcinoembryonic antigen (CEA) blood test, for colorectal cancer, 210
Carcinoma-associated fibroblasts (CAFs), 67
Carryover, 271
CDKN2A gene, 124
CD8T cells, 67
Cell-free circulating tumor DNA (cfDNA), 146
Cell-free DNA (cfDNA), 83–84
CellSearch™, 83
CGH. See Comparative genomic hybridization
Chemokines, 41–42
Chemotherapy-associated metabolism genes, 120
Chromosome 22, 4
Chronic bronchitis, 186
Chronic myelogenous leukemia (CML), 4
Chronic obstructive pulmonary disease (COPD), 185–186
challenges and future directions, 192–193
and lung cancer, 187–188
Chronic myelogenous leukemia (CML), 4
Circulating tumor markers, 80–81
DCIS, 84–85
development of, 78–79
early detection, blood-based biomarkers for
autoantibodies, 82
cell-free DNA, 83–84
circulating tumor cells, 83
current clinical practice, 79–81
eosinophils, 83
glycosylation, 82–83
microRNA, 84
protein biomarkers, 81–82
familial risk in, 77

natural history of, 186
pathogenesis of
epigenetic modifications, 191–192
epigenetics, 190–191
inflammation, 188–189
molecular field of injury, 189–190
CIMP. See CpG island methylator phenotype
Cinnamomi cortex, 70
Circulating DNA (ctDNA), 146, 174
Circulating tumor cells (CTCs), 69–70, 173–174
breast cancer and, 83
Circulating tumor markers, 80–81
c-KIT, 240
CLIA. See Clinical Laboratory Improvement Amendments of 1988
Clinical Laboratory Improvement Amendments of 1988 (CLIA), 11, 145
Clinical utility, of biomarkers for cancer diagnosis, 210
Clinical validity, of biomarkers for cancer diagnosis, 209–210
c-Met, 124
CML. See Chronic myelogenous leukemia
CMTM8, 70
Colitis associated colon cancer (CACC), 45–46
ColoGuidePro, 156
Colonic cells, 283
Colonoscopy, 30, 142, 285
ColoPrint®, 156
Colorectal cancer (CRC), 30, 56
approaches and limitations, 284–287
biomarkers for
blood-based, 145–147
challenges of, 157–158
companion diagnostics, 157
discovery, verification and validation, 143–144
exosomes as, 152–154
future directions of, 157–158
genetic alterations as, 156–157
kinome, 155
metabolome as, 154–155
microbiome, 144–145
microRNAs, 155–156
race/ethnicity-based, 152
for screening/early detection, 142–143
stool-based, 144–145
urine-based, 147–148
CEA blood test for, 210
challenges, 291
molecular pathogenesis of, 283
limitations, 291
methods of, 286–287t
risk stratification of, 287–291
screening
current modalities, 141–142
importance of, 141
stool-based biomarkers for, 144
Companion diagnostic biomarkers, 152, 157
Comparative genomic hybridization (CGH), 78
Computed tomographic colonography (CTC), 285–287
Computed tomography (CT), 163
COPD. See Chronic obstructive pulmonary disease
CpG island methylator phenotype (CIMP), 157
CpG sequences (CpG islands), 17
CRC. See Colorectal cancer
CRC syndromes, 283
familial adenomatous polyposis (FAP), 283
Lynch syndrome, 283
MYH-associated polyposis (MAP), 283
CT. See Computed tomography
CTCs. See Circulating tumor cells
ctDNA. See Circulating DNA
Cyst fluid biomarkers, 133
Cytokinin, 65
Cytokines, 37–38, 41–42
Cytotoxicity-associated gene A (CagA), 39
DAAs. See Disease associated antigens
Damage-associated molecular patterns (DAMPs), 39–40
DAMPs. See Damage-associated molecular patterns
