Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Bio-Based Plastics – Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Stephan Kabasci</td>
<td></td>
</tr>
<tr>
<td>1.1 Definition of Bio-Based Plastics</td>
<td>2</td>
</tr>
<tr>
<td>1.2 A Brief History of Bio-Based Plastics</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Market for Bio-Based Plastics</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Scope of the Book</td>
<td>6</td>
</tr>
<tr>
<td>2 Starch</td>
<td>9</td>
</tr>
<tr>
<td>Catia Bastioli, Paolo Magistrali, and Sebastià Gestí Garcia</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Starch</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Starch-Filled Plastics</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Structural Starch Modifications</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1 Starch Gelatinization and Retrogradation</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Starch Jet-Cooking</td>
<td>16</td>
</tr>
<tr>
<td>2.4.3 Starch Extrusion Cooking</td>
<td>16</td>
</tr>
<tr>
<td>2.4.4 Starch Destructurization in Absence of Synthetic Polymers</td>
<td>17</td>
</tr>
<tr>
<td>2.4.5 Starch Destructurization in Presence of Synthetic Polymers</td>
<td>19</td>
</tr>
<tr>
<td>2.4.6 Additional Information on Starch Complexation</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Starch-Based Materials on the Market</td>
<td>27</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
<tr>
<td>3 Cellulose and Cellulose Acetate</td>
<td>35</td>
</tr>
<tr>
<td>Johannes Ganster and Hans-Peter Fink</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Raw Materials</td>
<td>36</td>
</tr>
</tbody>
</table>
Contents

3.3 Structure 37
 3.3.1 Cellulose 37
 3.3.2 Cellulose Derivatives 40
3.4 Principles of Cellulose Technology 42
 3.4.1 Regenerated Cellulose 43
 3.4.2 Organic Cellulose Esters – Cellulose Acetate 46
3.5 Properties and Applications of Cellulose-Based Plastics 52
 3.5.1 Fibres 53
 3.5.2 Films 54
 3.5.3 Moulded Articles 56
3.6 Some Recent Developments 57
 3.6.1 Cellulose 57
 3.6.2 Cellulose Acetate and Mixed Esters 58
3.7 Conclusion 59

References 59

4 Materials Based on Chitin and Chitosan 63
 Marguerite Rinaudo
4.1 Introduction 63
4.2 Preparation and Characterization of Chitin and Chitosan 64
 4.2.1 Chitin: Characteristics and Characterization 64
 4.2.2 Chitosan: Preparation and Characterization 66
4.3 Processing of Chitin to Materials and Applications 69
 4.3.1 Processing of Chitin and Physical Properties of Materials 69
 4.3.2 Applications of Chitin-Based Materials 70
4.4 Chitosan Processing to Materials and Applications 71
 4.4.1 Processing of Chitosan 71
 4.4.2 Application of Chitosan-Based Materials 74
4.5 Conclusion 77

References 77

5 Lignin Matrix Composites from Natural Resources – ARBOFORM® 89
 Helmut Nägеле, Jürgen Pfitzer, Lars Ziegler, Emilia Regina Inone-Kauffmann,
 Wilhelm Eckl, and Norbert Eisenreich
5.1 Introduction 89
5.2 Approaches for Plastics Completely Made from Natural Resources 90
5.3 Formulation of Lignin Matrix Composites (ARBOFORM) 92
 5.3.1 Lignin 92
 5.3.2 Basic Formulations and Processing of ARBOFORM 95
 5.3.3 The Influence of the Fibre Content 97
5.4 Chemical Free Lignin from High Pressure Thermo-Hydrolysis (Aquasolv) 100
 5.4.1 Near Infrared Spectroscopy of Lignin Types 100
 5.4.2 Lignin Extraction by High-Pressure Hydrothermolysis (HPH) 101
 5.4.3 Thermoplastic Processing of Aquasolv Lignin 104
5.5 Functionalizing Lignin Matrix Composites 105
 5.5.1 Impact Strength 106
7 Polyhydroxyalkanoates: Basics, Production and Applications of Microbial Biopolymesters

