CONTENTS

Preface xv
Acknowledgments xvii

PART I THEORY 1

CHAPTER 1 REVIEW OF PROBABILITY THEORY 3

1.1 Introduction 3
1.2 Basic Set Theory 3
 1.2.1 Sample Spaces and Events 3
 1.2.2 Basic Set Theory 4
 1.2.3 Counting Sample Points 5
1.3 Probability 7
 1.3.1 Event Probabilities 7
 1.3.2 Additive Rules 8
1.4 Conditional Probability 9
 1.4.1 Total Probability 10
 1.4.2 Bayes’ Theorem 12
 1.4.3 Problem-Solving Methodology 13
1.5 Random Variables and Probability Distributions 14
 1.5.1 Discrete Random Variables 15
 1.5.2 Continuous Random Variables 16
1.6 Measures of Central Tendency, Variability, and Association 18
 1.6.1 Mean 18
 1.6.2 Median 19
 1.6.3 Variance 20
 1.6.4 Covariance 20
 1.6.5 Correlation Coefficient 22
1.7 Linear Combinations of Random Variables 23
 1.7.1 Mean of Linear Combinations 23
 1.7.2 Variance of Linear Combinations 24
1.8 Functions of Random Variables 24
 1.8.1 Functions of a Single Variable 25
1.8.2 Functions of Two or More Random Variables 26
1.8.3 Moments of Functions 29
1.8.4 First-Order Second-Moment Method 31
1.9 Common Discrete Probability Distributions 32
 1.9.1 Bernoulli Trials 32
 1.9.2 Binomial Distribution 34
 1.9.3 Geometric Distribution 36
 1.9.4 Negative Binomial Distribution 38
 1.9.5 Poisson Distribution 40
1.10 Common Continuous Probability Distributions 43
 1.10.1 Exponential Distribution 43
 1.10.2 Gamma Distribution 45
 1.10.3 Uniform Distribution 47
 1.10.4 Weibull Distribution 48
 1.10.5 Rayleigh Distribution 49
 1.10.6 Student t-Distribution 49
 1.10.7 Chi-Square Distribution 50
 1.10.8 Normal Distribution 50
 1.10.9 Lognormal Distribution 56
 1.10.10 Bounded tanh Distribution 60
1.11 Extreme-Value Distributions 62
 1.11.1 Exact Extreme-Value Distributions 62
 1.11.2 Asymptotic Extreme-Value Distributions 63
1.12 Summary 67

CHAPTER 2 DISCRETE RANDOM PROCESSES 71
2.1 Introduction 71
2.2 Discrete-Time, Discrete-State Markov Chains 71
 2.2.1 Transition Probabilities 71
 2.2.2 Unconditional Probabilities 75
 2.2.3 First Passage Times 75
 2.2.4 Expected First Passage Time 77
 2.2.5 Steady-State Probabilities 77
2.3 Continuous-Time Markov Chains 81
 2.3.1 Birth-and-Death Processes 83
2.4 Queueing Models 86