Data and model testing (DMT), 261
DCIS. See Ductal carcinoma in situ
DCIS Score™ Gene Selection, 85
dCK. See Deoxycytidine kinase
De novo methylation, 17
Deoxycytidine kinase (dCK), 136
Diagnostic biomarkers, 151
Dihydropyrimidine dehydrogenase (DYPD) gene, 120, 157
Disease associated antigens (DAAs), 45
DNA hypomethylation, 284
DNA methylation, 291
and cancer, 17–20
as cancer biomarker, 20–21
epigenetic therapeutics in cancer, 21–22
mechanisms, 17
DNA methyltransferases (DNMTs), 17, 18
DNA mutations, 292
DNMT3A, 241
DNMTs. See DNA methyltransferases
DOT1L inhibitor EPZ004777, 22
Double-contrast barium enema (DCBE), 285
DPD. See Dihydropyrimidine dehydrogenase
Ductal adenocarcinoma, 130
Ductal carcinoma in situ (DCIS), 78–79
candidate risk biomarkers for progression from, 85
prognostic tissue biomarkers of, 84–85
Dysplasia associated lesion or mass (DALM), 291
EAC. See Esophageal adenocarcinoma
Early detection biomarkers, 151
Early Detection Research Network (EDRN), 6
biomarkers and, 6–9
BMD, 7
Early Lung Cancer Action Program (ELCAP), 163
EBV. See Epstein-Barr virus
E-cadherin, 65, 67
ECM. See Extracellular matrix
EDRN. See Early Detection Research Network
EGFR. See Epidermal growth factor receptor
ELCAP. See Early Lung Cancer Action Program
ELISA. See Enzyme-linked immunosorbent assay
Emphysema, 186
EMT. See Epithelial-to-mesenchymal transition
ENCODE. See Encyclopedia of DNA Elements
Encyclopedia of DNA Elements (ENCODE), 20
Endogenous small interfering RNAs (endosRNAs), 28
Endometriosis, 94–95
endosRNAs. See Endogenous small interfering RNAs
Endosomal sorting complex responsible for transport (ESCRT), 51
Enzyme-linked immunosorbent assay (ELISA), 82
Epidermal growth factor receptor (EGFR), 121, 123, 289
Index

Epigenetics, 16
test, for cancer, 21
therapeutics, in cancer, 21–22
Epithelial ovarian cancers, 94
heterogeneity of, 95
Epithelial Splicing Regulation Protein 1 (ESRP1), 69
Epithelial-to-mesenchymal transition (EMT), 41
biology of, 64–65
and cancer stem cell, 64
carcinoma-associated fibroblasts and, 67
in carcinoma cells, 65–66
cells and tissues, effects on, 65
and chemoresistance, 70
clinical implications of, 69–70
dermoelastic cells and, 66
induction of, 65–66
inhibition of, 70–71
microRNAs and, 68
and stromal cells in tumors, 66
CD8T cells, 67
macrophages, 66–67
transcription factors of, 66, 67–68
type 2, 64
type 3, 64
type 1, 64
in vivo, 65
Epstein-Barr virus (EBV), 53
ERCC1. See Excision repair cross-complementing 1
ESCC. See Esophageal squamous cell carcinoma
ESCRT. See Endosomal sorting complex responsible for transport
Esophageal adenocarcinoma (EAC), 104–105
molecular alterations in, 105–106
risk of progression of BE to, 110–111
Esophageal cancer biomarkers, 104–105
discovery, obstacles to, 113
for early detection of BE, 106
aberrantly methylated genes, 106–107
miRNA, 107–110
protein biomarkers, 110
somatic mutations, 106
malignant disease of esophagus, molecular alterations in, 105–106
for predicting risk of progression of BE to EAC, 110–111
to predict treatment response, 111–113
pre-malignant disease of esophagus, molecular alterations in, 105–106
for prognosis and disease recurrence, 111
