Index

Page numbers followed by \(f \) and \(t \) refer to figures and tables, respectively.

AADT, see Annual average daily traffic; Average annual daily traffic

AAWDT (annual average weekday daily traffic), 206

\(A + B \) bidding, 593

Abbreviations, on signs, 76–77

Absolute speed limit, 216

Accelerometers, 241

Acceptance, gap, 127, 353–354

Access:
 and mobility, 157, 298
 to off-street parking, 466–467
 to work site, 569

Access Board, see Architectural and Transportation Barrier and Compliance Board

Access classification system, 423–424

Access connections, functional intersection area, 409

Accessibility, 380, 473–478

Accessible parking spaces, 475–477, 484

Accessible pedestrian signals, 360

Access management, 399–433
 basic principles, 400–401
 benefits of, 415–421
 case studies, 429–432
 challenges with, 427–428
 conflict areas in, 410–411, 410f, 411t
 conflict points in, 409–410, 409f
 defined, 399
 history of, 399–400
 intersection functional areas in, 407–409, 409f
 intersection hierarchy in, 405
 and multimodal objectives, 421–422

policies and regulations on, 424–427
 professional practice of, 421
 programs for, 422–424
 public involvement, 428–429
 purpose, 399
 roadway circulation systems in, 401–405
 traffic signal spacing and operation in, 405–407
 trends, 432–433
 turning vehicles in, 411–415

Access needs, evacuees with, 624, 630

Accident modification factors (AMFs), 139

Active demand management (ADM), 595

Active midblock crossing devices, 387

Active traffic management (ATM), 300, 310–311, 311f, 595

Active transportation:
 forecasting for, 198–199
 intersections for, 328
 signage for, 526, 527
 and traffic calming, 511

Active transportation and demand management (ATDM), 178, 300, 318–319, 457

Adaptation:
 behavioral, 59
 light–dark, 52
 speed, 60, 86, 87

Adaptive ramp metering, 318

ADAS (Advanced Driver Assistance Systems), 95

Addition rule, 19

Adjustment factors, traffic volume, 210, 211, 213–214, 213f, 213t–214t

ADM (active demand management), 595

ADT (average daily traffic), 206

Advanced Driver Assistance Systems (ADAS), 95

Advance stop bars, 531

Advisory speed, 216, 241

Aesthetics:
 of access management measures, 420–421
 of traffic calming measures, 533