Martin Koller, Anna Salerno, and Gerhart Braunegg

7.1 Microbial PHA Production, Metabolism, and Structure

7.1.1 Occurrence of PHAs

7.1.2 In Vivo Characteristics and Biological Role of PHAs

7.1.3 Structure and Composition of PHAs

7.1.4 Metabolic Aspects

7.2 Available Raw Materials for PHA Production

7.3 Recovery of PHA from Biomass

7.3.1 General Aspects of PHA Recovery

7.3.2 Direct Extraction of PHA from Biomass

7.3.3 Digestion of the non-PHA Cellular Material

7.3.4 Disruption of Cells of Osmophilic Microbes in Hypotonic Medium

7.4 Different Types of PHA

7.4.1 Short Chain Length vs. Medium Chain Length PHAs

7.4.2 Enzymatic Background: PHA Synthases

7.5 Global PHA Production

7.6 Applications of PHAs

7.6.1 General

7.6.2 Packaging and Commodity Items

7.6.3 Medical Applications

7.6.4 Application of the Monomeric Building Blocks

7.6.5 Smart Materials

7.6.6 Controlled Release of Active Agents

7.7 Economic Challenges in the Production of PHAs and Attempts to Overcome Them

7.7.1 PHA Production as a Holistic Process

7.7.2 Substrates as Economic Factor

7.7.3 Downstream Processing

7.7.4 Process Design

7.7.5 Contemporary Attempts to Enhance PHA Production in Terms of Economics and Product Quality

7.8 Process Design

7.9 Conclusion

References

8 Poly(Lactic Acid)

Hideto Tsuji

8.1 Introduction

8.2 Historical Outline

8.3 Synthesis of Monomer

8.4 Synthesis of Poly(Lactic Acid)

8.4.1 Homopolymers

8.4.2 Linear Copolymers

8.5 Processing
8.6 Crystallization 178
 8.6.1 Crystal Structures 178
 8.6.2 Crystalline Morphology 181
 8.6.3 Crystallization Behaviour 182
8.7 Physical Properties 182
 8.7.1 Mechanical Properties 182
 8.7.2 Thermal Properties 186
 8.7.3 Permeability 188
 8.7.4 Surface Properties 188
 8.7.5 Electrical Properties 189
 8.7.6 Optical Properties 189
8.8 Hydrolytic Degradation 191
 8.8.1 Degradation Mechanism 192
 8.8.2 Effects of Surrounding Media 195
 8.8.3 Effects of Material Parameters 196
8.9 Thermal Degradation 200
8.10 Biodegradation 204
8.11 Photodegradation 205
8.12 High-Performance Poly(Lactic Acid)-Based Materials 207
 8.12.1 Nucleating or Crystallization-Accelerating Fillers 207
 8.12.2 Composites and Nanocomposites 208
 8.12.3 Fibre-Reinforced Plastics (FRPs) 211
 8.12.4 Stereocomplexation 212
8.13 Applications 213
 8.13.1 Alternatives to Petro-Based Polymers 213
 8.13.2 Biomedical 214
 8.13.3 Environmental Applications 216
8.14 Recycling 217
8.15 Conclusions 219
References 219

9 Other Polyesters from Biomass Derived Monomers 241
Daan S. van Es, Frits van der Klis, Rutger J. I. Knoop, Karin Molenveld,
Lolke Sijtsma, and Jacco van Haveren
9.1 Introduction 241
9.2 Isohexide Polyesters 242
 9.2.1 Introduction 242
 9.2.2 Semi-Aromatic Homo-Polyesters 244
 9.2.3 Semi-Aromatic Co-Polyesters 247
 9.2.4 Aliphatic Polyesters 248
 9.2.5 Modified Isohexides 250
9.3 Furan-Based Polyesters 251
 9.3.1 Introduction 251
 9.3.2 2,5-Dihydroxymethylfuran (DHMF)-Based Polyesters 253
 9.3.3 5-Hydroxymethylfuroic Acid (HMFA) Based Polyesters 254
 9.3.4 Furan-2,5-Dicarboxylic Acid (FDCA) Based Polyesters 254
 9.3.5 Future Outlook 256
9.4 Poly(Butylene Succinate) (PBS) and Its Copolymers
 9.4.1 Succinic Acid
 9.4.2 1,4-Butanediol (BDO)
 9.4.3 Poly(Butylene Succinate) (PBS)
 9.4.4 PBS Copolymers
 9.4.5 PBS Biodegradability
 9.4.6 PBS Processability
 9.4.7 PBS Blends
 9.4.8 PBS Markets and Applications
 9.4.9 Future Outlook
9.5 Bio-Based Terephthalates
 9.5.1 Introduction
 9.5.2 Bio-Based Diols: Ethylene Glycol, 1,3-Propanediol, 1,4-Butanediol
 9.5.3 Bio-Based Xylenes, Isophthalic and Terephthalic Acid
9.6 Conclusions