Esophageal squamous cell carcinoma (ESCC), 104–105
molecular alterations in, 105–106
esRNA. See Exosomal shuttle RNA
ESRP1. See Epithelial Splicing Regulation Protein 1
E3 ubiquitin protein ligase (VHL) gene, 19
Excision repair cross-complementing 1 (ERCC1), 119
Exosomal shuttle RNA (esRNA), 52
Exosomes, 50
based diagnostics, challenges in, 57
biogenesis of, 50–52
as biomarkers
for cancer, 54–56
for colorectal cancer, 152–154
for breast cancer, 83
characterization of, 50–52
immune regulation, role in, 53
proteins, diagnostic potential of, 52–53
RNA, diagnostic potential of, 52
from tumor cells, 54
tumor development, role in, 53
utilization of, challenges in, 56–57
External validity, of biomarkers for cancer diagnosis, 210
Extracellular matrix (ECM), 40
Fallopian tube, 94
FAM13A. See Family with sequence similarity 13 member A
Family with sequence similarity 13 member A (FAM13A), 191
FAT4 gene, 124
FDA. See Food and Drug Administration
FEA. See Flat epithelial atypia
Fecal immunological test (FIT), 142–143
Fecal occult blood tests (FOBT), 284
FIT. See Fecal immunological test
Five phases of biomarker development, 7–9
Flat epithelial atypia (FEA), 79
Flexible sigmoidoscopy, 285
5-Flourouracil (5-FU), 120, 155
FOBT. See Fecal occult blood tests
FOLH1/PSMA, 55
Food and Drug Administration (FDA), 6
Fragile histidine triad protein (FHIT) gene, 19
5-FU. See 5-Flourouracil
Gastric cancer, 53
Gastroesophageal reflux disease (GERD), 40, 104
Gastrointestinal stromal tumor (GIST), 246
GBM. See Glioblastoma multiforme
Genome-wide association studies (GWAS)
and breast cancer, 77–78
GERD. See Gastroesophageal reflux disease
gFOBT. See Guaiac fecal occult blood tests
Glioblastoma multiforme (GBM), 66–67
Glioma, 29–30
Global hypomethylation, 17
Global Initiative on Chronic Obstructive Lung Disease (GOLD), 186
Glutathione S-transferase P (GSTP1) gene, 19
Glycans, 44, 83
Glycosylated proteins, 146
Glycosylphosphatidylinositol (GPI)-anchored proteins, 83
GNAS gene, 134
GOLD. See Global Initiative on Chronic Obstructive Lung Disease
Guaiac fecal occult blood tests (gFOBT), 142–143
GWAS. See Genome-wide association studies
Hay, Elizabeth, 64
HCV. See Hepatitis C virus
HCC. See Hepatocellular carcinoma
HCV. See Hepatitis C virus
HDAC. See Histone deacetylase
HDAC inhibitors, 22
Hedgehog interacting protein (HHIP), 191
Helicobacter pylori, 39
hENT1. See Human equilibrative nucleoside transporter 1
Hepatitis B virus (HBV) infection, 39
Hepatitis C virus (HCV) infection, 39
Hepatocellular carcinoma (HCC), 39
HER 2. See Human epidermal growth factor receptor 2
HHIP. See Hedgehog interacting protein
Histone deacetylase (HDAC) inhibitors, 22
H3K79 methylation, 22
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Hodgkin’s disease, 53</td>
</tr>
<tr>
<td>136</td>
<td>Hu antigen R (HuR), 136</td>
</tr>
<tr>
<td>269</td>
<td>Human choriongonadotropin (hCG), 269</td>
</tr>
<tr>
<td>123</td>
<td>Human epidermal growth factor receptor 2 (HER 2), 123</td>
</tr>
<tr>
<td>246</td>
<td>Human equilibrative nucleoside transporter 1 (hENT1), 136</td>
</tr>
<tr>
<td>136</td>
<td>HuR. See Hu antigen R</td>
</tr>
<tr>
<td>41, 65</td>
<td>Hypoxia, 41, 65</td>