AFADs (automated flagger assistance devices), 559

AHDT (Arkansas State Highway and Transportation Department), 587–588

Air pollutants, 557

Alameda, California, 387–388, 388f

Alcohol, 60, 63

Alignment, see Horizontal alignment; Vertical alignment

All-vehicle sampling, 121–122

All-way STOP-controlled intersections, 335

ADA, see Americans with Disabilities Act

ADAAG, see Americans with Disabilities Act Design Guidelines
Alternative Intersections/Interchanges Informational Report (FHWA), 284
American Association of State Highway and Transportation Officials (AASHTO), 256, 278, 279, 543. See also Highway Safety Manual (HSM); A Policy on Geometric Design of Highways and Streets, 6th Edition
American Planning Association (APA), 502, 522, 523, 527
American Societ for Testing and Materials (ASTM), 438, 478–479, 483, 484
Americans with Disabilities Act (ADA), 379, 438, 473, 475–477
Americans with Disabilities Act Design Guidelines (ADAAG), 438, 475, 476
AMFs (accident modification factors), 139
AMPF, see Automated mechanical parking facility
Angled parking:
on-street, 458–461, 469f
stalls for, 453–454, 453f
Annual average daily traffic (AADT):
from daily traffic volume counts, 213–214
defined, 206
variation as percentage of, 209, 210, 212f
Annual average weekday daily traffic (AAWDT; AAWT), 206
Annual average weekend traffic (AAWET), 206
APA, see American Planning Association
Approach roadways, intersection, 326
ARC (Asphalt Research Consortium), 279
Architectural and Transportation Barrier and Compliance Board (Access Board), 380, 438, 476
Area counts, 116–117
Area-wide sampling, for traffic flow, 218
Area-wide traffic calming, 523, 525f
Arithmetic average, 13
Arkansas Motorist Assistance Patrol, 588
Arkansas State Highway and Transportation Department (AHTD), 587–588
AWET (average weekday daily traffic), 206
AWIS (Automated Work Zone Information System), 587–588
Average annual daily traffic (AADT), 116, 117
Average daily traffic (ADT), 206
Average queue, 468
Average weekday daily traffic (AWDT; AWT), 206
Average week end daily traffic (AWET), 206
AWET (annual average weekend traffic), 206
AWIS (Automated Work Zone Information System), 587–588
AWT (average weekday daily traffic), 206
Axles, volume counts based on, 205
Background traffic, 612
Back-in angled parking, 459–461, 461f
ATDM, see Active transportation and demand management
At-grade intersections, 321
Atlanta, Georgia, 307–308
ATM, see Active traffic management
Attention, road users’, 53–54
Attenuators, truck-mounted, 569f
Audits, road safety, 96, 141–143, 275–276
Austin, Texas, 504, 505f, 523, 533, 533f, 536
Automated flagger assistance devices (AFADs), 559
Automated mechanical parking facility (AMPF), 442, 442f, 493–496, 494f–495f
Automated Work Zone Information System (AWIS), 587–588
Automatic data collection, in volume studies, 118
Automobiles, level of service for, 151–153
Automotive News, 447
Autonomous vehicles, 95
Averages, calculating, 13
Average annual daily traffic (AADT), 116, 117
Average daily traffic (ADT), 206
Average queue, 468
Average weekday daily traffic (AWDT; AWT), 206
Average week end daily traffic (AWET), 206
Back-in angled parking, 459–461, 461f
Balke, K., 584
Ball-bank indicators, 241, 241f
Baltimore, Maryland, 539
Barriers, see Traffic barriers
Base conditions (term), 353
Basic number of lanes, 297
B/C analysis, see Benefit/cost analysis
Before−after studies, 45–49, 49f, 261–262
Behavior:
of bicyclists, 70–71, 129–131
of novice drivers, 62
of pedestrians, 129–131, 129f
at railroad grade crossings, 84
Behavioral adaptation, 59
Benefits, defining, 33
Benefit/cost (B/C) analysis, 33–38, 34f, 35f, 260
Berkeley, California, 503f, 524f
BFRs (building frontage roads), 480
Bias:
optimism, 192
regression-to-the-mean, 46–47, 47f, 133, 133f
Bicycle accommodation:
in rural areas, 267–268
on temporary roadways, 563
traffic calming measures for, 533
in turn lanes, 329
in work zones, 583–584
Bicycle boulevards, 384, 388, 508–509, 520–521, 521f, 538
Bicycle boxes, 72, 329, 329f
Bicycle compatibility scale, 70
Bicycle facilities, 383–384, 470–472
Bicycle lanes:
with half closures, 521–522, 522f, 532
in roundabouts, 330–331
in rural areas, 268
traffic calming with, 514–515
on urban streets, 378, 383
Bicycles May Use Full Lane signs, 384
Bicycle stress level, 70
Bicycle travel path studies, 130
Bicycling levels of service (BLOS), 199
Bicyclist behavior studies, 129–131
Bicyclists:
behavior of, 70–71, 129–131
on freeways and expressways, 287
performance measures for, 154–155
road railroad grade crossings for, 85
as road users, 70–72
in roundabouts, 330–331, 385
separation of pedestrians and transit vehicles from, 386
traffic signals for, 361
in transportation networks, 181
in TTC zones, 542–543
volume counts of, 115
Bidding, A + B, 592
Bikeability Checklist, 173
Bike Compatibility Index, 154, 155
BikestationTM, 471, 471f
Bikeways, 527, 538
Binomial experiments, 21
Binomial probability distribution, 21–22
Blanchette Bridge rehabilitation project (St. Louis, Missouri), 590
Bloomington, Minnesota, 306–307, 307f
BLOS (bicycling levels of service), 199
BOS (bus on shoulders) programs, 300–301
Bus on shoulders (BOS) programs, 300–301
Bus stops, 69, 154, 384–385
Bypass lanes, 414–415, 414f, 414r–415r
CAEP (City Assisted Evacuation Plan), 624–626
CAFE standards, see Corporate average fuel efficiency standards
California Air Resources Board, 196
California Complete Streets Act, 393
California Department of Transportation (Caltrans), 243, 285
California Environmental Quality Act, 189
California Traffic Control Devices Committee, 524
Caltrans (California Department of Transportation), 243, 285
Capacity. See also Highway Capacity Manual (TRB)
and bottlenecks, 225, 225f
defined, 204, 353
maximum, 215
of multimodal intersections, 353–354
of on-street parking, 458–461, 461f
of parking ramps, 467–468
of roadways, 552–554, 553r, 554r
of roundabouts, 354
and turn lanes, 418
volume to capacity ratio, 152, 354
