1.1 Introduction

Kinematics is that part of mechanics which is concerned with the description of motion. This is a vital first step in coming to an understanding of motion, since we will not be able to describe its causes, or how it changes, without a clear understanding of the properties of motion. Kinematics is about the definition and clarification of those concepts necessary for the complete description of motion. Only six concepts are needed: time, distance, displacement, speed, velocity, and acceleration.

We will begin by focusing on linear motion in one dimension. Later we will expand this to include motion in two and three dimensions, and we will then look at three particularly important special cases of motion in one and two dimensions: circular motion, simple harmonic motion, and wave motion.

Key Objectives

- To develop an understanding of the concepts used to describe motion: time, distance, displacement, speed, velocity, and acceleration
- To understand the relationships between time, displacement, velocity, and acceleration
- To understand the distinction between average and instantaneous velocity and acceleration
- To understand that the horizontal and vertical components of vector quantities, such as acceleration and velocity, may be treated independently

1.2 Distance and Displacement

Motion is characterised by the direction of movement, as well as the amount of movement involved. It is not surprising that we must use vector quantities in kinematics. The distance an object travels is defined as the length of the path that the object took in travelling from one place to another. Distance is a scalar quantity. Displacement, on the other hand, is the distance travelled, but with a direction associated. Thus a road trip of 100 km to the north covers the same distance as a road trip of 100 km to the south, but these two trips have quite different displacements. The use of displacement rather than distance to give directions is commonplace.

1.3 Speed and Velocity

We are accustomed to talking about the speed at which an object is moving. We also talk about the velocity with which an object is moving. In normal usage, these two words mean the same thing. We can talk about the speed with which a car is travelling, or we can talk about its velocity. In physics, we redefine these two words, speed and velocity, so that they have similar, but distinct meanings.
1. Kinematics

Key concept:
The velocity of an object is the change in its position, divided by the time it took for this change to occur. Velocity is a vector and has both a magnitude and a direction.

Mathematically, the velocity of an object is

$$\vec{v} = \frac{\Delta \vec{x}}{\Delta t} \quad (1.1)$$

where \vec{v} is the velocity vector, $\Delta \vec{x}$ is the displacement vector and Δt is the time interval over which the displacement occurs. Note that we will use bold symbols, such as \vec{v}, for vectors and normal-weight symbols, such as v, for scalar quantities. Note also that the Greek letter Δ (capital delta) represents the change in a quantity. In the above expression, Eq. (1.1), for example, the change in the position of an object is its final position minus its initial position:

$$\Delta \vec{x} = \vec{x}_f - \vec{x}_i \quad (1.2)$$

Key concept:
Speed is the magnitude of the velocity. Speed is a scalar, and it does not have a direction.

The speed of an object is the distance travelled, divided by the time it took to travel that distance:

$$v = \frac{\Delta x}{\Delta t} \quad (1.3)$$

Note the differences between Eqns. (1.1) and (1.3). In Eq. (1.1), we use bold symbols for both the \vec{v} and the \vec{x}, indicating that we are referring to the velocity and the displacement in this equation. In Eq. (1.3), we use normal weight symbols, v and x, indicating that we are referring to the speed and distance in this equation.

Many textbooks use d to represent distances and d to represent displacements rather than Δx and Δx. We will often follow this practice when specific reference to the initial and final positions is not called for.

Consider Figure 1.1. A toy car is travelling in a circle around a toy race track and we wish to characterise its motion. If we are interested only in how fast the car is going, we could say it is travelling at 5 m s$^{-1}$ (= 18 km h$^{-1}$). Two cars travelling on the same circle will be perfectly well distinguished by noting the different lengths of the circle they traverse in the same time.

Now consider the situation illustrated in Figure 1.2. In this case, two cars approach the same intersection from different directions. In this situation, we might point out that one of the cars is travelling at 18 km h$^{-1}$, while the other is travelling at 12 km h$^{-1}$. However, this will not cover all of the differences between the two cars. Another important fact about them is that they are travelling in different directions. If we wanted to predict where these two cars would be in an hour (for example) it would not be enough to just use the magnitude of their velocity; we would also need to take into account their directions.