</tr>
<tr>
<td>269</td>
<td>Humanchoriogonadotropin (hCG), 269</td>
</tr>
<tr>
<td>123</td>
<td>Human epidermal growth factor receptor 2 (HER2), 246</td>
</tr>
<tr>
<td>136</td>
<td>Humanequilibrativenucleosidetransporter1(hENT1),136</td>
</tr>
<tr>
<td>134</td>
<td>HuR. See Hu antigen R</td>
</tr>
<tr>
<td>41, 65</td>
<td>Hypermethylation, 18</td>
</tr>
<tr>
<td>39</td>
<td>IBD. See Inflammatory bowel disease</td>
</tr>
<tr>
<td>200–241</td>
<td>IBH1/2, 200–241</td>
</tr>
<tr>
<td>79</td>
<td>IHC. See Immunohistochemistry</td>
</tr>
<tr>
<td>39</td>
<td>Inflammation cancer and, 37–46</td>
</tr>
<tr>
<td>45</td>
<td>inflammatory bowel disease and, 45–46</td>
</tr>
<tr>
<td>39</td>
<td>intrinsic pathway of, 39</td>
</tr>
<tr>
<td>37</td>
<td>IL-6. See Interleukin-6</td>
</tr>
<tr>
<td>37</td>
<td>IL-8. See Interleukin-8</td>
</tr>
<tr>
<td>4</td>
<td>Imatinib, 4</td>
</tr>
<tr>
<td>79</td>
<td>Immunohistochemistry (IHC), 79</td>
</tr>
<tr>
<td>45, 66–67</td>
<td>Inflammation lung, 40</td>
</tr>
<tr>
<td>40, 66–67</td>
<td>Inflammation macrophages and, 40</td>
</tr>
<tr>
<td>42–43</td>
<td>molecular pathways and networks of, 42–43</td>
</tr>
<tr>
<td>40–41</td>
<td>neutrophils and, 40–41</td>
</tr>
<tr>
<td>39–40</td>
<td>in sterile tissue injury, 39–40</td>
</tr>
<tr>
<td>43–44</td>
<td>tumor-associated antigens and, 43–44</td>
</tr>
<tr>
<td>40–41</td>
<td>tumor-promoting inflammatory cells, 40–41</td>
</tr>
<tr>
<td>41–42</td>
<td>tumor-promoting inflammatory chemokines, 41–42</td>
</tr>
<tr>
<td>41–42</td>
<td>tumor-promoting inflammatory cytokines, 41–42</td>
</tr>
<tr>
<td>38</td>
<td>types of, 38</td>
</tr>
<tr>
<td>45–46</td>
<td>Inflammatory bowel disease (IBD), 45–46</td>
</tr>
<tr>
<td>39</td>
<td>Inflammatory hepatocellular adenoma, 39</td>
</tr>
<tr>
<td>197</td>
<td>Insignificant tumor, 197</td>
</tr>
<tr>
<td>37–42</td>
<td>Interleukin-6 (IL-6), 37–42</td>
</tr>
<tr>
<td>37–42</td>
<td>Interleukin-8 (IL-8), 37–42</td>
</tr>
<tr>
<td>39</td>
<td>Internal validity, of biomarkers for cancer diagnosis, 30</td>
</tr>
<tr>
<td>133–134</td>
<td>Intracellular papillary mucinous neoplasms (IPMN), 133–134</td>
</tr>
<tr>
<td>18</td>
<td>Intrinsic hypo-methylation, 18</td>
</tr>
<tr>
<td>85–86</td>
<td>IPMN. See Intracellular papillary mucinous neoplasms</td>
</tr>
<tr>
<td>42</td>
<td>kB sites, 42</td>
</tr>
<tr>
<td>224</td>
<td>Kidney cancer, evidence for overdiagnosis, 225</td>
</tr>
<tr>
<td>155</td>
<td>Kinome, for colorectal cancer, 155</td>
</tr>
<tr>
<td>238</td>
<td>KRAS oncogene, 29</td>
</tr>
<tr>
<td>203</td>
<td>KRAS oncogene, 29</td>
</tr>
<tr>
<td>202–203</td>
<td>4K Score, 202–203</td>
</tr>
<tr>
<td>53</td>
<td>Latent membrane protein 1 (LMP1), 53</td>
</tr>
<tr>
<td>53</td>
<td>LCIS. See Lobular carcinoma in situ</td>
</tr>
<tr>
<td>328</td>
<td>LDCT. See Low-dose helical computed tomography</td>
</tr>
<tr>
<td>221</td>
<td>Length-biased sampling, 221</td>
</tr>
<tr>
<td>228</td>
<td>Lethal-7 (let-7), 228</td>
</tr>
<tr>
<td>28–29</td>
<td>lncRNAs. See Long intergenic ncRNAs</td>
</tr>
<tr>
<td>228</td>
<td>LMP1. See Latent membrane protein 1</td>
</tr>
<tr>
<td>273</td>
<td>lncRNAs. See Long non-coding RNAs</td>