Capacity enhancement, 616
Capital Investment Program, 190
Car sharing, 449
Car stackers, 442
Cash flow diagrams, 30–32, 30f–32f, 31r
CDOT (Colorado Department of Transportation), 425, 427
Cells, in urban street networks, 404
Center for Urban Transportation Research (CUTR), 196
Central limit theorem, 25
Central tendency, measures of, 13–14
Centroids, 181
Centroid connectors, 181
Chandler, Arizona, 536
Changeable message signs (CMS), 76, 90, 91, 561, 573–574
Channelization, 482–483, 567, 574
Charleston, South Carolina, 535f
Checklist approaches to multimodal environments, 173
Chicago, Illinois:
modal hierarchy in, 371, 371f
parking guidance systems in, 485
traffic calming in, 509
Chicanes, 518, 531, 536
Child pedestrians, 67
Chokers, 519, 531–532, 536
Circulation roads, 480, 481f
Circulation space, 156
Circulation systems, roadway, 400–405
City Assisted Evacuation Plan (CAEP), 624–626
City of Ashland Transportation System Plan (Ashland, Oregon), 166–170, 167f–170f
Class frequency, 11
Clearance:
in parking ramps, 465–466, 466f
pedestrian clearance time, 66, 351–352
queue, 348r
red clearance interval, 350
vertical, 246
Clearance lost time, 126–127, 356
Clear roadside concept, 249
Clear width, sidewalk, 380
Clear zones:
in rural areas, 249–251, 250f, 251f
in work zones, 566, 567, 567r
Closure(s):
full, 522, 532
half, 521–522, 522f, 532
intermittent full, 550
lane, 548, 549f, 556r, 575
ramp, 558, 619, 629–630, 629f
route, 618–619
sidewalk, 582–583
Cloverleaf interchanges, 290–291, 291f
Cluster samples, 10
CMFs (crash modification factors), 259–260
CMF clearinghouse, 260
CMS, see Changeable message signs
CNG (compressed natural gas), 491
CNU (Congress for the New Urbanism), 369, 378
Coefficient of variation (CV), 16
Collaboration, of EMS and transportation systems, 625–626
Collector–distributor lanes, 287, 307–309, 308f, 309f
College Station, Texas:
AADT for highways near, 210, 215f
traffic volume variation in, 209–211, 210f, 211f
College Terrace neighborhood (Palo Alto, California), 537
Collision diagrams, 140
Collision frequency, 140
Collision rates:
identifying hazardous locations from, 134–135
Collision studies, 131–133, 143
Color, parking stall markings, 454
Colorado:
I-70 interchange in, 310–312, 311f, 312f
left-turn lane warrants in, 412, 413
Colorado Access Demonstration Project, 405
Colorado Department of Transportation (CDOT), 425, 427
Combination-type facilities, 286–287
Commercial vehicles, 185
Communication:
about access management projects, 429
in event and emergency planning/management, 631
during Barack Obama’s inauguration, 628
with public in work zones, 586–587
of travel demand forecasts, 193
Community resiliency, 631, 631f
Community task forces, 560
Community vision, 378
Comparison groups, before–after studies with, 48
Complete Streets, 367–396
case studies, 388–393
checklist for, 393, 394f
in context-sensitive solutions, 369, 371
context zones for, 369, 370t
defined, 367
design controls and criteria for, 371–378
design process for, 378–379
and interrupted traffic flow on urban streets, 367–368
intersection design and operations for, 381–386
level of service in, 149
midblock crossings in, 387
modal balance vs. priority approach to, 371
modal priority streets in, 387–388
multiway boulevards in, 387
performance measures for, 368–369
road users in, 51
streetside design for, 379–381
traffic calming in, 509
and travel demand forecasting, 177
travel demand forecasting for, 194–195
trends, 393–396
Complete Streets Chicago Design Guidelines, 509
Composite level of service measures, 393–394
Compound curves, 245–246
Compound interest, 29, 29t
Compressed natural gas (CNG), 491
Condition, road safety audits of, 142
Condition diagrams, 140
Confidence intervals, 25–26
Confidence levels, for individual vehicle selection method, 119
Conflict areas, 323, 400, 410–411, 410f, 411
Conflict points, 323, 400, 409–410, 409f
Conformance, road safety audits of, 142
Congestion, simulation modeling of, 304–305
Congestion mitigation, 42–44, 43t, 44f
Congestion pricing, 558
Congress for the New Urbanism (CNU), 369, 378
Connection spacing, 410
Connectivity, 155, 156
Consistency:
design, 276–278, 277f, 292–294
road safety audits of, 142
Constriction, lane, 548
Constructability, 541
Construction costs, TTC strategy and, 557
Construction staging, 562–563
“Context Sensitive Design Around the Country” (TRB), 270
Context-sensitive solutions (CSS):
Complete Streets in, 369, 371
and human factors, 95
in rural areas, 269–270, 273–274
Context zones, 369, 370t, 378–379
Contingency, 577–578
Continuity, route, 297–298
Continuous flow intersections, 362–363, 363f
Continuous probability distributions, 23–25
Contracting strategies, construction, 593–594
Contract support, 559, 589
Contraflow, 618
Contrast sensitivity, 52
Control(s). See also Speed control measures; Temporary traffic control (TTC) plans; Volume control measures
design, 371–378
driver information needs for, 262
in driving task model, 52
dynamic junction, 318
dynamic lane use, 318
fully actuated, 341
lane position, 88
of multimodal intersections, 335–346
preemption, 352
priority, 352
in rural areas, 267–268
Control counts, 116
Control delay, 123, 355–357
Controller offset, 352
Control vehicles, 376
Convenience samples, 10
Coordinated Signal System (Warrant 6), 340
Coordination:
of construction sites, 559
in event and emergency planning/management, 631
for planned events, 611, 612
in public information strategies, 560
of signal networks, 386
of signals, 352–353, 558
of vertical and horizontal alignment, 247–248
Cordon counts, 116
Corporate average fuel efficiency (CAFE) standards, 438, 447, 448
Corpus Christi, Texas, 536
Correlation analysis, 17–18
Correlation coefficient, 18
COR-SIM, 314
Costs:
in benefit/cost analysis, 33
of ITS in work zones, 593
of owning/operating parking facilities, 442–443, 443t
of traffic calming measures, 534–536
and TTC strategy, 557
Costs for Pedestrian and Bicyclist Infrastructure Improvements (Bushnell, et al.), 536