1.4 Acceleration

In kinematics, the acceleration, \vec{a}, is a vector which quantifies changes in velocity. In everyday conversation we use the word acceleration to mean that the speed of an object is increasing. If an object was slowing down we would say that the object was decelerating. The concept of acceleration in physics is more general and applies to a larger set of situations. In physics, acceleration is defined to be the rate of change (in time) of the velocity:

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} \quad (1.4)$$

This definition implies several characteristics of the acceleration:
1. Acceleration is a vector: it has a direction as well as a magnitude. The acceleration is the rate of change of the velocity, and velocity is a vector, therefore acceleration must also be a vector.

2. The acceleration vector of an object may point in the opposite direction to that object’s velocity vector. When this happens, the object’s velocity will decrease and may even reverse direction. This means that deceleration (slowing down) is just another acceleration, but in a particular direction.

3. An object may have an acceleration without its speed changing at all. Should the acceleration vector point in a direction perpendicular to the velocity vector, the direction of the velocity vector will change, but its length will not. A good example of this is when an object moves in a circle. In this case, the acceleration is always perpendicular to the velocity, so the speed of the object is constant, but its velocity is constantly changing.

To illustrate these ideas, consider a car which starts from rest ($v_i = 0$) and accelerates along a straight road so that its velocity increases by 2 m s$^{-1}$ every second. The velocity of this car is illustrated at a series of later times in Figure 1.3.

Since the velocity changes by the same amount every second (2 m s$^{-1}$), the acceleration of the car is constant. The velocity is changing at a rate of 2 m s$^{-1}$ per second, or 2 metres per second per second. This acceleration would normally be written as $a = 2$ m s$^{-2}$ (or 2 m/s2) to the right.

We can calculate the velocity at any time. Since we know how much the velocity increases every second and we also know that the car was initially stationary, we just multiply this rate by the time elapsed since the acceleration began, i.e. we use the equation

$$v = at$$ \hspace{1cm} (1.5)

Note that this is a vector equation, so that the velocity is in the same direction as the acceleration. For the car in this example, which is accelerating in a straight line at a constant rate of 2 m s$^{-2}$ from rest, after 4 s the speed is $v = at = 2$ m s$^{-2}$ x 4 s = 8 m s$^{-1}$, and so on.

What if the car had not been at rest initially? Suppose that the car in the previous example had been travelling at a constant velocity of 5 m s$^{-1}$ for some unspecified length of time, and then began to accelerate at 2 m s$^{-2}$. Figure 1.4 shows this car at a sequence of later times. Compare this figure with Figure 1.3.
In one most important respect, the situation has not changed. The velocity of the car still increases at the same rate, so that the change in velocity after the acceleration begins is given by the equation

$$\Delta v = a t$$ \hspace{1cm} (1.6)

The difference between Eq. (1.5) and Eq. (1.6) is that we now explicitly recognise that it is the change in velocity that we are calculating. In the previous example we calculated the change in velocity, but since the car started at rest, the velocity of the car was the same as how much the velocity had increased. Since we now have a nonzero initial velocity, we must recognise that the change in velocity is the final velocity minus the initial velocity, so

$$v_f - v_i = at$$

Thus after 5 s we would find that $15 \text{ m s}^{-1} - 5 \text{ m s}^{-1} = 2 \text{ m s}^{-2} \times 5 \text{ s}$.

We are normally interested in calculating the final velocity, so we write the above equation in the form

$$v_f = v_i + at$$ \hspace{1cm} (1.7)

We can use this equation to find the final velocity at any later time, so long as the acceleration has not changed.

Note that the velocity calculated using this formula is the instantaneous velocity of the car at that time. This is the velocity that you would read off the car’s speedometer. We will discuss instantaneous and average velocities in more detail next.

1.5 Average Velocity or Speed

The discussion above allows us to calculate the instantaneous velocity of an object moving with constant acceleration. This is the velocity of the object at a particular instant of time. It is also often useful, when we are dealing with motion in a straight line, to use the average velocity of an object to solve problems. The average velocity is

$$v_{av} = \frac{\text{total displacement}}{\text{total time}} = \frac{d}{t}$$ \hspace{1cm} (1.8)

If you drive a car from Dunedin, New Zealand, to Christchurch (370 km away to the north) in 5 h, your average speed is given by

$$v_{av} = \frac{d}{t} = \frac{370 \text{ km}}{5 \text{ h}} = 74 \text{ km h}^{-1}$$
It is important to realise that this calculation does not require any knowledge of the details of your trip. You may have travelled at a constant 74 km h\(^{-1}\) the whole way, or (more likely) you may have varied your speed significantly. You may even have stopped to look at the view and eat lunch for half an hour. These details are not needed for the calculation of the average velocity.