</tr>
<tr>
<td>134</td>
<td>Lobular carcinoma in situ (LCIS), 134</td>
</tr>
<tr>
<td>28</td>
<td>Long intergenic ncRNAs (lncRNAs), 28</td>
</tr>
<tr>
<td>28</td>
<td>Long non-coding RNAs (lncRNAs), 28</td>
</tr>
<tr>
<td>30</td>
<td>Low-dose helical computed tomography (LDCT), 30</td>
</tr>
<tr>
<td>164</td>
<td>Lung cancer, 164–165</td>
</tr>
<tr>
<td>165</td>
<td>biomarkers for, 164–165</td>
</tr>
<tr>
<td>165</td>
<td>biofluids-based, 165–167</td>
</tr>
<tr>
<td>174</td>
<td>blood-based markers, 168–174</td>
</tr>
<tr>
<td>177</td>
<td>challenges in, 175, 177</td>
</tr>
<tr>
<td>165</td>
<td>current status, 165–176</td>
</tr>
<tr>
<td>174–175</td>
<td>exhaled breath condensate, 174–175</td>
</tr>
<tr>
<td>177–178</td>
<td>future clinical perspectives, 177–178</td>
</tr>
<tr>
<td>175</td>
<td>peripheral mononuclear lymphocytes, 174</td>
</tr>
<tr>
<td>168–176</td>
<td>sputum, 175</td>
</tr>
<tr>
<td>165–168</td>
<td>tissue-based, 165–168</td>
</tr>
<tr>
<td>175</td>
<td>urine, 175</td>
</tr>
<tr>
<td>192–193</td>
<td>challenges and future directions, 192–193</td>
</tr>
<tr>
<td>164–165</td>
<td>clinical context of early detection of, 164–165</td>
</tr>
<tr>
<td>163</td>
<td>and COPD, 187–188</td>
</tr>
<tr>
<td>165</td>
<td>mortality from, 163</td>
</tr>
<tr>
<td>186–187</td>
<td>natural history of, 186–187</td>
</tr>
<tr>
<td>224</td>
<td>overdiagnosis, evidence for, 224</td>
</tr>
<tr>
<td>191–192</td>
<td>pathogenesis of epigenetic modifications, 191–192</td>
</tr>
<tr>
<td>188–189</td>
<td>genetics, 190–191</td>
</tr>
<tr>
<td>189–190</td>
<td>inflammation, 188–189</td>
</tr>
<tr>
<td>163</td>
<td>molecular field of injury, 189–190</td>
</tr>
<tr>
<td>163</td>
<td>survival rate, 163</td>
</tr>
<tr>
<td>40</td>
<td>Lung inflammation, 40</td>
</tr>
<tr>
<td>66–67</td>
<td>Macrophages, 40, 66–67</td>
</tr>
<tr>
<td>121</td>
<td>Mammalian target or rapamycin (mTOR), 121</td>
</tr>
<tr>
<td>86</td>
<td>Mammography, 86</td>
</tr>
<tr>
<td>30</td>
<td>MAPK. See Mitogen-activated protein kinases</td>
</tr>
<tr>
<td>146–147</td>
<td>Metabolite, as biomarkers for colorectal cancer, 146–147</td>
</tr>
<tr>
<td>146–147</td>
<td>Metabolomics, 146–147</td>
</tr>
<tr>
<td>147–148</td>
<td>Metabolomics, 147–148</td>
</tr>
<tr>
<td>146</td>
<td>Methyalted DNA biomarker, for colorectal cancer, 146</td>
</tr>
<tr>
<td>20</td>
<td>MethyIcancer, 20</td>
</tr>
<tr>
<td>144–145</td>
<td>Microbiome, 144–145</td>
</tr>
<tr>
<td>173</td>
<td>MicroRNAs (miRNAs), 173</td>
</tr>
<tr>
<td>32</td>
<td>analytical standards, 32–33</td>
</tr>
<tr>
<td>32–33</td>
<td>analytical variability of, 32</td>
</tr>
<tr>
<td>28</td>
<td>biogenesis, 28</td>
</tr>
<tr>
<td>31</td>
<td>biological relevance of, 32</td>
</tr>
<tr>
<td>31</td>
<td>as biomarkers, 31 (See also Biomarkers)</td>
</tr>
<tr>
<td>30</td>
<td>in body fluids, 30–31</td>
</tr>
<tr>
<td>84</td>
<td>for breast cancer detection, 84</td>
</tr>
<tr>
<td>154–155</td>
<td>for colorectal cancer detection, 154–155</td>
</tr>
<tr>
<td>31–32</td>
<td>in combination with genomic and clinical indicators, 31–32</td>
</tr>
<tr>
<td>164–165</td>
<td>for detecting cancer, 30</td>