Countdown pedestrian signals, 69

Countermeasures:
- for hazardous locations, 140–141
- for pedestrian safety, 268–269
- for railroad grade crossings, 85–86
- for red-light running, 358–359
- for reducing speed in curves, 89
- in road safety management process, 258–259, 258–259
- for work zones, 91–92

Counting techniques, 20, 20f

Coverage counts, 116–117

Crash cluster analysis, 257

Crash cushions, 569

Crash data, 133, 555, 556f

Crash diagrams, 257, 257f

Crashes:
- and access management, 415f
- probability of, 131
- traffic incident management for, 604–606
- and turn lanes, 416f
- in work zones, 576, 577t

Crash Experience (Warrant 7), 340

Crash modification factors (CMFs), 259–260

Credentialing, 628

Crime, 111

Critical collision rates, 135

“Cross-check” calculations, 66

Crossings:
- driveway, 380
- highway–rail grade, 83–86, 327
- midblock, 387, 407, 410
- railroad, 64, 83–86, 327
- at roundabouts, 385–386

Crossing elimination, 619

Crossover, median, 550, 550f, 551f, 570, 570f

Crossover displaced left-turn (XDL) intersections, 362–363, 363f

Cross-sectional elements:
- in HCM 2010 Urban Streets MMLOS, 163f
- of multimodal intersections, 333–335
- in rural areas, 248–249
- and speed choice, 87
- of temporary roadways, 565–566
- in urban areas, 292–293

Cross slope, sidewalk, 380

Crosswalks:
- in-pavement flashing lights at, 70
- for midblock crossings, 387
- pavement markings in, 68
- raised, 484, 516, 518f, 526–528, 527f, 528f, 530, 535
- at roundabouts, 330
- on urban streets, 382, 383

Cruising, for on-street parking, 457–458

CSS, see Context-sensitive solutions

Cumulative analysis, 188

Curbs, in parking facilities, 482, 483

Curb radii, 381–382, 382f, 386

Curb zone, sidewalk, 379

Curves:
- compound, 245–246
- horizontal, 55–56, 244, 244f
- reducing speed in, 89
- vertical, 246, 246f

Curve negotiation, 88–89

Curve radius, 88, 564, 564f

Customer satisfaction, 151, 172–173

CUTR (Center for Urban Transportation Research), 196

CV (coefficient of variation), 16

Cycle, signal, 341

Cycle length, 341, 386

Cycle split, 341

Cycle tracks, 383–384

Daily adjustment factors, 214f

Daily volume counts, 206

Dallas, Texas, 589

Dangerous situations, drivers’ perceptions of, 63

Data collection, 110–112, 145, 165

Data management, 118

Data reduction, 119

DDOT (District of Columbia Department of Transportation), 167–170, 627

Deceleration lanes, 413–414, 413f, 414f

Decision errors, at railroad grade crossings, 85

Decision making, 57, 81, 82

Decision sight distance (DSD), 242, 409–411

Dedicated parking aisles, 460, 462f, 478, 478f

Dedicated shoulder lanes, 301

DeKalb County, Georgia, 307–309, 308f, 309f

Delay(s):
- and access management, 418, 418f
- and automobile LOS, 151–152
- control, 123, 355–357
- defined, 353
- geometric, 123, 355
- incremental, 357
- initial queue, 358
- at intersections, 324
- and pedestrian LOS, 156
- for roundabouts, 355
- at signalized intersections, 356–358
- time-in-queue, 123
- travel-time, 123
- and TTC strategy, 557

