Index

A

AASHTO (American Association of State Highway and Transportation Officials), 6, 32
ACI (American Concrete Institute), 6
Active soil pressure, 396
Admixtures, 9–10
accelerating, 9–10
air-entraining, 9
retarding, 10
silica fume, 19
superplasticizers, 10
waterproofing materials, 10
Aggregate interlock, 223
Aggregates
defined, 17
lightweight, 2, 16, 18
Allowable stress design, 64
American Association of State Highway and Transportation Officials (AASHTO), 32
American Association of State Highway and Transportation Officials (AASHTO), 6
American Concrete Institute (ACI), 6
American Railway Engineering Association (AREA), 6, 32
American Society for Testing and Materials (ASTM), 8, 16, 20, 23–25, 27
American Society of Civil Engineering (ASCE), 28–32
American Society of Civil Engineers (ASCE), 32
Approximate analysis (continuous frames)
for lateral loads, 448–451
for vertical loads, 438–448
AREA (American Railway Engineering Association), 6, 32
ASCE (American Society of Civil Engineering), 28–32
ASCE (American Society of Civil Engineers), 32
Aspdin, J., 3
Aspect ratio, 20, 490
Assumed points of inflection, 447, 448
ASTM. see American Society for Testing and Materials
Average shearing stress, 222
Axial forces
Column, 451
and shear strength, 247–249
Axial load capacity, of columns, 262
Axial loads
footings subjected to, 375–377
short columns subject to bending and, 277–312
biaxial bending, 298–302
capacity reduction factors, 305–306
interaction diagrams, 280–290
plastic centroid, 278–280
shear in, 297–298
Axially loaded columns, 270–272

B

Backfill, 392, 397, 398, 403
Balanced loading, 283
Balanced steel ratio, 70, 74–75
Beam weight, 84–85
Beams
balanced steel percentage, 74–75
brittle, 70
cantilever, 101
continuous
ACI coefficients for, 439–443
deflections of, 161–166
rectangular, 101
deep
shear design for, 249–250
skin reinforcement for, 94
doubly reinforced
compression steel on, 125–130
design of, 130–133
failure, 35–37
flexural analysis
concrete cracked–elastic stresses
stage, 34–35, 40–46
cracking moment, 37–40
ultimate-strength stage, 47–50
uncracked concrete stage, 34, 37–39
L-beams, 125
load factors, 81–83
maximum steel percentage, 71
minimum steel percentage, 72–74
minimum thicknesses for, 153
rectangular, 81–109
bundled bars, 97–98
cantilever, 101
continuous, 101
design of, 83–93
lateral support, 94
one-way slabs as, 98–101
sizes of, 95
Beams (continued)
 skin reinforcement, 94
 steel area for predetermined dimensions, 95–97
strength analysis
 balanced sections, 70
 balanced steel percentage, 74–75
 brittle sections, 70
 compression-controlled sections, 70
 derivation of beam expressions, 66–69
 design methods, 64–65
 minimum percentage of steel, 72–74
 strains in flexural members, 69–70
 strength design advantages, 65
 strength reduction factors, 65, 70–72
 structural safety, 65–66
 tension-controlled sections, 70
T-beams, 110–112
 analysis of, 112–117
 deflections, 161–166
 design of, 117–124
 tension-controlled, 70
 two-way slabs with, 485, 487, 509–515
Bending bars, 180–183, 205–208
Bending, short columns subject to axial load, 277–312
 biaxial bending, 298–302
 capacity reduction factors, 305–306
 interaction diagrams, 280–297
 plastic centroid, 278–280
 shear in, 297–298
Bent-up bars, 226–228
Biaxial bending, 298–302
Bond stresses, 183–185
Braced frames. see Nonsway (braced) frames (slender columns)
Brackets, 245
Bresler, Boris, 300
Bridge abutments, 391
Building Code Requirements for Structural Concrete
 (ACI 318–14), 6
Building Code Requirements for Structural Concrete
 (ACI, 318–14), 6
Bundled bars, 97–98
 development lengths for, 193–194
 lap splices for, 209
Buttress walls, 390