Without explicitly deriving it, an alternative expression for the average velocity vector, \(\mathbf{v}_{av} \), of an object which is undergoing \textit{constant acceleration} is given in Eq. (1.9).

\[
\mathbf{v}_{av} = \frac{1}{2} \left(\mathbf{v}_i + \mathbf{v}_f \right)
\]

(1.9)

where \(\mathbf{v}_i \) is the initial velocity and \(\mathbf{v}_f \) is the final velocity. Note that neither the magnitude or direction of the acceleration or the time period over which the acceleration acted are required here.

1.6 Change in Displacement Under Constant Acceleration

If an object is undergoing a constant acceleration \(a \), then the displacement, \(d \), occurring in some given time, \(t \), is

\[
d = v_{av} t = \frac{1}{2} \left(v_i + v_f \right) t
\]

and from Eq. (1.7), we get

\[
d = \frac{1}{2} \left(v_i + v_i + at \right) t
\]

and so

\[
d = v_i t + \frac{1}{2} at^2
\]

(1.10)

If the object starts at rest (that is \(v_i = 0 \)) then this can be simplified to

\[
d = \frac{1}{2} at^2
\]

(1.11)

An Expression Independent of Time

The kinematic equations derived so far all include time. It is useful to have an alternative kinematic equation in which time does not feature. Such an equation can be derived from the kinematic equations already covered starting from of Eq. (1.8) in 1D:

\[
d = v_{av} t
\]

The average velocity \(v_{av} = \frac{v_f + v_i}{2} \) as before, and rearranging Equation 1.7 to the form

\[
t = \frac{v_f - v_i}{a}
\]

gives

\[
d = \left(\frac{v_i + v_f}{2} \right) \left(\frac{v_f - v_i}{a} \right)
\]

so

\[2ad = v_f^2 - v_i^2
\]

with the useful result:

\[
v_f^2 = v_i^2 + 2ad
\]

(1.12)

We will now investigate an acceleration which is particularly important for the motion of objects near the surface of the Earth: the \textit{acceleration due to gravity}.
Example 1.1 *Falling Ball (1D Kinematics)*

Problem: You drop a cricket ball from a 125 m high tower and it accelerates downwards at a rate of 10 m s\(^{-2}\). How far will it fall in 5 s?

Solution: We can solve this problem in two different ways. We can find the average velocity of the ball over the first 5 s and use this average velocity to calculate a displacement, or we can calculate a displacement directly.

(a) The acceleration of the ball is 10 m s\(^{-2}\) downwards and so the velocity increases by 10 m s\(^{-1}\) in the downwards direction every second. The initial velocity is 0 m s\(^{-1}\) so the final velocity must be

\[v_f = v_i + at = 0 \text{ m s}^{-1} + 10 \text{ m s}^{-2} \times 5 \text{ s} = 50 \text{ m s}^{-1} \]

\(v_f = 50 \text{ m s}^{-1} \) in the downwards direction. The average velocity of the ball in the downwards direction is

\[v_{av} = \frac{0 \text{ m s}^{-1} + 50 \text{ m s}^{-1}}{2} = 25 \text{ m s}^{-1} \]

Using this average velocity, the distance that the cricket ball will fall in 5 s is:

\[d = v_{av}t = 25 \text{ m s}^{-1} \times 5 \text{ s} = 125 \text{ m} \]

(b) The second technique uses Eq. (1.11) (since the initial velocity is zero). The change in displacement of the ball is

\[d = \frac{1}{2}at^2 = \frac{1}{2} \times 10 \text{ m s}^{-2} \times (5 \text{ s})^2 = 125 \text{ m} \]

which is the same answer as we found with the previous method.

1.7 The Acceleration Due to Gravity

Galileo found (and countless experiments since have also shown) that all objects falling freely towards the Earth have the same acceleration. (In order to see this effect, we must take into account the effect of air resistance when this is significant.) Thus every object in free fall close to the surface of the Earth has its downward speed increased by approximately 10 m s\(^{-1}\) in every second regardless of its mass. Galileo claimed that this was an experimental fact and is reported to have shown it by dropping two balls of unequal mass from the top of the Leaning Tower of Pisa. Later we will discuss the theoretical explanation for this experimental fact when we investigate the relationship between acceleration and the concept of force. The value of this constant acceleration is given by

\[g = 9.81 \text{ m s}^{-2} \approx 10 \text{ m s}^{-2} \]

(1.13)

This quantity, \(g \), is called the *acceleration due to gravity*. This is the value at sea level on the surface of the Earth; the value will change with altitude.