Delay studies, 123–124

Delineation, of road path, 88–89, 89f

Delineation devices, 142

Demand, 178. See also Travel demand forecasting

642 • Index
Demand management, 618. See also Transportation demand management (TDM)
 active, 595
 active transportation and, 178, 300, 318–319, 457
 parking, 448–450
Demographic inputs, for travel demand modeling, 191
Demonstration tests, 429
Dense mixed-use neighborhoods, 160
Density:
 in actual uninterrupted flow, 223, 224
 at bottlenecks, 225–226, 225f, 226
 as characteristic of traffic flow, 204, 217
 and Edie hypothesis of uninterrupted flow, 221f
 and Greenshields model of uninterrupted flow, 219f, 220f
 and level of service, 231
 measuring, 217–218, 217f
 and occupancy, 217
Denver, Colorado, 310–312, 311f, 312f
Department of Energy (DOE), 490–493
Department of Homeland Security, 600, 605
Department of Justice (DOJ), 438, 473, 475, 476
Department of Transportation (DOT), at transportation incidents, 607. See also specific states
Departure sight triangles, 128f
Depressed road segments, 286
Depth, movement in, 53
Descriptive statistics, 11–18
 association measures, 17–18
 central tendency measures, 13–14
 dispersion measures, 14–16
 graphic tools in, 11–13, 11r, 12r, 13f
 inferential vs., 9
 position measures, 16–17
Design-build contracting, 594
Design consistency, in urban areas, 292–294
Design consistency module (IHSDM), 276–278, 277f
Design controls, 236–241
Design criteria, 235–236, 372
Design Discipline Support Tool, 251
Design drivers, 61
Design hour, 376–377
Designing Sidewalks and Trails for Access (FHWA), 581–582
Designing Walkable Urban Thoroughfares (ITE/CNU), 369, 378
Design queue, 468
Design speed, 216
 in rural areas, 240–241
 target vs., 372–374
 in urban areas, 292
Design vehicles:
 for parking facilities, 445–448
 for rural areas, 237–239, 238t–239r
 for urban streets, 376
Detection, 56–57, 79–80
Determining Vehicle Signal Change and Clearance Intervals (ITE), 349
Detours:
 of traffic from calmed area, 533
 as TTC strategy, 550
Diverters, diagonal, 521, 532
DIY traffic calming, 539
DOE (Department of Energy), 490–493
DOJ, see Department of Justice
DON’T WALK signals, 68
DOT, see Department of Transportation
DOTD (Louisiana Department of Transportation and Development), 624, 625
Double-line markings, for parking, 454
Dowling Associates, 393
Downstream functional distance, 409
Drainage, 333, 533–534
Drivers:
 behavioral adaptation by, 59
 behavior of, 62, 66–67, 84
 errors by, 83, 85, 90
 expectations of, 58–59, 347t
 impairments of, 59–60
 information needs of, 90
 information processing by, 53–54
 direct measurement, of speed, 119
 discrete probability distributions, 21–23
 dispersion, measures of, 14–16
 distance. See also Sight distance functional, 408–409, 410f
 legibility, 75, 77
 viewing, 53, 53f
 walking, 473
Distracted drivers, 59–60
Distribution, probability, 21–25
District of Columbia Department of Transportation (DDOT), 167–170, 627
Diverging diamond interchange, 290, 290f, 306–307, 307f
Divergence:
 of traffic from calmed area, 533
 as TTC strategy, 550
Diversity, 59–60
Drivers (continued)
novice, 62–63
older, 61–62, 77, 80
perception–reaction time of, 56–57
search pattern of, 55–56, 55f, 56f
in transportation systems, 51
in TTC zones, 542
types of, 61–64
vision of, 52–53
visual search by, 55–56
Driver assistance systems, 95
Driver performance, in rural areas, 237
Driver Performance Data Book
(NHTSA), 61
Driveways, 327, 423, 480, 571
Driveway crossings, 380
Driveway feasibility studies, 124
Driving task model, 51–52
Driving under the influence of cannabis (DUIC) limits, 97
Drugs, 60, 97
DSD (decision sight distance), 242, 409–411
Dual-divided freeways, 287, 287f
Dual entry, 352
DUIC (driving under the influence of cannabis) limits, 97
Dummy phase, 341
Duration, traffic volume count, 206, 208
Dwight D. Eisenhower National System of Interstate and Defense Highways, 300. See also specific interstates by name
Dynamic junction control, 318
Dynamic lane use control, 318
Dynamic managed lanes, 319
Dynamic on-street parking prices, 188
Dynamic pricing, in urban areas, 319
Dynamic reversible flow lane systems, 318
Dynamic speed limits, 319
Dynamic speed message signs, 561
Dynamic warnings, 95
EB method, see Empirical Bayes method
Econometric models of travel demand, 186
Economic appraisal, 259–260
Economic impact:
 of access management, 420
 of multimodal improvements, 170–172, 172f, 174
Edge drop, pavement, 87
Edge lines, 78, 266
Edie hypothesis, 221f–222f
Education, promotion, and outreach TDM programs, 187
Educational traffic calming, 512–513, 513f
Education campaigns, work zone, 561
Effective green time, 356