C
Calculation accuracy, 32–33
Camber, 154
Cantilever beams, 101
Cantilever retaining walls, 389, 390
 design procedure for, 407–418
 estimating sizes of, 403–407
 without heel, 391
 without toe, 391
Capacity reduction factors, 305–306
Carrasquillo, R., 13
Cast-in-place columns, 265–267
Cast-in-place walls, 540
Cement
 Portland, 8–9
 Roman, 3
Class A splices, 209
Class B splices, 210
Coating factor, 187
Codes, 6
Coignet, F., 4
Collapse mechanism, 430–431
Column capitals, 485
Column strips, 489–490
Columns
 axial load capacity of, 262
 axially loaded, 270–272, 451
 cast-in-place, 265–267
 categories of, 259
 composite, 261, 262
 design of
 axially loaded columns, 270–272
 economical, 269–270
 formulas for, 268–269
 interaction diagrams for, 280–297
 lally, 262
 load transfer to footings from, 359–364, 377–378
 long, 259
 moments, 357, 450
 round or regular polygon-shaped, 359
 safety provisions for, 267–268
 short
 compression blocks and pedestals, 259
 subject to axial load and bending, 277–312
 slender, 259
 ACI Code treatment of slenderness effects, 323
 analyses of, 319–320, 323
 avoiding, 321
 effective length factors, 314–316
 in nonsway (braced) frames, 313–314, 320–328
 in sway (unbraced) frames, 313–314, 320–323, 328–337
 unsupported lengths, 314
 spiral, 260
 ACI Code requirements for, 265–267
 failure of, 262–264
 tied, 260
 ACI Code requirements for, 266
 as economical, 269
 failure of, 262–264
 two-way slabs
 factored moments in, 520
 transfer of shear and moments between slabs
 and, 515–520
 types of, 260–262
Combined footings, 343, 344, 367–373
Compatibility, 6
Compatibility torsion, 467–468
Composite columns, 261, 262
Composite construction, prestressed concrete in, 586
Compression bars
 in beams, 45
development lengths for, 201–203
Compression blocks, short, 259
Compression controlled section, 70
Compression splices, 210–211
Compression steel, doubly reinforced beams, 125–130
Compression strength
 of concrete, 10–12
Computer examples
 beam analysis and design, 51–53, 79–80
columns, 274
deflection calculator, 173–175
development length, 213–214
doubly reinforced beams, 139–141
footings, 383–385
prestressed concrete, 588
rectangular beams, 51–53, 102–103
short columns, 306–307
slender columns, 337–339
T beams, 136–139
torsion, 480
two-way slabs
 direct design method, 521–522
equivalent frame method, 537
walls, 555–556
Computers
 analysis with
 continuous structures, 450–451
equivalent frame method, 536–537
design impact of, 33
Concrete
 defined, 1
durability of, 21
fiber-reinforced, 20–21
high-strength, 18–20
properties of, 10–17
toughness of, 20
Concrete Reinforcing Steel Institute (CRSI), 24
Confinement term, 187
Construction joints, in retaining walls, 418–419
Continuous beams, rectangular, 101
Continuous members, prestressed, 587
Continuous structures, 425–462
 ACI coefficients for beams and slabs, 439–443
 analysis methods, 425
 approximate analysis of frames
 for lateral loads, 448–451
 for vertical loads, 438–448
 assumed points of inflection, 448
 collapse mechanism, 430–431
 computer analysis of frames, 450–451
 development lengths, 452–461
 negative-moment reinforcement, 455–457
 positive-moment reinforcement, 452–455
 equivalent rigid-frame method, 444–447
 lateral bracing, 452
 limit design, 428–438
 under ACI Code, 435–438
 plastic analysis (equilibrium method), 431–435
 portal method, 448–451
 preliminary member design, 438
 qualitative influence lines, 425–428
 Continuous-beam deflections, 161–166
 Corbels, 245–247
 Corrosive environments, 26
 Counterfort walls, 390
 Cover
 hooks, 197–198
 rectangular beams, 85–86
 Cracked concrete–elastic stresses stage
 (flexural analysis), 34–35, 40–46
 Cracking moments, 37–40
 Cracking, shear, 223–224
 Cracks, 167–173
 flexural, 167–171
 flexure–shear, 167
 inclined, 167
 miscellaneous, 173
 in retaining walls, 418–420
 torsion, 167
 types of, 167
 web–shear, 167
 Creep, 15, 572, 573
 Critical load combination, 83
 CRSI (Concrete Reinforcing Steel Institute), 24
 Curvature effect, 573
 Cutting off bars, 180–183, 205–208