Consider an object released from rest and accelerating in free fall. Assuming that the air resistance is negligible, we are able to calculate its velocity after 5 s:

\[v = gt = 9.81 \text{ m s}^{-2} \times 5.00 \text{ s} = 49.1 \text{ m s}^{-1} \]

The result is obtained when using the approximation \(g = 10 \text{ m s}^{-2} \) is very similar:

\[v = gt = 10 \text{ m s}^{-2} \times 5 \text{ s} = 50 \text{ m s}^{-1} \]

Note that the mass of this object is not even mentioned in the original question, and that we have not considered the vectorial character of either the acceleration due to gravity or of the velocity achieved by this object after 5 seconds. These quantities are of course vectors, but their directions may be assumed to be towards the centre of the Earth and need not be considered in this problem. This is not always the case.
Example 1.2 *A Ball Thrown Straight Up (I) (1D Kinematics)*

Problem: If you throw a cricket ball straight up at 12 m s\(^{-1}\), how high will it go?

Solution: This problem is very similar to the previous one, except now the cricket ball has an initial velocity. This initial velocity is in the opposite direction to the acceleration due to gravity. This means that, at first, gravity will *reduce* the upward velocity of the cricket ball by 10 m s\(^{-1}\) every second. At some point the upward velocity of the cricket ball will have been reduced to zero – the cricket ball has stopped travelling up so it has reached its maximum height.

To calculate the maximum height that the ball reaches we need to find the time taken for the upward velocity to decrease to zero as this is also the time for the ball to reach its maximum height. We then calculate the average velocity and use this combined with the elapsed time to calculate the change in displacement of the ball.

For this problem we will define the upwards direction as positive, and define \(d = 0\) m to be the height at which the ball was released. The change in velocity of the ball is \(v_f - v_i = -12\) m s\(^{-1}\) (i.e. the velocity goes from +12 m s\(^{-1}\) initially to 0 m s\(^{-1}\) at its highest point). The time it takes the acceleration due to gravity (\(-9.81\) m s\(^{-2}\), as it points in the downwards direction) to cause this change in velocity is found using \(\Delta v = gt\) so

\[
t = \frac{\Delta v}{g} = \frac{-12 \text{ m s}^{-1}}{-9.81 \text{ m s}^{-2}} = 1.2 \text{ s}
\]

The average velocity is 6.0 m s\(^{-1}\) \((v_{av} = \frac{1}{2} (v_f + v_i) = \frac{1}{2} (12 \text{ m s}^{-1} + 0 \text{ m s}^{-1}) = 6.0 \text{ m s}^{-1})\) and using this we calculate the change in displacement of the cricket ball during the 1.2 seconds it takes to reach the maximum height,

\[
d = v_{av}t = 6.0 \text{ m s}^{-1} \times 1.2 \text{ s} = 7.2 \text{ m}
\]

The highest point the ball reaches is 7.2 m above the point at which it was released.

Example 1.3 *A Ball Thrown Straight Up (II) (1D Kinematics)*

Problem: How long does it take the ball in Example 1.2 to fall to its original position from its maximum height?

Solution: The ball reaches a maximum height of 7.2 m above the point at which it is thrown. At its maximum height it has a velocity of 0 m s\(^{-1}\). The time taken to fall a distance of 7.2 m back to its original position can be found using Eq. (1.10):

\[
d = v_it + \frac{1}{2}at^2
\]

Since the initial velocity, \(v_i\), is the velocity of the ball at its maximum height, i.e. \(v_i = 0\) m s\(^{-1}\) this can be reduced to

\[
d = \frac{1}{2}at^2
\]

The time in this equation, \(t\), is the time the ball takes to fall back to its original position.

We rearrange this equation to solve for \(t\) where (using the same sign convention as in Example 1.2) \(d = -7.2\) m and \(a = g = -10\) m s\(^{-2}\)

\[
t = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2 \times -7.2 \text{ m}}{-9.81 \text{ m s}^{-2}}} = 1.2 \text{ s}
\]

Note that this is the same time it took the ball to reach its maximum height from the point at which it was initially thrown in Example 1.2. This is a useful general result. Projectile motion is symmetrical about the point of maximum height. It takes the same amount of time to reach the maximum height from a starting height as it does to get back to that height from the maximum height.
Example 1.4 **A Ball Thrown Straight Up (III) (1D Kinematics)**

Problem: What is the velocity of the ball in Examples 1.2 and 1.3 when it falls back to the height at which it was released?