Efficiency:
 fuel, 438, 447, 448
 parking, 450
Eight-Hour Vehicular Volume (Warrant 1), 339
85th percentile speed, 216
85th percentile vehicle, 445
Electric/low emitting/fuel efficient vehicles (LEVs), 449–450, 490–491
Electric Vehicles and Parking (DOE and IPI), 490–493
Electric vehicle charging stations (EVCSs), 449–450, 490–492, 492f
Electronic count boards, 117
Elevated road segments, 286, 286f
El Paso, Texas, 536
Emergency events:
 addressing needs of all users in, 619–621
 case studies, 623–626, 628–630
 challenges with, 621–623
defined, 598
and environmental hazards to transportation system, 606–609
key stakeholder relationships during, 602–604
modeling and simulation for, 621–623
operational strategies in, 616–619
planned and unplanned events vs., 599
planning for, 609, 612–616
regulations on, 599–602
trends in operations during, 630–631
Emergency management plans, 559
Emergency management service, 625–626, 628
Emergency medical services (EMS), 605
Emergency planning cycle, 613, 613f
Emergency support functions (ESFs), 602–603, 603f, 610
Emergency Transportation Operations, 612f
Emission rates, 418, 418f, 419, 419f
Empirical Bayes (EB) method:
 before–after studies with, 48, 261–262
 and excess predicted average crash frequency, 136–137
 of identifying hazardous locations, 139, 140
Empirical diversion curves, 183
EMS (emergency medical services), 605
End of trip facilities, for bicyclists, 449
Enforcement, of traffic calming, 534
Engineering economics, 28–46
 benefit/cost analysis in, 33–38
 equivalence and cash flows in, 30–32
 examples, 41–45
 interest in, 29
 rate of return in, 32–33
 risk management in, 38–41
time value of money in, 29
Enhanced devices, for midblock crossings, 387
Entrance ramps, 294, 570, 570f
Environment(s):
 multimodal, 156–161
 pedestrian, 155
 and road improvements in urban areas, 299
 and sign visibility, 77
Environmental hazards, 606–609, 607t
Environmental Protection Agency (EPA), 279, 447
EPDO (equivalent property damage only) crashes, 135–136, 140
Equal accessibility, 475
Equilibrium trip assignment, 184
Equivalence (in engineering economics), 30–32
Equivalent property damage only (EPDO) crashes, 135–136, 140
Errors:
 driver, 83, 85, 90
 in hypothesis testing, 27
 in statistics, 10
ESFs, see Emergency support functions
Evacuation(s):
 of people with access/functional needs, 624, 630
 prior to Hurricane Gustav, 623–626
 reentry after, 630
Evacuation modeling, 621–623
EVCSs, see Electric vehicle charging stations
Excess expected average crash frequency, 136–137
Excess fuel consumption, 557
Exit ramps, for median crossover, 570, 570f
Expectations:
 of drivers, 58–59, 347t
 of parking facility users, 444
 in positive guidance approach, 73
Expected value, 13
Express ramps, parking facility, 464, 465
Express toll lanes, 315–318, 316f, 317f
Expressways, 283, 289. See also Road segments and interchanges in urban areas
Extended driveways, 480
Externally-based trips, 185–186
F-1637: Safe Walking Surfaces (ASTM), 438, 478–479, 483, 484
FABCO coding scheme, 131–132
Facility data, identifying hazardous locations from, 133
Fairfax County, Virginia, 195–196
Fatality risk, pedestrian, 373t
Fatigue, driver, 60
FDOT, see Florida Department of Transportation
Federal Emergency Management Agency (FEMA), 600, 607, 613, 619–621
Federal Highway Administration (FHWA), 86, 94, 173, 237, 251, 260, 278, 279, 305, 363. See also Manual on Uniform Traffic Control Devices (MUTCD)
 accessibility guidance by, 380, 581–582
 access management by, 285, 399
 active transportation and demand management strategies from, 319
 ATDM framework of, 457
 on bicycle signals, 361, 386
 on context-sensitive solutions, 95, 369
 emergency planning support from, 613–615, 614–615r
 on incident management, 600, 605
 on intersections/interchanges, 284, 329
 on pedestrian safety, 268–269, 359, 416
 regulation of travel demand forecasts by, 190
 on residential traffic management, 502
 on RFFBs, 330
 on roadway design, 235, 285, 294
 on shared lanes, 384
 sidewalk zones of, 379
 on signal timing, 346
 traffic conflict studies of, 143
 on traffic control devices, 479–480
 traffic simulation guidelines from, 271
 transportation planning workshops of, 272
 vehicle classification system of, 206–208, 207f–208f
 on work zone safety, 90, 544, 569, 579, 580
Federal Transit Administration, 190
FEMA, see Federal Emergency Management Agency
FHWA Roundabout Guide, 83
FIDGH, see Freeway and Interchange Geometric Design Handbook (ITE)
Field data collection, 110–112
Field of view, useful, 54–55, 55f, 61–62
Financial indicators, risk management with, 38–41
Fines, for speeding in work zones, 579, 580f
Fire departments, 604
