Contents

Foreword xi
List of Figures xiii
List of Tables xvii
List of Contributors xix

1 Introduction 1
Raphaël Troncy, Benoit Huet and Simon Schenk

2 Use Case Scenarios 7
Werner Bailer, Susanne Boll, Oscar Celma,
Michael Hausenblas and Yves Raimond

2.1 Photo Use Case 8
2.1.1 Motivating Examples 8
2.1.2 Semantic Description of Photos Today 9
2.1.3 Services We Need for Photo Collections 10

2.2 Music Use Case 10
2.2.1 Semantic Description of Music Assets 11
2.2.2 Music Recommendation and Discovery 12
2.2.3 Management of Personal Music Collections 13

2.3 Annotation in Professional Media Production and Archiving 14
2.3.1 Motivating Examples 15
2.3.2 Requirements for Content Annotation 17

2.4 Discussion 18
Acknowledgements 19

3 Canonical Processes of Semantically Annotated Media Production 21
Lynda Hardman, Željko Obrenović and Frank Nack

3.1 Canonical Processes 22
3.1.1 Premeditate 23
3.1.2 Create Media Asset 23
3.1.3 Annotate 23
3.1.4 Package 24
3.1.5 Query
3.1.6 Construct Message
3.1.7 Organize
3.1.8 Publish
3.1.9 Distribute

3.2 Example Systems
3.2.1 CeWe Color Photo Book
3.2.2 SenseCam

3.3 Conclusion and Future Work

4 Feature Extraction for Multimedia Analysis
Rachid Benmokhtar, Benoit Huet,
Gaël Richard and Slim Essid

4.1 Low-Level Feature Extraction
4.1.1 What Are Relevant Low-Level Features?
4.1.2 Visual Descriptors
4.1.3 Audio Descriptors

4.2 Feature Fusion and Multi-modality
4.2.1 Feature Normalization
4.2.2 Homogeneous Fusion
4.2.3 Cross-modal Fusion

4.3 Conclusion

5 Machine Learning Techniques for Multimedia Analysis
Slim Essid, Marine Campedel, Gaël Richard, Tomas Piatrik,
Rachid Benmokhtar and Benoit Huet

5.1 Feature Selection
5.1.1 Selection Criteria
5.1.2 Subset Search
5.1.3 Feature Ranking
5.1.4 A Supervised Algorithm Example

5.2 Classification
5.2.1 Historical Classification Algorithms
5.2.2 Kernel Methods
5.2.3 Classifying Sequences
5.2.4 Biologically Inspired Machine Learning Techniques

5.3 Classifier Fusion
5.3.1 Introduction
5.3.2 Non-trainable Combiners
5.3.3 Trainable Combiners
5.3.4 Combination of Weak Classifiers
5.3.5 Evidence Theory
5.3.6 Consensual Clustering
5.3.7 Classifier Fusion Properties

5.4 Conclusion
6 Semantic Web Basics
Eyal Oren and Simon Schenk
6.1 The Semantic Web
6.2 RDF
6.2.1 RDF Graphs
6.2.2 Named Graphs
6.2.3 RDF Semantics
6.3 RDF Schema
6.4 Data Models
6.5 Linked Data Principles
6.5.1 Dereferencing Using Basic Web Look-up
6.5.2 Dereferencing Using HTTP 303 Redirects
6.6 Development Practicalities
6.6.1 Data Stores
6.6.2 Toolkits

7 Semantic Web Languages
Antoine Isaac, Simon Schenk and Ansgar Scherp
7.1 The Need for Ontologies on the Semantic Web
7.2 Representing Ontological Knowledge Using OWL
7.2.1 OWL Constructs and OWL Syntax
7.2.2 The Formal Semantics of OWL and its Different Layers
7.2.3 Reasoning Tasks
7.2.4 OWL Flavors
7.2.5 Beyond OWL
7.3 A Language to Represent Simple Conceptual Vocabularies: SKOS
7.3.1 Ontologies versus Knowledge Organization Systems
7.3.2 Representing Concept Schemes Using SKOS
7.3.3 Characterizing Concepts beyond SKOS
7.3.4 Using SKOS Concept Schemes on the Semantic Web
7.4 Querying on the Semantic Web
7.4.1 Syntax
7.4.2 Semantics
7.4.3 Default Negation in SPARQL
7.4.4 Well-Formed Queries
7.4.5 Querying for Multimedia Metadata
7.4.6 Partitioning Datasets
7.4.7 Related Work

8 Multimedia Metadata Standards
Peter Schallauer, Werner Bailer, Raphaël Troncy and Florian Kaiser
8.1 Selected Standards
8.1.1 MPEG-7
8.1.2 EBU P_Meta
8.1.3 SMPTE Metadata Standards
8.1.4 Dublin Core 133
8.1.5 TV-Anytime 134
8.1.6 METS and VRA 134
8.1.7 MPEG-21 135
8.1.8 XMP, IPTC in XMP 135
8.1.9 EXIF 136
8.1.10 DIG35 137
8.1.11 ID3/MP3 137
8.1.12 NewsML G2 and rNews 138
8.1.13 W3C Ontology for Media Resources 138
8.1.14 EBUCore 139