Solution: As in the previous problem we can think of the ball starting at its maximum height and falling 7.2 m under the influence of gravity to its original height, which we found would take 1.2 s, the same as the time taken to reach its maximum height from the point at which it was released. The change in velocity over the 1.2 s seconds in which it is falling from its maximum height is

\[\Delta v = at = -10 \text{ m s}^{-2} \times 1.2 \text{ s} = -12 \text{ m s}^{-1} \]

The ball is travelling at the same speed at it was when released, but in the opposite direction! Again this is a useful general result we can apply to many kinematics problems without going through an extensive derivation.

Example 1.5 **A Ball Thrown Straight Up (IV) (1D Kinematics)**

Problem: If the ball in the Example 1.2 was released (travelling upwards) at a height of 1.2 m above the ground, what is the velocity of the ball just before it hits the ground?

Solution: We will first need to find the time it takes for the ball to hit the ground and then use \(\Delta v = at \) to find the change in velocity, and hence the final velocity. Initially it is tempting to try to to solve this problem directly using Eq. (1.10):

\[d = v_i t + \frac{1}{2} at^2 \quad (1.10) \]

We know the change in position of the ball \(d = -1.2 \text{ m} \) (as, in this case, the ball ends up 1.2 m below its starting point), the initial velocity of the ball \((v_i = 12 \text{ m s}^{-1}) \), and acceleration \((g = -9.81 \text{ m s}^{-2}) \). In order to use this equation, however, we would need to solve for \(t \), which would require solving a quadratic equation. Even using the shortcuts highlighted in the previous two examples does not allow us to avoid this quadratic as we still end up with two terms featuring \(t \). If you’re confident doing this, that is great. If you are not very confident at solving quadratic equations however, all is not lost.

We can simplify the problem by using the fact that we know a bit more about the situation than is apparent from the question. From Example 1.2, we know that the ball reaches a maximum height of 7.2 m above the point at which it was released. This means that the ball will reach a height of 7.2 + 1.2 = 8.4 m above the ground.

At this maximum height, the velocity of the ball is 0 m s\(^{-1}\), and by ignoring the first part of the ball’s motion, we can simplify Eq. (1.10) to \(d = \frac{1}{2} at^2 \), where \(d \) is the change in displacement of the ball as it moves from its maximum height to the ground, \(d = -8.4 \text{ m} \), and \(a = g = -9.81 \text{ m s}^{-2} \):

\[d = \frac{1}{2} at^2 \]

\[t = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2 \times -8.4 \text{ m}}{-9.81 \text{ m s}^{-2}}} = 1.3 \text{ s} \]

This gives a change in velocity of \(\Delta v = gt = -9.81 \text{ m s}^{-1} \times 1.3 \text{ s} = -13 \text{ m s}^{-1} \), so the ball will be travelling at 13 m s\(^{-1}\) in the downwards direction as it hits the ground.

1.8 Independence of Motion in Two Dimensions

In the previous section, we considered objects which move vertically up and down. This means that in these cases the velocity vector is always parallel to the acceleration vector. These objects would go straight upward and fall straight downward. They will not move horizontally since there is no initial velocity in the horizontal direction, and no acceleration in the horizontal direction to cause a non-zero horizontal velocity to develop. What would happen if the initial velocity was not straight upward? What would have happened
if the initial velocity was at some angle to the vertical? This is the situation shown in Figure 1.5, using the example of a cricket ball launched upward at an angle.

![Figure 1.5](image-url) The trajectory of a cricket ball initially launched upward at an angle to the vertical. The vertical and horizontal components of the ball's velocity are shown at a number of times in its trajectory.

In Figure 1.5, the cricket ball has a vertical velocity and a horizontal velocity and this results in a net velocity at an angle to the vertical. The acceleration due to gravity, however, acts only in the vertical direction, and changes only the vertical component of the velocity. The horizontal component of the velocity is initially 10 m s$^{-1}$ and is still 10 m s$^{-1}$ when the ball reaches its maximum height at 45 m after 3 s, and is 10 m s$^{-1}$ when the ball reaches the ground again after a total of 6 s. There is no acceleration in the horizontal direction, so the velocity component in this direction cannot change.