</tr>
<tr>
<td>27–28</td>
<td>discovery of, 27–28</td>
</tr>
<tr>
<td>68</td>
<td>EMT and, 68</td>
</tr>
<tr>
<td>28</td>
<td>mechanism of action, 28</td>
</tr>
<tr>
<td>28–29</td>
<td>as oncoproteins, 28–29</td>
</tr>
<tr>
<td>137</td>
<td>as predictive markers, 137</td>
</tr>
</tbody>
</table>
MicroRNAs (miRNAs) (Continued)
reproducibility and validation for cancer detection, 32
research, 32
as risk indicators, 29–30
and standard diagnostic tools, 30
as tumor suppressor genes, 28–29
Microsatellite instability (MSI-H), 156
Microvesicles, 50
miR-1, 29
miR-1-16-1, 29
miR-17-92, 29
miR-21, 30
miR-22, 29
miR-31, 30
miR-126, 31
miR-141, 30
miR-152, 31
miR-205, 31
miR-206, 29
miR-210, 30, 31
miR-494, 29
miR-608, 29
miR-708, 31
miR-15a, 29
miR-34a, 29
miR-125b, 29
miRNA-21, 32
miRNA-155, 29
miRNAS. See MicroRNAs
Mitogen-activated protein kinases (MAPK), 41
MMP7. See Matrix metalloproteinase 7
MMP-9. See Matrix metalloproteinase 9
MMP-12. See Matrix metalloproteinase-12
MMPs. See Matrix metalloproteinases
MMR genes, 283
Molecular biomarkers, 291
Molecular markers. See Biomarkers
miRNAs. See Messenger RNAs
MSI-H. See Microsatellite instability
mTOR. See Mammalian target or rapamycin
MUC1, 44, 45–46
MUC2, 134
MUC4, 44, 134
MUC5, 44
MUC6, 44
Mucinous cystic neoplasms (MCN), 130, 133
Mucinous lesions, 133
Müllerian-type tissue, 93
Multidrug resistance-associated protein-1 (MRP-1), 120–121
Multistep carcinogenesis, 189–190
Myeloid derived suppressor cells (MDSCs), 41
Nasopharyngeal carcinoma (NPC), 53
National Cancer Institute, 245
National Cancer Institute (NCI), 3, 211
National Comprehensive Network (NCCN), 137
National Institutes of Health (NIH), 3
NCCN. See National Comprehensive Network
NCI. See National Cancer Institute
ncRNAs. See Non-coding RNAs
NDRG family member 4 (NDRG4) gene, 19
NE. See Neutrophil elastase
Negative predictive value (NPV), 3, 272
Neoplastic epithelial ovarian cancer, 93
Neuroblastoma, 222
Neutrophil elastase (NE), 189
Neutrophils, 40–41
NF-kB, 37, 42–43, 119–120
NIH. See National Institutes of Health
N-Myc downstream-regulated gene 4, 144
Non-coding RNAs (ncRNAs), 27–28
types, 28
Non-small cell lung cancer (NSCLC), 30, 31, 173, 186–187
Non-small cell lung carcinoma (NSCLC), 246
Nottingham prognostic index (NPI), 246
NPC. See Nasopharyngeal carcinoma
NPV. See Negative predictive value
NRAS, 238–239
NSCLC. See Non-small cell lung cancer
OncomiRs. See MicroRNAs
Oncotype DX test, 84, 156, 201–202
Ovarian cancer, 93
CA125 data from, 97–100
early detection of, 95–96
challenges for, 96–97
two-stage screening strategies for, 97–101
heterogeneity of epithelial, 95
origin of endometriosis, 94–95
fallopian tube, 94
ovarian surface, 93
secondary müllerian system, 93–94
proteomics blood tests for, 210–217
type II tumors, 95–96
type I tumors, 95–96
Overdiagnosis, 220–221
evidence for, 222
breast cancer, 222–224
kidney cancer, 225
lung cancer, 224
melanoma, 225
neuroblastoma, 222
prostate cancer, 224–225
renal pelvis cancer, 225
thyroid cancer, 225
matter and management of, 226–227
of non-invasive, premalignant lesions, 225–226
population-level data and, 221–222
PAMPs. See Pathogen-associated patterns
