Contents

Preface XI

1 Introduction 1
 1.1 A Nano History of Molecular Magnetism 1
 1.2 Molecules, Conductors, and Magnets 4
 1.3 Origin of Molecular Magnetism 5
 1.4 Playing with the Periodic Table 7
 1.5 p Magnetic Orbitals 7
 1.6 d Magnetic Orbitals 10
 1.7 f Magnetic Orbitals 13
 1.8 The Goals of Molecular Magnetism 14
 1.9 Why a Book 15
 1.10 Outlook 16
 1.11 The Applications of Ln 18
 1.12 Finally SI versus emu 21
References 22

2 Electronic Structures of Free Ions 25
 2.1 The Naked Ions 25
 2.2 Spin–Orbit Coupling 28
 2.3 Applying a Magnetic Field 31
References 32

3 Electronic Structure of Coordinated Ions 33
 3.1 Dressing Ions 33
 3.2 The Crystal Field 35
 3.3 The aquo Ions 38
 3.4 The Angular Overlap Model 40
 3.5 The Lanthanum(III) with Phthalocyanine (Pc) and PolyOxoMetalates (POM) 42
 3.6 Introducing Magnetic Anisotropy 47
References 49
Contents

4 Coordination Chemistry and Molecular Magnetism 51
4.1 Introduction 51
4.2 Pyrazolylborates 52
4.3 Phthalocyanines 53
4.4 Cyclopentadiene and Cyclooctatetraene 54
4.5 Polyoxometalates (POMs) 56
4.6 Diketonates 58
4.7 Nitronyl-nitroxides (NITs) 60
4.8 Carboxylates 62
4.9 Schiff Bases 62
References 65

5 Magnetism of Ions 69
5.1 The Curie Law 69
5.2 The Van Vleck Equation 72
5.3 Anisotropy Steps in 75
References 82

6 Molecular Orbital of Isolated Magnetic Centers 83
6.1 Moving to MO 83
6.2 Correlation Effects 84
6.3 DFT 87
6.4 The Complexity of Simple 88
6.5 DFT and Single Ions 90
6.6 DOTA Complexes, Not Only Contrast 93
References 96

7 Toward the Molecular Ferromagnet 99
7.1 Introduction 99
7.2 A Road to Infinite 102
7.3 Magnetic Interactions 104
7.4 Introducing Interactions: Dipolar 110
7.5 Spin Hamiltonians 113
7.6 The Giant Spin 114
7.7 Single Building Block 115
7.8 Multicenter Interactions 115
7.9 Noncollinearity 117
7.10 Introducing Orbital Degeneracy 119
References 124

8 Molecular Orbital of Coupled Systems 127
8.1 Exchange and Superexchange 127
8.2 Structure and Magnetic Correlations: d Orbitals 129
8.3 Quantum Chemical Calculations of SH Parameters 130
8.4 Copper Acetate! 132
Contents

8.5 Mixed Pairs: Degenerate–Nondegenerate 136
8.6 f Orbitals and Orbital Degeneracy 138
References 140

9 Structure and Properties of p Magnetic Orbitals Systems 143
9.1 Magnetic Coupling in Organics 143
9.2 Magnetism in Nitroxides 145
9.3 Thioradicals 147
9.4 Metallorganic Magnets 149
9.5 Semiquinone Radicals 152
9.6 NITR Radicals with Metals 155
9.7 Long Distance Interactions in Nitroxides 158
References 160

10 Structure and Properties of Coupled Systems: d, f 163
10.1 d Orbitals 163
10.2 3d 164
10.3 4d and 5d 165
10.4 Introducing Chirality 169
10.5 f-d Interactions 171
10.6 A Model DFT Calculation 172
10.7 Magneto-Structural Correlations in Gd-Cu 173
10.8 f Orbital Systems and Orbital Degeneracy 176
References 177

11 Dynamic Properties 179
11.1 Introductory Remarks 179
11.2 Spin–Lattice Relaxation and T_1 181
11.3 Phonons and Direct Mechanism 182
11.4 Two Is Better than One 185
11.5 Playing with Fields 187
11.6 Something Real 189
11.7 Spin–Spin Relaxation and T_2 191
References 193

12 SMM Past and Present 195
12.1 Mn$_{12}$, the Start 195
12.2 Some Basic Magnetism 198
12.3 Fe$_4$ Structure and Magnetic Properties 201
12.4 Fe$_4$ Relaxation and Quantum Tunneling 205
12.5 And τ_0? 207
12.6 Deep in the Tunnel 207
12.7 Magnetic Dilution Effects 210
12.8 Single Molecule Magnetism 211
References 213