The vertical component of the velocity is changed by the acceleration due to gravity. This can be seen in Figure 1.5 as well. In point of fact, the vertical component of the velocity behaves in exactly the same way as it did in the examples above. The vertical velocity is initially 30 m s$^{-1}$ upward. After 3 s this has dropped to 0 m s$^{-1}$ when the ball reaches its maximum height. The vertical velocity is again 30 m s$^{-1}$ just before the ball hits the ground after 6 s, but now the velocity is in the downward direction.

This is what we mean when we say that the horizontal and vertical components of the velocity vector are independent. These components are acted on separately by the accelerations in those directions. An acceleration in the horizontal direction would not change the velocity component in the vertical direction. This means that when we are attempting to solve a kinematics problem in three dimensions, we may look at the components of the velocity and acceleration in a given direction independently of their components in the other two directions.

This effect may be seen in the following experiment. Suppose that we have two identi-
cal balls which are held on a platform in a darkened room. (The balls do not need to have the same mass for this experiment to work, but we will simplify the discussion by assuming that they do.) Now suppose that we drop one ball directly downward from a platform and at the same instant fire the other ball horizontally out from the same platform. As the balls fall, a strobe light flashes at regular intervals and the trajectory of the two balls is recorded on a camera with a very long exposure time. Figure 1.6 is an example of the sort of image that would be obtained from this experiment.

In this figure, we observe that the balls are at the same height at each interval, i.e. at each flash of the strobe light. This means that their vertical velocity components are the same at each time. Their horizontal velocity components are quite different, however. The ball which is simply dropped has no horizontal velocity component, whereas the horizontal velocity component of the other ball is constant.

Example 1.6 Projectile Motion (2D Kinematics)

Problem: A modern artist throws a bottle of paint towards the wall of a nearby building. The bottle leaves the artist’s hand at a height of 2.0 m, a speed of 16 m s\(^{-1}\), and at an angle of 30° above the horizontal. If the building is 15 m away:

(a) At what height \(H\) does the bottle hit the wall?

(b) At what velocity \(v\) is the bottle travelling as it hits the wall?

Solution:

A good first step for this kind of problem is to draw a diagram like Figure 1.7. Remember that when dealing with 2D kinematics you can always separate out the horizontal and vertical motions. Note also that since we are given numerical quantities to two significant figures, we will use this level of numerical precision throughout the problem, i.e. we will use \(g = -9.8 \text{ m s}^{-2}\).

In order to answer both of the questions, we will need to know how long after the bottle leaves the artist’s hand it hits the wall. We can calculate this time by looking at the horizontal motion of the bottle. As the acceleration due to gravity is in the vertical direction only, we know that the horizontal velocity is constant and has a magnitude of

\[v_x = 16.0 \text{ m s}^{-1} \cos 30° = 13.9 \text{ m s}^{-1} \]

The time it takes the bottle to travel the 15 m horizontally to the wall is

\[d_x = v_x t \Rightarrow \quad \frac{d_x}{v_x} = \frac{15 \text{ m}}{13.9 \text{ m s}^{-1}} = 1.08 \text{ s} \]

(a) The difference in height between the bottle’s initial height of 2.0 m and its final height of \(H\) is \(h_f\). We can calculate this height by using the initial vertical velocity of the ball \((v_{yi} = 16.0 \text{ m s}^{-1} \sin 30° = 8.0 \text{ m s}^{-1})\) and the fact that the ball is accelerating in the vertical direction at a rate of \(a = g = -9.8 \text{ m s}^{-2}\).

\[
\begin{align*}
h_f &= v_{yi} t + \frac{1}{2} a t^2 \\
&= 8.0 \text{ m s}^{-1} \times 1.08 \text{ s} + \frac{1}{2} \times (-9.8 \text{ m s}^{-2}) \times (1.08 \text{ s})^2 \\
&= 2.93 \text{ m}
\end{align*}
\]

So the bottle must hit the wall a total of 4.9 m above the ground (giving solution to two significant figures).