D

Dead loads, 27–28
Deep beams
 shear design for, 249–250
 skin reinforcement for, 94
Deflections, 152–161
 calculation of, 154, 155
 and cambering, 154
 continuous-beam, 161–166
 control of, 153–154
 importance of, 152–153
 long-term, 157–159, 580
 maximum, 153
 minimum thicknesses for beams/slabs, 153
 of prestressed concrete, 576–580
 rectangular beams, 84
 simple-beam, 159–161
Design codes, 6
Design loads, 31–32
Design methods, 64–65. See also specific topics
Development lengths
 for bundled bars, 193–194
 combined shear and moment effect on, 203–204
 for compression bars, 201–203
 in continuous structures, 452–461
INDEX

Development lengths (continued)
 negative-moment reinforcement, 455–457
 positive-moment reinforcement, 452–455
 critical sections for, 203
 defined, 185–186
 rectangular beams, 101
 and shape of moment diagram, 204–205
 for tension reinforcement, 185–192
 for welded wire fabric in tension, 200–201

Diagonal tension
 defined, 221
 and use of stirrups, 227–228

Direct design method
 openings in slab systems, 520
 two-way slabs, 488–523
 with beams, 509–515
 depth limitations and stiffness with interior beams, 495–497
 depth limitations and stiffness without interior beams, 492–495
 distribution of moments in, 498–503
 factored moments in columns and walls, 520
 interior flat plates, 504–508
 limitations, 498
 live load placement, 508–509
 transfer of shear and moments between slabs and columns, 515–520

Doubly reinforced beams
 compression steel on, 125–130
 design of, 130–133

Dowel action, 224

Drainage, for retaining walls, 392–393

Drop panels, 485

Durability of concrete, 21

E

Earthquake loads, 31, 82

Eccentricity, of short columns, 277, 278, 289–297

Economical design
 column, 269–270
 stirrup spacing, 243–245
 walls, 555

Effective length factors (slender columns), 314–316
 determined with alignment charts, 316–318
 determined with equations, 318–319

Elastic second-order analysis (slender columns), 323

Elastic shortening, in prestressed concrete, 571–572

Elastic stresses, 40–46

Empirical design method, 540–543

End blocks, stresses in, 586

Environmental loads, 30–31

Equilibrium method, 431–435

Equilibrium torsion, 467

Equivalent fluid pressures, 396

Equivalent frame method (two-way slabs), 488–489, 524–538
 properties of columns, 530–531
 properties of slab beams, 527–529

Equivalent rigid-frame method, 444–447

Erdei, Charles, 204

Expansion joints, in retaining walls, 419–420

F

Factored loads, 64

Fairbairn, W., 4

Fairweather, V., 31

Ferguson, P.M., 204

Fiber-reinforced concrete, 20–21

Flanges, 110

Flat plates, 485, 486, 490, 504–508

Flat slabs, 485, 486, 490

Flexural analysis (beams)
 concrete cracked–elastic stresses stage, 34–35, 40–46
 cracking moment, 37–40
 ultimate-strength stage, 35–37, 47–50
 uncracked concrete stage, 34, 37–39