CHAPTER 3 RANDOM FIELDS 91
3.1 Introduction 91
3.2 Covariance Function 93
 3.2.1 Conditional Probabilities 96
3.3 Spectral Density Function 96
 3.3.1 Wiener-Khinchine Relations 97
 3.3.2 Spectral Density Function of Linear Systems 98
 3.3.3 Discrete Random Processes 99
3.4 Variance Function 100
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Estimating Distribution Parameters</td>
</tr>
<tr>
<td>5.2.2 Goodness of Fit</td>
</tr>
<tr>
<td>5.3 Estimation in Presence of Correlation</td>
</tr>
<tr>
<td>5.3.1 Ergodicity and Stationarity</td>
</tr>
<tr>
<td>5.3.2 Point versus Local Average Statistics</td>
</tr>
<tr>
<td>5.3.3 Estimating the Mean</td>
</tr>
<tr>
<td>5.3.4 Estimating the Variance</td>
</tr>
<tr>
<td>5.3.5 Trend Analysis</td>
</tr>
<tr>
<td>5.3.6 Estimating the Correlation Structure</td>
</tr>
<tr>
<td>5.3.7 Example: Statistical Analysis of Permeability Data</td>
</tr>
<tr>
<td>5.4 Advanced Estimation Techniques</td>
</tr>
<tr>
<td>5.4.1 Second-Order Structural Analysis</td>
</tr>
<tr>
<td>5.4.2 Estimation of First- and Second-Order Statistical Parameters</td>
</tr>
<tr>
<td>5.4.3 Summary</td>
</tr>
<tr>
<td>6.1 Introduction</td>
</tr>
<tr>
<td>6.2 Random-Number Generators</td>
</tr>
<tr>
<td>6.2.1 Common Generators</td>
</tr>
<tr>
<td>6.2.2 Testing Random-Number Generators</td>
</tr>
<tr>
<td>6.3 Generating Nonuniform Random Variables</td>
</tr>
<tr>
<td>6.3.1 Introduction</td>
</tr>
<tr>
<td>6.3.2 Methods of Generation</td>
</tr>
<tr>
<td>6.3.3 Generating Common Continuous Random Variates</td>
</tr>
<tr>
<td>6.3.4 Queuing Process Simulation</td>
</tr>
<tr>
<td>6.4 Generating Random Fields</td>
</tr>
<tr>
<td>6.4.1 Moving-Average Method</td>
</tr>
<tr>
<td>6.4.2 Covariance Matrix Decomposition</td>
</tr>
<tr>
<td>6.4.3 Discrete Fourier Transform Method</td>
</tr>
<tr>
<td>6.4.4 Fast Fourier Transform Method</td>
</tr>
<tr>
<td>6.4.5 Turning-Bands Method</td>
</tr>
<tr>
<td>6.4.6 Local Average Subdivision Method</td>
</tr>
<tr>
<td>6.4.7 Comparison of Methods</td>
</tr>
<tr>
<td>6.5 Conditional Simulation of Random Fields</td>
</tr>
<tr>
<td>6.6 Monte Carlo Simulation</td>
</tr>
<tr>
<td>7.1 Acceptable Risk</td>
</tr>
<tr>
<td>7.2 Assessing Risk</td>
</tr>
<tr>
<td>7.2.1 Hasofer-Lind First-Order Reliability Method</td>
</tr>
<tr>
<td>7.2.2 Point Estimate Method</td>
</tr>
<tr>
<td>7.3 Background to Design Methodologies</td>
</tr>
<tr>
<td>7.4 Load and Resistance Factor Design</td>
</tr>
<tr>
<td>7.4.1 Calibration of Load and Resistance Factors</td>
</tr>
<tr>
<td>7.4.2 Characteristic Values</td>
</tr>
<tr>
<td>7.5 Going beyond Calibration</td>
</tr>
<tr>
<td>7.5.1 Level III Determination of Resistance Factors</td>
</tr>
<tr>
<td>7.6 Risk-Based Decision Making</td>
</tr>
</tbody>
</table>
PART 2 PRACTICE

CHAPTER 8 GROUNDWATER MODELING 265

8.1 Introduction 265
8.2 Finite-Element Model 265
8.2.1 Analytical Form of Finite-Element Conductivity Matrices 266
8.3 One-Dimensional Flow 266
8.4 Simple Two-Dimensional Flow 269
8.4.1 Parameters and Finite-Element Model 271
8.4.2 Discussion of Results 271
8.5 Two-Dimensional Flow beneath Water-Retaining Structures 274
8.5.1 Generation of Permeability Values 276
8.5.2 Deterministic Solution 276
8.5.3 Stochastic Analyses 278
8.5.4 Summary 282
8.6 Three-Dimensional Flow 282
8.6.1 Simulation Results 283
8.6.2 Reliability-Based Design 285
8.6.3 Summary 287
8.7 Three-Dimensional Exit Gradient Analysis 288
8.7.1 Simulation Results 289
8.7.2 Comparison of Two and Three Dimensions 292
8.7.3 Reliability-Based Design Interpretation 292
8.7.4 Concluding Remarks 295