(b) In order to find the final velocity of the bottle we will have to add together the vertical and horizontal components of the bottle’s velocity as it hits the wall. We already know that the horizontal velocity of the bottle is constant as there is no acceleration in the horizontal direction, therefore the horizontal component of the final velocity is \(v_x = 14 \text{ m s}^{-1}\). To find the final vertical velocity we can use \(v_f = v_i + at\) where \(v_i = v_{yi} = 8.0 \text{ m s}^{-1}\) and \(a = g = -9.8 \text{ m s}^{-2}\).
\[v_{yf} = v_{yi} + gt \]
\[= 8.0 \text{ m s}^{-1} + (-9.8 \text{ m s}^{-2}) \times 1.08 \text{ s} = -2.58 \text{ m s}^{-1} \]

By the time the bottle has hit the wall, it has reached its maximum height (at which \(v_y = 0 \text{ m s}^{-1} \)) and has started moving back down, hence the negative vertical velocity.

![Figure 1.8 The velocity vector components of the bottle as it hits the wall.](image)

We can get the magnitude of the final velocity by vector addition of the two components \(v_x \) and \(v_{yf} \):

\[|v_f| = \sqrt{v_x^2 + v_{yf}^2} = \sqrt{(13.9 \text{ m s}^{-1})^2 + (-2.58 \text{ m s}^{-1})^2} = 14.14 \text{ m s}^{-1} \]

The direction in which the bottle is travelling can be found by using trigonometry.

\[\tan \theta_f = \frac{v_{yf}}{v_x} \]
\[\theta_f = \tan^{-1}\left(\frac{v_{yf}}{v_x}\right) = \tan^{-1}\left(\frac{2.58 \text{ m s}^{-1}}{13.9 \text{ m s}^{-1}}\right) = 10.52^\circ \]

So as the bottle hits the wall it is travelling at a speed of 14 m s\(^{-1}\), 11° below the horizontal (to 2 s.f.).

1.9 Summary

Key Concepts

elapsed time (\(\Delta t \)) The time interval between two events.

distance (\(d \) or \(\Delta x \)) The length of a path between two spatial positions.

displacement (\(d \) or \(\Delta x \)) The vector equivalent of distance, which specifies the distance and direction of one point in space relative to another. It depends only on the initial and final spatial positions, and is independent of the path taken from one position to the other.

speed (\(v \)) A scalar measure of the rate of motion. The SI unit of speed is metres per second (m/s or m s\(^{-1}\)).

velocity (\(v \)) A vector measure of the rate of motion, which specifies both the magnitude and direction of the rate of motion.

acceleration (\(a \)) A measure of the rate of change of the velocity. Acceleration is a vector quantity. The SI units of acceleration are m/s\(^2\) or m s\(^{-2}\).

Equations

\[d = v_{av}t \]
\[\Delta v = at \]
\[v_{av} = \frac{1}{2}(v_i + v_f) \]

\[d = v_i t + \frac{1}{2}at^2 \]
\[v_f^2 = v_i^2 + 2ad \]
1.10 Problems

When solving the following problems use \(g = 9.81 \text{ m/s}^2 \) unless otherwise specified.

1.1 Figure 1.9 shows five different paths between two end points. The initial position is indicated by \(i \) and the final position by \(f \).

1.2 What is the average velocity of the following:

(a) A snail moves 30 cm north in 2 minutes.
(b) An elevator is raised 18 m in 15 s.
(c) An elevator is lowered 18 m in 15 s.
(d) A jogger runs 49 m west in 7 s.
(e) A car passes a signpost travelling west at a speed of 10 m s\(^{-1}\) and 2 min later passes a second signpost while travelling north at 12 m s\(^{-1}\). The second signpost is 300 m north-west of the first.
(f) A car passes a signpost travelling west at a speed of 21 m s\(^{-1}\) and 2 min later passes a second signpost while travelling north at 12 m s\(^{-1}\). The second signpost is 300 m north-west of the first.

1.3 At \(t = 0 \) s a hovercraft is stationary and accelerating at a uniform rate of 0.8 m s\(^{-1}\) east.

1.4 The position of a drag car along a 400 m long drag strip is recorded at regular intervals of 2 s. The results are shown in the table below and the finish line is due East from the start line.

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>(d) (m East)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
</tr>
</tbody>
</table>

(a) What is the average velocity of the car as it passes point A?
(b) What is the average velocity of the car as it passes point B?
(c) What is the average velocity of the car as it passes point C?
(d) What is the average velocity of the car as it passes point D?
(e) What is the average velocity of the car as it passes point E?
(f) What is the average velocity of the car as it passes point F?

(h) A train carriage that is initially moving at a velocity of 0.5 m s\(^{-1}\) north that accelerates uniformly to a velocity of 1.5 m s\(^{-1}\) south.