Flexural cracks, 167–171
 control of, 168–171
 defined, 167

Flexural members, splices in, 208–209

Flexure–shear cracks, 167, 223

Floating foundations, 344, 345

Fly ash, 19, 21

Footings, 343–388
 combined, 343, 344, 367–373
 design of
 for equal settlement, 373–374
 isolated footings, 353–359, 364–367
 wall footings, 348–352
 isolated, 343, 344
 rectangular, 364–367
 square, 353–359

load transfer from columns to, 359–364

mat (raft, floating foundation), 344, 345

piles caps, 344, 345

plain concrete, 378–381

for round or regular polygon-shaped columns, 359

soil pressures
 actual, 345–346
 allowable, 346–347
 for retaining walls, 398–399

subject to axial loads and moments, 375–377

transfer of horizontal forces to, 377–378

types of, 343–345

wall, 343, 344

Friction, 397
 along ducts in prestressed concrete, 573
 shear, 245–247, 377–378

Fully prestressed members, 587

G

Gabions, 392

Gergely-Lutz equation, 170

Girders, 450
Governing load combination, 83
Gravity retaining walls, 389, 390

H
Hangers, 224
Headed bars, 23, 211–212
Heel (retaining walls), 389, 410
Hennebique, F.S., 4
High early-strength cements, 8
High-strength concrete, 18–20
High-strength steel, 562–563
Historical data, 3–5
Hooks, 194–200
Horizontal forces, transferred to footings, 377–378
Hyatt, T., 4

I
IBC. see International Building Code
Ice loads, 30
Impact effects, on rectangular beams, 82
Impact loads, 28
Inclined cracks, 167
Interaction diagrams (short columns) code modifications of, 288–289
development of, 280–285
for eccentrically loaded columns, 289–297
use of, 286–288
Internal friction, 395, 397
International Building Code (IBC), 6, 32
Isolated (single-column) footings, 343, 344
rectangular, 364–367
square, 353–359

J
Jackson and Moreland alignment charts, 318
Joints, in retaining walls, 418–420

K
Kern, 375
Kirby, R.S., 4

L
Lally columns, 262
Lambot, J., 4
Lap splices, 208–211
Lateral bracing, for continuous structures, 452
Lateral loads for continuous structures, 448–451
design of two-way slabs for, 489
Lateral pressure, on retaining walls, 393–398, 403
Lateral support, for rectangular beams, 94
Laurson, P.G., 4
L-beams, 125
Le Brun, F., 3
Leet, K., 14
Length effect, 573
Leyh, George F., 209
Lightweight aggregate concrete, 221
Lightweight concrete modification factor, 187
Lightweight concretes, 17–18
Limit design continuous structures, 428–438
under ACI Code, 435–438
collapse mechanism, 430–431
plastic analysis (equilibrium method), 431–435
plastic design vs., 428
Limit states, 152
Live loads, 28–29
Load and resistance factor design (LRFD), 428–429
Load factors and effective moment of inertia, 157
rectangular beams, 81–83
Load-bearing walls empirical design method, 540–543
rational design method, 543–545
Loads, 27–32
axial
columns, 262, 270–272
footings subjected to, 375–377
short columns subject to bending and, 277–312
balanced, 283
dead, 27–28
design, 31–32
environmental, 30–31
factored, 64
on footings, 373–377
ice, 30
impact, 28
lateral
for continuous structures, 448–451
design of two-way slabs for, 489
live, 28–29
longitudinal, 28
miscellaneous, 29
rain, 30
seismic (earthquake), 31, 82, 83
service, 35, 40, 64
snow, 30
traffic, 28
vertical
for continuous structures, 438–448
wind, 30–31, 82, 83
working, 35, 64
Long columns, 259
Longitudinal loads, 28
Long-term deflections, 157–159, 580
LRFD (load and resistance factor design), 428–429

