Contents

List of Contributors ix
Series Preface xiii
Preface xv

1 Electroanalysis with Carbon Film-based Electrodes 1
Shunsuke Shiba, Tomoyuki Kamata, Dai Kato and Osamu Niwa
1.1 Introduction 1
1.2 Fabrication of Carbon Film Electrodes 2
1.3 Electrochemical Performance and Application of Carbon Film Electrodes 4
1.3.1 Pure and Oxygen Containing Groups Terminated Carbon Film Electrodes 5
1.3.2 Nitrogen Containing or Nitrogen Terminated Carbon Film Electrodes 8
1.3.3 Fluorine Terminated Carbon Film Electrode 11
1.3.4 Metal Nanoparticles Containing Carbon Film Electrode 13
References 19

2 Carbon Nanofibers for Electroanalysis 27
Tianyan You, Dong Liu and Libo Li
2.1 Introduction 27
2.2 Techniques for the Preparation of CNFs 28
2.3 CNFs Composites 30
2.3.1 NCNFs 30
2.3.2 Metal nanoparticles-loaded CNFs 32
2.4 Applications of CNFs for electroanalysis 32
2.4.1 Technologies for electroanalysis 32
2.4.2 Non-enzymatic biosensors 33
2.4.3 Enzyme-based biosensors 40
2.4.4 CNFs-based immunosensors 44
2.5 Conclusions 47
References 47

3 Carbon Nanomaterials for Neuroanalytical Chemistry 55
Cheng Yang and B. Jill Venton
3.1 Introduction 55
3.2 Carbon Nanomaterial-based Microelectrodes and Nanoelectrodes for Neurotransmitter Detection 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Carbon Nanomaterial-based Electrodes Using Dip Cast/Drop Casting Methods</td>
<td>57</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Direct Growth of Carbon Nanomaterials on Electrode Substrates</td>
<td>59</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Carbon Nanotube Fiber Microelectrodes</td>
<td>61</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Carbon Nanoelectrodes and Carbon Nanomaterial-based Electrode Array</td>
<td>62</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Conclusions</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Challenges and Future Directions</td>
<td>65</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Correlation Between Electrochemical Performance and Carbon Nanomaterial Surface Properties</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Carbon Nanomaterial-based Anti-fouling Strategies for in vivo Measurements of Neurotransmitters</td>
<td>67</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Reusable Carbon Nanomaterial-based Electrodes</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Carbon and Graphene Dots for Electrochemical Sensing</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>CDs and GDs for Electrochemical Sensors</td>
<td>86</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Substrate Materials in Electrochemical Sensing</td>
<td>86</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Immobilization and Modification Function</td>
<td>86</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Electrocatalysis Function</td>
<td>87</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Carriers for Probe Fabrication</td>
<td>93</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Signal Probes for Electrochemical Performance</td>
<td>95</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Metal Ions Sensing</td>
<td>96</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Small Molecule Sensing</td>
<td>97</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Protein Sensing</td>
<td>100</td>
</tr>
<tr>
<td>4.2.7</td>
<td>DNA/RNA Sensing</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrochemiluminescence Sensors</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Photoelectrochemical Sensing</td>
<td>107</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>Electroanalytical Applications of Graphene</td>
<td>119</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>5.2</td>
<td>The Birth of Graphene</td>
<td>120</td>
</tr>
<tr>
<td>5.3</td>
<td>Types of Graphene</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>Electroanalytical Properties of Graphene</td>
<td>124</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Free-standing 3D Graphene Foam</td>
<td>124</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Chemical Vapour Deposition and Pristine Graphene</td>
<td>125</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Graphene Screen-printed Electrodes</td>
<td>127</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Solution-based Graphene</td>
<td>129</td>
</tr>
<tr>
<td>5.5</td>
<td>Future Outlook for Graphene Electroanalysis</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>133</td>
</tr>
</tbody>
</table>
6 Graphene/gold Nanoparticles for Electrochemical Sensing 139
Sabine Szunerits, Qian Wang, Alina Vasilescu, Musen Li and Rabah Boukherroub