8.2 Comparison 140
8.3 Conclusion 143

9 The Core Ontology for Multimedia 145

Thomas Franz, Raphaël Troncy and Miroslav Vacura

9.1 Introduction 145
9.2 A Multimedia Presentation for Granddad 146
9.3 Related Work 149
9.4 Requirements for Designing a Multimedia Ontology 150
9.5 A Formal Representation for MPEG-7 150
9.5.1 DOLCE as Modeling Basis 151
9.5.2 Multimedia Patterns 151
9.5.3 Basic Patterns 155
9.5.4 Comparison with Requirements 157
9.6 Granddad’s Presentation Explained by COMM 157
9.7 Lessons Learned 159
9.8 Conclusion 160

10 Knowledge-Driven Segmentation and Classification 163

Thanos Athanasiadis, Phivos Mylonas, Georgios Th. Papadopoulos, Vasileios Mezaris, Yannis Avrithis, Ioannis Kompatsiaris and Michael G. Strintzis

10.1 Related Work 164
10.2 Semantic Image Segmentation 165
10.2.1 Graph Representation of an Image 165
10.2.2 Image Graph Initialization 165
10.2.3 Semantic Region Growing 167
10.3 Using Contextual Knowledge to Aid Visual Analysis 170
10.3.1 Contextual Knowledge Formulation 170
10.3.2 Contextual Relevance 173
10.4 Spatial Context and Optimization 177
10.4.1 Introduction 177
10.4.2 Low-Level Visual Information Processing 177
10.4.3 Initial Region-Concept Association 178
10.4.4 Final Region-Concept Association 179
10.5 Conclusions 181
11 Reasoning for Multimedia Analysis 183

Nikolaos Simou, Giorgos Stoilos, Carsten Saathoff, Jan Nemrava, Vojtěch Svátek, Petr Berka and Vassilis Tzouvaras

11.1 Fuzzy DL Reasoning 184

11.1.1 The Fuzzy DL \textit{f-SHIN} 184

11.1.2 The Tableaux Algorithm 185

11.1.3 The FiRE Fuzzy Reasoning Engine 187

11.2 Spatial Features for Image Region Labeling 192

11.2.1 Fuzzy Constraint Satisfaction Problems 192

11.2.2 Exploiting Spatial Features Using Fuzzy Constraint Reasoning 193

11.3 Fuzzy Rule Based Reasoning Engine 196

11.4 Reasoning over Resources Complementary to Audiovisual Streams 201

12 Multi-Modal Analysis for Content Structuring and Event Detection 205

Noel E. O’Connor, David A. Sadlier, Bart Lehane, Andrew Salway, Jan Nemrava and Paul Buitelaar

12.1 Moving Beyond Shots for Extracting Semantics 206

12.2 A Multi-Modal Approach 207

12.3 Case Studies 207

12.4 Case Study 1: Field Sports 208

12.4.1 Content Structuring 208

12.4.2 Concept Detection Leveraging Complementary Text Sources 213

12.5 Case Study 2: Fictional Content 214

12.5.1 Content Structuring 215

12.5.2 Concept Detection Leveraging Audio Description 219

12.6 Conclusions and Future Work 221

13 Multimedia Annotation Tools 223

Carsten Saathoff, Krishna Chandramouli, Werner Bailer, Peter Schallauer and Raphaël Troncy

13.1 State of the Art 224

13.2 SVAT: Professional Video Annotation 225

13.2.1 User Interface 225

13.2.2 Semantic Annotation 228

13.3 KAT: Semi-automatic, Semantic Annotation of Multimedia Content 229

13.3.1 History 231

13.3.2 Architecture 232

13.3.3 Default Plugins 234

13.3.4 Using COMM as an Underlying Model: Issues and Solutions 234

13.3.5 Semi-automatic Annotation: An Example 237

13.4 Conclusions 239
14 Information Organization Issues in Multimedia Retrieval Using Low-Level Features 241
 Frank Hopfgartner, Reede Ren, Thierry Urruty and Joemon M. Jose

14.1 Efficient Multimedia Indexing Structures 242
 14.1.1 An Efficient Access Structure for Multimedia Data 243
 14.1.2 Experimental Results 245
 14.1.3 Conclusion 249

14.2 Feature Term Based Index 249
 14.2.1 Feature Terms 250
 14.2.2 Feature Term Distribution 251
 14.2.3 Feature Term Extraction 252
 14.2.4 Feature Dimension Selection 253
 14.2.5 Collection Representation and Retrieval System 254
 14.2.6 Experiment 256
 14.2.7 Conclusion 258

14.3 Conclusion and Future Trends 259

Acknowledgement 259

15 The Role of Explicit Semantics in Search and Browsing 261
 Michiel Hildebrand, Jacco van Ossenbruggen and Lynda Hardman

15.1 Basic Search Terminology 261

15.2 Analysis of Semantic Search 262
 15.2.1 Query Construction 263
 15.2.2 Search Algorithm 265
 15.2.3 Presentation of Results 267
 15.2.4 Survey Summary 269

15.3 Use Case A: Keyword Search in ClioPatria 270
 15.3.1 Query Construction 270
 15.3.2 Search Algorithm 270
 15.3.3 Result Visualization and Organization 273

15.4 Use Case B: Faceted Browsing in ClioPatria 274
 15.4.1 Query Construction 274
 15.4.2 Search Algorithm 276
 15.4.3 Result Visualization and Organization 276

15.5 Conclusions 277

16 Conclusion 279
 Raphael Troncy, Benoit Huet and Simon Schenk

References 281

Author Index 301

Subject Index 303