M
MacGregor, J.G., 35, 125
Mass density, 13
Mat (raft, floating foundation) footings, 344, 345
Maximum steel percentage, 71
Mechanically anchored bars, 211–212
Middle strips (two-way slabs), 489–490
Minimum steel percentage, 72–74
Miscellaneous cracks, 173
Miscellaneous loads, 29
Modular ratio, 40
Modulus of elasticity, 16, 24
 apparent, 12
 dynamic, 13
 initial, 12
 long-term, 12
 secant, 12
 slender columns, 319
 static, 12–13
 tangent, 12
Modulus of rupture, 16, 34, 37–38
Moment magnifier procedure (slender columns) defined, 323
 nonsway (braced) frames, 323–328
 sway (unbraced) frames, 328–331
Moment strength, torsional, 470–471
Moments of inertia
 effective, 154, 156–157
 slender columns, 319
Monier, J., 3
Müller-Breslau, Heinrich, 425

N
Nawy, E.G., 13
Nilson, A.H., 13
Nominal strength, 47–50
Nonlinear second-order analysis (slender columns), 323
Non–load-bearing walls, 539–540
Nonsway (braced) frames (slender columns), 313–314, 323–328

O
One-way slabs, 98–101
 defined, 485

P
Partially prestressed members, 587
Pedestals, 259
Pile caps, 344, 345
Plain concrete footings, 378–381
Plastic analysis (equilibrium method), 431–435
 Plastic centroid, 278–280
 Plastic design vs. limit design, 428
 Plastic hinge, 429–435
Points of inflection, assumed, 447, 448
Poisson’s ratio, 13
Ponding, 30
Portal method, 448–451
Portland cement, 8–9
Posttensioning, 561–562, 566
Pozzolana, 3

Precast walls
 non-prestressed, 540
 retaining walls, 392
Prestressed concrete, 559–592
 advantages of, 561
 for composite construction, 586
 continuous members, 587
 deflections of, 576–580
 disadvantages of, 561
 elastic shortening in, 571–572
 friction along ducts, 573
 materials used for, 562–564
 partial prestressing, 587
 posttensioning, 561–562, 566
 prestress losses, 570–573
 pretensioning, 561–562
 relaxation and creep in tendons, 573
 shapes of prestressed sections, 568–570
 shear in, 580–582
 approximate method, 581
 design of reinforcement, 582–586
 shrinkage and creep in, 572
 stress calculations, 564–567
 stresses in end blocks, 586
 ultimate strength of sections, 573–576
Pretensioning, 561–562
Primary moments (columns), 259
Principal stresses, 220–221
Proportions (rectangular beams), 83–84