Flaggers, 574
Flashing arrowboards, 91–92
Flexibility, 372, 427
Florida. See also specific cities
 I-95 express toll lanes in, 315–318, 316f, 317f
 use of shoulder in, 302
Florida Department of Transportation (FDOT), 315, 316, 416, 425, 428–429
Florida Turnpike Enterprise (FTE), 316
Flow, 206. See also Volume, traffic
Flow capacity, parking ramp, 467–468
Flow rate:
 defined, 204, 206, 208
 saturation, 124–126, 356
Focus, speed and, 373f
Fonts, guide sign, 75
Forced turn islands, 532
Force off, 352
Forecasting demand, 178
Forgiving roadside concept, 249
Four-Hour Vehicular Volume (Warrant 2), 339
Four-step trip-based travel demand modeling, 180–185, 180f
Free-flow speed, 216, 230, 417, 417f
Freeways. See also Road segments and interchanges in urban areas
 alignment and profile of, 250
 cross-sectional elements of, 292–293
 defined, 283
 dual-divided, 287, 287f
 rural, 249–252
 warrants for grade separations and interchanges, 251–252
Freeway and Interchange Geometric Design Handbook (FIDGH) (ITE), 253, 254, 284, 291–292
Freeway ramps, safe speed for trucks on, 64
Freight LOS methodology, 174
Frequency:
 class, 11
 collision, 134
 excess expected average crash, 136–137
Frequency of use, parking facility, 443–444
Frequency tables, 11, 11r, 12r
Frontage zone, sidewalk, 379–380
FTE (Florida Turnpike Enterprise), 316
Fuel consumption, access management and, 418, 418f, 419r
Fuel efficiency, 438, 447, 448
Full closures, 522, 532, 550
Fully actuated control, 341
Functional areas (of intersections):
 in access management, 400, 407–409, 408f
 defined, 322, 322f
 design of, 325–326, 325f, 324t
Functional circulation systems, 400–403, 400f, 401r, 402f, 403f
Functional classification, 373–375, 377f
Functional design, for multimodal intersections, 322–324
Functional distance, 408–409, 408f
Functional needs, evacuees with, 624, 630
Funding, for traffic calming measures, 536–537
Gap acceptance, 127, 353–354
Gap judgment, 81
Gap out, 341
Gap studies, 127
Gated parking facilities, 466
Gauss, Carl F., 24
General addition rule, 19
General multiplication rule, 19–20
Geometrics (geometric design):
 in HCM 2010 Urban Streets MMLOS, 164t
 of intersections, 381–383
 of parking stalls, 452–455
 road safety audits of, 142
 of shoulders, 302
 of temporary roadways, 563–571
Geometric delay, 123, 355
Georgia. See also specific cities and counties
 medians and pedestrian safety in, 416
 turn lane warrants in, 413
Georgia Department of Transportation, 307, 308, 415, 415t
GHP (Green Highways Partnership), 279–280
GIS-based approaches to evaluating multimodal environments, 173
Glance durations, 56, 74
Glare, 52
Google, self-driving vehicles by, 497
GPS surveys of active transportation, 199
Grade(s):
 intersecting, 333
 profile, 332–333
 in rural areas, 246
 of sidewalks, 380
Grade-separated intersections, 321, 327
Grade-separated ramps, 295
Grade separations, warrants for, 251–252
Gradient series cash flows, 30
Graphs, 11
Gravity model, 183
Green Highways Partnership (GHP), 279–280
Greenshields, Bruce, 218
Greenshields model of uninterrupted flow, 218–220, 218f–220f, 219t, 223
Gridlock, in parking structures, 487–489, 488f
Ground-level segments, 286
Growth-factor model, 183
Growth-trends method, 189
Guidance, 52, 262
A Guide for Achieving Flexibility in Highway Design (AASHTO), 270
Guide for Development of Bicycle Facilities (AASHTO), 268, 583, 584
levels of service in, 124, 149, 203, 204, 226, 305, 377
maximum capacity in, 215
performance measures for intersections in, 353–354
road segments/interchanges in urban areas in, 285
roundabouts in, 354–358
running speed in, 240
traffic operation in, 235–236
turn lanes in, 328
uninterrupted traffic flow in, 222f, 223, 223f
urban roadway facilities in, 321
weaving segments in, 296
Highway–rail grade crossings (HRCs), 83–86, 327
Highway Safety Manual (HSM) (AASHTO):
road safety management process in, 255, 262
road segments/interchanges in urban areas in, 284
safety performance functions in, 136, 139
severity weighting for collision frequency/rates in, 136
Histograms, 12, 13f
A History of the Yellow and All-Red Intervals for Traffic Signals (K. A. Eccles and H. W. McGee), 349, 350
Horizontal alignment:
coordination of vertical and, 247–248
in multimodal intersections, 331–332
in rural areas, 243–248, 250, 251
of temporary roadways, 563–564
in urban areas, 293
warning signs about, 263–265, 264f, 265f
Horizontal curves, 55–56, 244, 244f
Horizontal speed control measures, 518–520, 530–532
HOT (high-occupancy toll) lanes, 300
Hour, design, see Design hour
Hourly volume counts, 206
HOV (high-occupancy vehicle) lanes, 300
HRCs (highway–rail grade crossings), 83–86, 327