Pancreatic ductal adenocarcinoma (PDA), 40, 41, 130–131
diagnostic markers for
CA 19-9, 131–133
CA 122, 133
cystic lesions, 133–134
serum carcinoembryonic antigen, 133
future directions, 137
investigational markers for, 135–136, 137
predictive markers for, 136–137
prognostic markers for
CA 19-9, 134–135
Pancreatic intraepithelial neoplasia (PanIN), 137
PanIN. See Pancreatic intraepithelial neoplasia
Parametric empirical Bayes (PEB) method, 98
Pathogen-associated patterns (PAMPs), 39
Pattern-recognition receptors (PRRs), 39
p-BNC. See Programmable bio-nano-chip
PCa. See Prostate cancer
PCA3. See Prostate cancer antigen 3
Target biomarkers, 152
Tazarotene-induced gene-1 (TIG1) gene, 19
TCGA. See The Cancer Genome Atlas
TDLU. See Terminal ductal lobular units
Terminal ductal lobular units (TDLU), 78
TGF-β, 65, 66, 68, 69
The Cancer Genome Atlas (TCGA), 20
Therapeutic drugs, for cancer, 21–22
Thrombospondins (TSPs), 29
Thymidylate synthase (TS), 120
Thyroid cancer, evidence for over diagnosis, 225
Tissue-based biomarkers, 85, 165–168
Tissue inhibitor of metalloproteinase-3 (TIMP3) gene, 19
TLRs. See Toll-like receptors
TMPRSS2. See Transmembrane protease
TMPRSS2-ERG, 201
TNBC. See Triple negative breast cancer
TNF-α. See Tumor necrosis factor-α
Toll-like receptors (TLRs), 39
TP53 gene, 120, 124, 239–240
Transfer RNA-derived RNA fragments (tRFs), 28
Transfer-RNAs (tRNAs), 28
Translational Research Working Group (TRWG), 9
Transmembrane protease (TMPRSS2), 201
Transvaginal sonography (TVS), 97
tRFs. See Transfer RNA-derived RNA fragments
Triple negative breast cancer (TNBC), 29
tRNAs. See Transfer-RNAs
Trueness, 268–269
TRWG. See Translational Research Working Group
TS. See Thymidylate synthase
TSC1. See Tuberous sclerosis complex 1
TSPs. See Thrombospondins
Tuberculous sclerosis complex 1 (TSC1), 5
Tumor-associated antigens (TAAs), 43–45, 173
Tumor-associated macrophages (TAMs), 66–67
Tumor-derived (TD) exosomes, 54
Tumorigenesis, 38
Tumor necrosis factor-α (TNF-α), 37, 41–42
Tumor-promoting inflammatory cells, 40–41
chemokines, 41–42
cytokines, 41–42
Tumor stroma, 40
TVS. See Transvaginal sonography
Type II tumors, 95
Type I tumors, 95
United States Preventive Services Task Force (USPSTF), 54
Upper digestive tract (UDT), adenocarcinoma of, 118
biomarkers advances in technology, 123–124
ATP-binding cassette transporters, 120–121
chemotherapy-associated metabolism genes, 120
c-Met, 124
EGFR, 123
excision repair cross-complementing 1, 119
HER 2, 123
importance of, 118–119
microRNAs, 121
mTOR, 124
NF-κB, 119–120
signatures in, 121–123
single nucleotide polymorphisms, 121
TP53, 120
VEGF-A, 123–124
genetic alterations associated with, 124–125
Urine-based biomarkers, 147
DNA, 147
metabolomics, 147–148
proteins, 148
USPSTF. See United States Preventive Services Task Force
Vascular endothelial growth factor (VEGF), 123–124
VEGF. See Vascular endothelial growth factor
Vimentin (VIM) gene, 19
Vorinostat, 22
Waddington, Conrad, 16
WNT16B, 70
X-ray repair cross-complementing protein 1 (XRCC1), 121
XRCC1. See X-ray repair cross-complementing protein 1
ZEB1, 67–68
ZEB2, 67–68
ZEB transcription factors, 67–68
Zingiberaceae turmeric, 70