Q
Qualitative influence lines, 425–428

R
Raft footings, 344, 345
Rain loads, 30
Ransome, E.L., 4
Rational design method (load-bearing walls), 543–545
Rectangular beams
 bundled bars, 97–98
 cantilever, 101
 continuous, 101
 design of, 83–93
 lateral support, 94
 load factors, 81–83
 sizes of, 95
 skin reinforcement, 94
 steel area for predetermined dimensions, 95–97
Rectangular isolated footings, 364–367
Reinforced concrete
 advantages, 1
 defined, 1
 disadvantages, 2–3
 history, 3–5
 use of structural steel vs., 5
Reinforcement location factor, 186
Reinforcement size factor, 187
Reinforcing bars
bond stresses, 183–185
bundled, 97–98
cutting off or bending, 180–183, 205–208
development lengths for, 193–194
headed bars, 211–212
lap splices for, 209
mechanically anchored, 211–212
one-way slabs as, 98–101
rectangular beams
minimum spacing of, 86–88
selection of, 85
splices
compression, 210–211
in flexural members, 208–209
tension, 209–210
Reinforcing steel, 21–25
axle, 23, 24
billet, 23
coatings, 26
compatibility of concrete and, 6
corrosion, 6, 24, 26
deformed, 21–23
epoxy-coated, 26
grades, 23–24
identifying marks, 26, 27
maximum percentage of, 71
minimum percentage of, 72–74
plain, 21, 23
rail, 26
SI sizes, 24–25
welded wire fabric, 21, 22, 24
Relaxation, in prestressed concrete tendons, 573
Retaining walls
bridge abutments, 391
buttress, 390
cantilever, 389, 390
design procedure for, 407–418
estimating sizes of, 403–407
without heel, 391
without toe, 391
counterfort, 390
cracks in, 418–420
drainage for, 392–393
failures of, 393
footing soil pressures for, 398–399
gravity, 389, 390
joints in, 418–420
lateral pressure on, 393–398
precast, 392
semigravity, 389, 390, 399–402
surcharge on, 402–403
types of, 389–392
Retrofitting, 31
Righting moment (retaining walls), 389
Roman cement, 3
Rüsch, H., 15
S
Safety, 64–66
with cantilever retaining walls, 408–410
with columns, 267–268
Secondary moments (columns), 259
Seismic (earthquake) loads, 31, 82, 83
Self-consolidating concrete, 10
Semigravity retaining walls, 389, 390, 399–402
Service, 35
Service loads, 35, 40, 64
Serviceability, 152–179
cracks, 167–173
ACI Code provisions, 171–172
flexural, 167–171
types of, 167
deflections, 152–161
calculation of, 154, 155
continuous-beam, 159–161
effective moments of inertia, 154, 156–157
importance of, 152–153
long-term, 157–159
simple-beam, 159–161
Serviceability limit states, 152
Settlement (footings), 373–374
Shear
ACI Code requirements for, 229–233
approximate method, 581
column, 450
in column footings, 354–356
design for, 227–228
deep beams, 249–250
design problems, 233–243
stirrup spacing, 234–238, 243–245
design of reinforcement, 582–586
and development length, 203–204
girder, 450
in prestressed concrete, 580–582
shear resistance, 490–492
in short columns subject to axial load and bending, 297–298
and tensile strength, 220
two-way slabs
shear resistance, 490–492
transfer between slabs and columns, 515–520
Shear cracking (reinforced concrete beams), 223–224
Shear friction, 245–247, 377–378
Shear strength
of concrete, 17, 221–223
and lightweight aggregate concrete, 221
of members subjected to axial forces, 247–249
Shear stresses
in concrete beams, 220–221
in two-way slabs, 490–492
Shear walls, 545–554
ACI provisions for, 549–551
arrangements of, 548
Shearheads, 485, 491, 492
Short columns
 compression blocks and pedestals, 259
 subject to axial load and bending, 277–312
 biaxial bending, 298–302
 capacity reduction factors, 305–306
 interaction diagrams, 280–297
 plastic centroid, 278–280
 shear in, 297–298
Shotcreting, 8, 20
Shrinkage, 14
SI examples
 axially loaded columns, 273
 beam analysis, 50
 cracking, 172–173
 development length, 212–213
 rectangular beam design, 102–103
 SI units, 7–8, 24–25
 stirrup spacing, 252–253
 T beams and doubly reinforced beams, 134–136
 torsion, 476–479
 wall footings, 381–383
Silica fume, 19
Simple-beam deflections, 159–161
Single-column footings. see Isolated (single-column) footings
Skin reinforcement (deep rectangular beams), 94
Slabs
 continuous, 439–443
 minimum thicknesses for, 153
 one-way, 98–101
 defined, 485
 two-way, 485–523
 analysis of, 488, 509–515
 with beams, 485, 487, 509–515
 column strips, 489–490
 columns, 515–520
 defined, 485
 depth limitations and stiffness, 492–497
 design of, 488–489
 direct design method, 488–523
 distribution of moments in, 498–503
 equivalent frame method, 488–489
 factored moments in columns and walls, 520
 flat plates, 485, 486, 504–508
 flat slabs, 485, 486
 for lateral loads, 489
 live load placement, 508–509
 middle strips, 489–490
 openings in slab systems, 520
 shear resistance, 490–492
 transfer of moments and shear between slabs and columns, 515–520
 waffle slabs, 485–486
Slate, F., 13
Sleeve splices, 209
Slender columns, 259
 ACI Code treatment of slenderness effects, 323
 analyses of
 first-order, 319–320
 second-order, 323
 avoiding, 321
 effective length factors, 314–316
 determined with alignment charts, 316–318
 determined with equations, 318–319
 in nonsway (braced) frames, 313–314
 in sway (unbraced) frames vs, 320–323
 in sway (unbraced) frames, 313–314
 analysis of, 331–337
 magnification of column moments in, 323–328
 unsupported lengths, 314
Slippage, in prestressed concrete, 573
Smith, Albert, 448
Snow loads, 30
Soil pressures
 active, 396
 for footings
 actual, 345–346
 allowable, 346–347
 of retaining walls, 398–399
 on retaining walls, 393–398
Spiral columns, 260
 ACI Code requirements for, 265–267
 failure of, 262–264
Splices
 compression, 210–211
 in flexural members, 208–209
 tension, 209–210
Split-cylinder tests, 16, 17
Spreadsheets
 beam analysis, 51–53
 columns, 274
 deflection calculator, 173–175
 development length, 213–214
 doubly reinforced beams, 139–141
 equivalent frame method (two-way slabs), 537
 footings, 383–385
 prestressed concrete, 588
 rectangular beams, 102–103
 shear design, 262–267
 tension, 209–210
 two-way slabs, 521–522
 walls, 555–556
Square isolated footings, 353–359
Stability index, 313–314
Static moment, 498
Statically determinate torsion, 467
Statically indeterminate torsion, 467
Steel
 prestressed, 563–564
 reinforcement with see Reinforcing steel
 Steel area, for rectangular beams of predetermined dimensions, 95–97
Stems
 cantilever retaining walls, 403–404, 407–408, 418
 T-beams, 110
Stirrups, 198, 204
 ACI Code requirements, 229–232
 and design for shear, 227–228
 economical, 243–245
 in footings, 349
 purpose of, 227
 spacing of, 230–231, 234–238
 torsional reinforcing, 464–466
 for web reinforcement, 224–227
Straight-line design, 64
Strains in flexural members, 69–70
Straub, H., 4
Strength analysis (beams)
 balanced sections, 70
 balanced steel percentage, 74–75
 brittle sections, 70
 compression-controlled sections, 70
 derivation of beam expressions, 66–69
 design methods, 64–65
 minimum percentage of steel, 72–74
 strains in flexural members, 69–70
 strength design advantages, 65
 strength reduction factors, 65, 70–72
 structural safety, 65–66
 tension-controlled sections, 70
Strength design
 advantages, 65
 defined, 64
Strength limit states, 152
Strength reduction factors, 65, 70–72
Stresses
 bond, 183–185
 in prestressed concrete
 calculation of, 564–567
 in end blocks, 586
 principal, 220–221
 shear, 220–221
 torsional, 468–469
Stress-strain curves, 11, 12
Superplasticizers, 10, 19
Surcharge, on retaining walls, 402–403
Sway (unbraced) frames (slender columns), 313–314
 analysis of, 331–337
 magnification of column moments in, 328–331