(i) A train carriage that is initially moving at a velocity of 0.5 m s\(^{-1}\) south that accelerates uniformly to a velocity of 1.5 m s\(^{-1}\) south.

1.5 A car travels along the path shown in Figure 1.10. The car is travelling at a constant speed of 21 m s\(^{-1}\). The radius of the track is 100 m.

(a) What is the velocity of the car at time B?
(b) What is the velocity of the car at time C?
(c) What is the velocity of the car at time D?
(d) What is the velocity of the car at time E?
(e) What is the rate of acceleration of the drag car?
A ball is dropped from a height of 10.0 m. The ball was stationary just before you let it go.
(a) What is the acceleration of the ball just after you let it go?
(b) What is the acceleration of the ball half-way towards the ground?
(c) What is the acceleration of the ball just before it hits the ground?

1.10 Three cars are approaching an intersection as shown in Figure 1.11.

Car A is travelling at a speed of 45 km h\(^{-1}\), Car B is travelling at a speed of 50 km h\(^{-1}\), and Car C is travelling at a speed of 55 km h\(^{-1}\).
(a) What is the relative velocity of car B from the point of view of car A at the instant shown in Figure 1.11?
(b) Does this relative velocity of car B from the point of view of car A change as the positions of the cars change?
(c) What is the relative velocity of car C from the point of view of car A at the instant shown in Figure 1.11?
(d) Does this relative velocity of car C from the point of view of car A change as the positions of the cars change?
(e) What is the velocity of the ball just before it hits the ground?
(f) What is the velocity of the ball just after you let it go?
(g) How long does it take for the ball to hit the ground?
(h) What is the velocity of the ball just before it hits the ground?

1.12 You throw a ball straight up. The speed of the ball just after it leaves your hand is 14.1 m s\(^{-1}\) upwards. The ball rises, reaches its maximum height, then falls down. You catch the ball when it is the same height that you let it go.
(a) What is the acceleration of the ball just after you let it go?
(b) What is the acceleration of the ball when it is at its maximum height?
(c) What is the acceleration of the ball just before you catch it?
(d) How long does it take the ball to reach its maximum height?
(e) How long is the ball in the air before you catch it?
(f) What is the velocity of the ball at the instant when it is at its maximum height?
(g) What is the velocity of the ball at the instant just before you catch it?

1.13 A bullet is fired horizontally from a gun that is 1.5 m from the ground. The bullet travels at 1000 m s\(^{-1}\) and strikes a tree 150 m away. How far up the tree from the ground does the bullet hit? [Neglect air resistance.]

1.14 You are abducted by aliens who transport you to their home world in a galaxy far far away. Oddly, the only thing you can think of doing is measuring the acceleration due to gravity on this strange new world. You drop an alien paperweight from a height of 12 m and use an alien stopwatch to measure the interval of 1.36 s it takes the paperweight to hit the ground below. What is the acceleration due to gravity on the alien home world?

1.15 In a bid to escape from your alien captors you hurl your paperweight straight up towards the door switch on a spaceship above you. If the switch is 25 m above you how fast does the paperweight need to leave your hand?
1.16 A cricket ball is hit for six and follows the path shown in Figure 1.12. The initial velocity of the cricket ball is 20 m s\(^{-1}\) at an angle of 45° above the horizontal.

![Figure 1.12](image)

The cricket ball is shown at 3 positions along its trajectory: Position A just after it is hit, Position B at the ball’s maximum height, and Position C just before the ball lands. If the ball is hit at time \(t = 0\) s then:

(a) What is the component of \(v_A\) in the \(x\)-direction?
(b) What is the component of \(v_A\) in the \(y\)-direction?
(c) What is the acceleration of the ball at Position A?
(d) What is the component of \(v_B\) in the \(x\)-direction?
(e) What is the component of \(v_B\) in the \(y\)-direction?
(f) What is the acceleration of the ball at Position B?
(g) What is the component of \(v_C\) in the \(x\)-direction?
(h) What is the component of \(v_C\) in the \(y\)-direction?
(i) What is the acceleration of the ball at Position C?

1.17 The following question relates to the trajectory of the cricket ball in Problem 1.16.

(a) What is the maximum height that the ball reaches?
(b) How long is the ball in the air?
(c) How far away from its initial position does the ball land?
(d) What is the velocity of the ball just before it lands?