CHAPTER 9 FLOW THROUGH EARTH DAMS 297

9.1 Statistics of Flow through Earth Dams 297
9.1.1 Random Finite-Element Method 299
9.1.2 Simulation Results 299
9.1.3 Empirical Estimation of Flow Rate Statistics 302
9.1.4 Summary 304
9.2 Extreme Hydraulic Gradient Statistics 304
9.2.1 Stochastic Model 305
9.2.2 Random Finite-Element Method 306
9.2.3 Downstream Free-Surface Exit Elevation 307
9.2.4 Internal Gradients 309
9.2.5 Summary 310

CHAPTER 10 SETTLEMENT OF SHALLOW FOUNDATIONS 311

10.1 Introduction 311
10.2 Two-Dimensional Probabilistic Foundation Settlement 312
10.2.1 Random Finite-Element Method 313
10.2.2 Single-Footing Case 316
10.2.3 Two-Footing Case 318
10.2.4 Summary 321
10.3 Three-Dimensional Probabilistic Foundation Settlement 322
10.3.1 Random Finite-Element Method 323
10.3.2 Single-Footing Case 325
CONTENTS

10.3.3 Two-Footing Case 326
10.3.4 Summary 329

10.4 Strip Footing Risk Assessment 329
10.4.1 Settlement Design Methodology 330
10.4.2 Probabilistic Assessment of Settlement Variability 331
10.4.3 Prediction of Settlement Mean and Variance 332
10.4.4 Comparison of Predicted and Simulated Settlement Distribution 333
10.4.5 Summary 334

10.5 Resistance Factors for Shallow-Foundation Settlement Design 335
10.5.1 Random Finite-Element Method 335
10.5.2 Reliability-Based Settlement Design 337
10.5.3 Design Simulations 341
10.5.4 Simulation Results 343
10.5.5 Summary 346

CHAPTER 11 BEARING CAPACITY 347

11.1 Strip Footings on c-ϕ Soils 347
11.1.1 Random Finite-Element Method 348
11.1.2 Bearing Capacity Mean and Variance 349
11.1.3 Monte Carlo Simulation 351
11.1.4 Simulation Results 352
11.1.5 Probabilistic Interpretation 354
11.1.6 Summary 356

11.2 Load and Resistance Factor Design of Shallow Foundations 357
11.2.1 Random Soil Model 359
11.2.2 Analytical Approximation to Probability of Failure 361
11.2.3 Required Resistance Factor 364
11.3 Summary 370

CHAPTER 12 DEEP FOUNDATIONS 373

12.1 Introduction 373
12.2 Random Finite-Element Method 374
12.3 Monte Carlo Estimation of Pile Capacity 377
12.4 Summary 378

CHAPTER 13 SLOPE STABILITY 381

13.1 Introduction 381
13.2 Probabilistic Slope Stability Analysis 381
13.2.1 Probabilistic Description of Shear Strength 381
13.2.2 Preliminary Deterministic Study 382
13.2.3 Single-Random-Variable Approach 383
13.2.4 Spatial Correlation 385
13.2.5 Random Finite-Element Method 385
13.2.6 Local Averaging 386
13.2.7 Variance Reduction over Square Finite Element 387
13.2.8 Locally Averaged SRV Approach 389
13.2.9 Results of RFEM Analyses 389
13.2.10 Summary 392
CONTENTS

A.2 Inverse Student t-Distribution 447
A.3 Inverse Chi-Square Distribution 448

APPENDIX B
NUMERICAL INTEGRATION 449
B.1 Gaussian Quadrature 449

APPENDIX C
COMPUTING VARIANCES AND COVARIANCES OF LOCAL AVERAGES 451
C.1 One-Dimensional Case 451
C.2 Two-Dimensional Case 451
C.3 Three-Dimensional Case 452

INDEX 455