T
Tables
 balanced ratios of reinforcement
 SI units, 633
 U.S. customary units, 597
 moduli of elasticity
 SI units, 631
 U.S. customary units, 593
 moment distribution constants for
 slabs, 610–616
 reinforcing bar tables (areas, diameters, etc.)
 SI units, 631–633
 U.S. customary units, 593, 596, 597
 spirals for columns (maximum spacing), 608
 weights of common building materials, 28
 welded wire reinforcement, 595
 welded wire reinforcement sheets
 U.S. customary units, 594
T-beams, 110–112
 analysis of
 general method, 112–115
 specific method for T beams, 116–117
 deflections, 159–161
 design of, 117–124
Tied columns, 260
 ACI Code requirements for, 266
 as economical, 269
 failure of, 262–264
Ties, 198
 circular, 267
 spacing of, 266
Toe (retaining walls), 389, 408, 410–412
Torsion, 250–251, 463–484
 ACI design requirements, 472–473
 compatibility, 467–468
 design of, 471–472
 equilibrium, 467
 moment strength, 470–471
 reinforcing, 464–466
 required by ACI, 469–473
 using U.S. customary units, 473–476
 stresses, 468–469
 using SI units, 476–479
Torsion cracks, 167
Torsional moment strength, 470–471
Torsional reinforcing, 464–466
 required by ACI, 469–473
 using U.S. customary units, 473–476
Torsional stresses, 468–469
Traffic loads, 28
Transformed area, 35, 40
Transverse reinforcement index, 188
Trial-and-error (iterative method), 96–97
Truss analogy, 225
Two-way slabs, 485–523
- analysis of, 488, 509–515
 - with beams, 485, 487
 - direct design method, 509–515
 - equivalent frame method, 527–529
- column strips, 489–490
- columns
 - equivalent frame method, 530–531
 - factored moments in, 520
 - transfer of shear and moments between slabs and, 515–520
- defined, 485
- depth limitations and stiffness, 492–497
 - with interior beams, 495–497
 - without interior beams, 492–495
- design of, 488–489
 - direct design method, 488–523
 - with beams, 509–515
 - depth limitations and stiffness with interior beams, 495–497
 - depth limitations and stiffness without interior beams, 492–495
 - factored moments in columns and walls, 520
 - interior flat plates, 504–508
 - limitations, 498
 - live load placement, 508–509
 - transfer of shear and moments between slabs and columns, 515–520
- equivalent frame method, 488–489, 524–538
 - properties of columns, 530–531
 - properties of slab beams, 527–529
- flat plates, 485, 486, 504–508
- flat slabs, 485, 486
 - for lateral loads, 489
 - live load placement, 508–509
 - middle strips, 489–490
- moments in
 - distribution for nonprismatic members, 524–525
 - distribution of moments in, 498–503
 - transfer between slabs and columns, 515–520
 - openings in slab systems, 520
- shear
 - shear resistance, 490–491
 - transfer between slabs and columns, 515–520
- waffle slabs, 485–486
- walls, factored moments in, 520