References

10 Polyamides from Biomass Derived Monomers
 Benjamin Brehmer
 10.1 Introduction
 10.1.1 What are Polyamides?
 10.1.2 What is the Polymer Pyramid?
 10.1.3 Where do Polyamides from Biomass Derived Monomers Fit?
 10.2 Technical Performance of Polyamides
 10.2.1 How to Differentiate Performance
 10.2.2 Overview of Current Applications
 10.2.3 Typical Association of Biopolymers
 10.3 Chemical Synthesis
 10.3.1 Castor Bean to Intermediates
 10.3.2 Undecenoic Acid Route
 10.3.3 Sebacic Acid Route
 10.3.4 Decamethylene Diamine Route
 10.4 Monomer Feedstock Supply Chain
 10.4.1 Description of Supply Chain
 10.4.2 Pricing Situation
 10.5 Producers
 10.6 Sustainability Aspects
 10.6.1 Biosourcing
 10.6.2 Lifecycle Assessments
 10.6.3 Labelling and Certification
 10.7 Improvement and Outlook
References

11 Polyolefin-Based Plastics from Biomass-Derived Monomers
 R.J. Koopmans
 11.1 Introduction
Contents

11.2 Polyolefin-Based Plastics 296
11.3 Biomass 299
11.4 Chemicals from Biomass 300
11.5 Chemicals from Biotechnology 302
11.6 Plastics from Biomass 303
11.7 Polyolefin Plastics from Biomass and Petrochemical Technology 303
 11.7.1 One-Carbon Building Blocks 304
 11.7.2 Two-Carbon Building Blocks 305
 11.7.3 Three-Carbon Building Blocks 305
11.8 Polyolefin Plastics from Biomass and Biotechnology 305
11.9 Bio-Polyethylene and Bio-Polypropylene 306
11.10 Perspective and Outlook 307
References 308

12 Future Trends for Recombinant Protein-Based Polymers: The Case Study of Development and Application of Silk-Elastin-Like Polymers 311
 Margarida Casal, António M. Cunha, and Raul Machado
 12.1 Introduction 311
 12.2 Production of Recombinant Protein-Based Polymers (rPBPs) 312
 12.3 The Silk-Elastin-Like Polymers (SELPs) 314
 12.3.1 SELPs for Biomedical Applications: Hydrogels for Localized Delivery 317
 12.3.2 Mechanical Properties of SELP Hydrogels 319
 12.3.3 Spun Fibres 320
 12.3.4 Solvent Cast Films 323
 12.4 Final Considerations 324
References 325

13 Renewable Raw Materials and Feedstock for Bioplastics 331
 Achim Raschka, Michael Carus, and Stephan Piotrowski
 13.1 Introduction 331
 13.2 First- and Second-Generation Crops: Advantages and Disadvantages 331
 13.3 The Amount of Land Needed to Grow Feedstock for Bio-Based Plastics 333
 13.4 Productivity and Availability of Arable Land 336
 13.5 Research on Feedstock Optimization 338
 13.6 Advanced Breeding Technologies and Green Biotechnology 339
 13.7 Some Facts about Food Prices and Recent Food Price Increases 341
 13.8 Is there Enough Land for Food, Animal Feed, Bioenergy and Industrial Material Use, Including Bio-Based Plastics? 343
References 345

14 The Promise of Bioplastics – Bio-Based and Biodegradable-Compostable Plastics 347
 Ramani Narayan
 14.1 Value Proposition for Bio-Based Plastics 348
 14.2 Exemplars of Zero or Reduced Material Carbon Footprint – Bio-PE, Bio-PET and PLA 349