6.1 Introduction 139
6.2 Interfacing Gold Nanoparticles with Graphene 141
6.2.1 Ex-situ Au NPs Decoration of Graphene 142
6.2.2 In-situ Au NPs Decoration of Graphene 143
6.2.3 Electrochemical Reduction 145
6.3 Electrochemical Sensors Based on Graphene/Au NPs Hybrids 146
6.3.1 Detection of Neurotransmitters: Dopamine, Serotonin 146
6.3.2 Ractopamine 151
6.3.3 Glucose 152
6.3.4 Detection of Steroids: Cholesterol, Estradiol 153
6.3.5 Detection of Antibacterial Agents 154
6.3.6 Detection of Explosives Such as 2, 4, 6-trinitrotoluene (TNT) 154
6.3.7 Detection of NADH 154
6.3.8 Detection of Hydrogen Peroxide 155
6.3.9 Heavy Metal Ions 156
6.3.10 Amino Acid and DNA Sensing 156
6.3.11 Detection of Model Protein Biomarkers 157
6.4 Conclusion 161
Acknowledgement 162
References 162

7 Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-structured Platforms 173
Sanaz Pilehvar and Karolien De Wael

7.1 Introduction 173
7.1.1 Basics and History of Fullerene (C60) 174
7.1.2 Synthesis of Fullerene 175
7.1.3 Functionalization of Fullerene 175
7.2 Modification of Electrodes with Fullerenes 176
7.2.1 Fullerene (C60)-DNA Hybrid 177
7.2.1.1 Interaction of DNA with Fullerene 178
7.2.1.2 Fullerene for DNA Biosensing 179
7.2.1.3 Fullerene as an Immobilization Platform 179
7.2.2 Fullerene(C60)-Antibody Hybrid 183
7.2.3 Fullerene(C60)-Protein Hybrid 185
7.2.3.1 Enzymes 185
7.2.3.2 Redox Active Proteins 188
7.3 Conclusions and Future Prospects 190
References 191

8 Micro- and Nano-structured Diamond in Electrochemistry: Fabrication and Application 197
Fang Gao and Christoph E. Nebel

8.1 Introduction 197
8.2 Fabrication Method of Diamond Nanostructures 198
8.2.1 Reactive Ion Etching 198
8.2.2 Templated Growth 200
8.2.3 Surface Anisotropic Etching by Metal Catalyst 204
8.2.4 High Temperature Surface Etching 204
8.2.5 Selective Material Removal 206
8.2.6 sp²-Carbon Assisted Growth of Diamond Nanostructures 207
8.2.7 High Pressure High Temperature (HPHT) Methods 209
8.3 Application of Diamond Nanostructures in Electrochemistry 209
8.3.1 Biosensors Based on Nanostructured Diamond 209
8.3.2 Energy Storage Based on Nanostructured Diamond 211
8.3.3 Catalyst Based on Nanostructured Diamond 214
8.3.4 Diamond Porous Membranes for Chemical/Electrochemical Separation Processes 216
8.4 Summary and Outlook 218
Acronyms 219
References 219

9 Electroanalysis with C₃N₄ and SiC Nanostructures 227
Mandana Amiri
9.1 Introduction to g-C₃N₄ 227
9.2 Synthesis of g-C₃N₄ 229
9.3 Electrocatalytic Behavior of g-C₃N₄ 231
9.4 Electroanalysis with g-C₃N₄ Nanostructures 233
9.4.1 Electrochemiluminescent Sensors 233
9.4.2 Photo-electrochemical Detection Schemes 236
9.4.3 Voltammetric Determinations 239
9.5 Introduction to SiC 241
9.6 Synthesis of SiC Nanostructures 243
9.7 Electrochemical Behavior of SiC 244
9.8 SiC Nanostructures in Electroanalysis 246
9.9 Conclusion 250
Acknowledgements 250
References 250

Index 259