U
Ultimate strength, of prestressed concrete sections, 573–576
Ultimate-strength design, 64. See also Strength design
Ultimate-strength stage (flexural analysis), 35–37, 47–50
Unbraced frames. see Sway (unbraced) frames (slender columns)
Uncracked concrete stage (flexural analysis), 34, 37–39
U.S. customary units
 - tables and graphs, 593–630
 - torsional reinforcing using, 473–476

V
Van Ryzin, G., 30
Vertical loads
 - for continuous structures, 438–448
Vibrations, 152

W
Waffle slabs, 485–486
Wall footings, 343, 344, 348–352
Walls, 539–558
 - economy in construction of, 555
 - load-bearing
 - empirical design method, 540–543
 - rational design method, 543–545
 - non–load-bearing, 539–540
 - sheer, 545–554
Ward, W.E., 4
Wayss, G.A., 4
Web reinforcement
 - ACI Code requirements for, 229–233
 - behavior of beams with, 225–227
 - defined, 221
 - for prestressed sections, 580–581
 - for shear cracking in beams, 224–225
 - T-beams, 110
Web–shear cracks, 167, 223, 224
Weep holes, 392
Welded wire fabric, 21, 22, 24
 - and shear cracks, 224
 - in tension, development lengths for, 200–201
Whitney, C. S., 67, 285
Wilkinson, W.B., 4
Wind loads, 30–31, 82, 83
Wire Reinforcement Institute, 22
Wobble effect, 573
Working loads, 35, 64
Working stress design (WSD), 64, 65