HSM, see Highway Safety Manual (AASHTO)
Human factors:
and context-sensitive solutions, 95
in highway design, 97
and safety tools, 95–97
Hurricane evacuation routes, 302
Hurricane Gustav, evacuation prior to, 623–626
Hypothesis testing, 26–27
I-5 (Seattle, Washington), 310–312, 311f, 312f
I-20 (Atlanta, Georgia), 307–308
I-35 (Minneapolis, Minnesota), 209, 211f, 301, 399f
I-40 (West Memphis, Arkansas), 587–588
I-57 (Kankakee, Illinois), 308–310, 310f
I-70 (Denver, Colorado), 310–312, 311f, 312f
I-70 (St. Louis, Missouri), 590
I-93 (Boston, Massachusetts), 313–315, 314f, 315f
I-95 (Boston, Massachusetts), 313–315, 314f, 315f
I-95 (south Florida), 315–318, 316f, 317f
I-285 (Atlanta, Georgia), 307–308
I-494 (Bloomington, Minnesota), 306–307, 307f
I-635 (Dallas, Texas), 589
IBC, see International Building Code
ICS (Incident Command System), 600, 601
Ideal saturation flow, 124
Identification, perception–reaction time and, 57
IES (Illuminating Engineering Society), 438
IHSDM (Interactive Highway Safety Design Model), 237, 276–278
Illinois DOT, 309
Illinois Route 50 (Kankakee, Illinois), 308–310, 310f
Illuminating Engineering Society (IES), 438
Illumination devices, road safety audits of, 142
Image size, 53, 53f
Impairments, road user, 59–60
Impedances, 183
Incentives, in TDM programs, 187
Incidents:
 law enforcement at, 604
 traffic shock waves at, 225f
 traffic volume measurements near, 209
Incident Command System (ICS), 600, 601
Incident detection and response, 585
Incident management, in work zones, 584–586
Incident Management in Construction and Maintenance Work Zones (K. Balke), 584
Incident management plans, 559
Inclusive transportation, 620r
Incomplete data, in travel demand forecasting, 192
Incremental B/C analysis, 35–37, 36f, 36r, 37r
Incremental delay, 357
Incremental transit, 448–449
Indecision zone, see Dilemma zone
Indirect left-turn options, 407
Indirect measurement of speed, 119
Individual Space Guidance (ISG) system, 485
Individual vehicle selection method, 119–121
Industrial park streets, 388
Inferential statistics, 9
Information dissemination, in incident management, 585
Information Guide on Signalized Intersections (FHWA), 329
Information needs, 90, 262
Information processing, by road users, 53–54
Inhibit max function, 352
Initial queue delay, 358
In-pavement flashing lights, 70
Inside-merge condition, 294
Inspections, of TTC zones, 543
Institute of Transportation Engineers (ITE), 1
 on geometric design, 253, 254, 284, 291–292
 on parking facilities, 479
 on pedestrian and bicycle accommodations, 284, 299, 479
 on speed humps, 516, 524, 529, 535
 on traffic calming, 501, 502, 509, 527, 536
 on traffic control devices, 344, 345, 348, 351, 580
 on traffic signals, 349
 on transportation engineering studies, 109, 112–114, 113r
 on urban street design, 369, 378
Institutional roles, in transit quality of service, 154
Interchange ramps:
 in rural areas, 254
 spacing between, 255f, 294–295
 for temporary roadways, 570, 570f
 types of, 254f
 in urban areas, 293–294
Interest (financial), 29
Interim Approval 16 (FHWA), 361
Intermittent full closure (TTC strategy), 550
Intermodal parking, 440
Internal rate of return (IRR), 32–33
International Building Code (IBC), 437
 accessibility standards of, 473, 475
 on slopes in parking facilities, 484
 on vehicular clearance in parking ramps, 465
International Code Council, 437
International Parking Institute (IPI), 490–493
Interrupted flow facilities, 205. See also Complete Streets; Multimodal intersections

Interrupted traffic flow, 321, 367–368

Intersecting grades, 333

Intersections. See also Multimodal intersections
at-grade, 321
for Complete Streets, 381–386
continuous flow, 362–363, 363f
crossover displaced left-turn, 362–363, 363f
design and operations of, 381–386
design of, 79–82
functional areas of, see Functional areas (of intersections)
grade-separated, 321, 327
limiting conflict points in, 400, 409–410, 409f
median U-turn, 361–362, 362f
paths in, 81
point counts at, 115–116
raised, 518, 530
realigned, 331–332, 332f, 520
spacing of, 327, 332, 423
stop-controlled, 334, 335
on temporary roadways, 571
uncontrolled, 334
for urban streets, 381–386
vehicle queue storage at, 328–329
yield-controlled, 335

Intersection geometry, 381–383

Intersection hierarchy, 400, 405, 405f

Intersection improvements (TO strategy), 559

Intersection Near a Grade Crossing (Warrant 9), 341

Intersection sight distance studies, 128, 126f

Intersection studies, 123–131, 121f
of delay, 123–124
of gaps and gap acceptance, 127–128
of lost time, 126–127

of pedestrian walking
speed/behavior, 128–131
of queue length, 124
of saturation flow, 124–126

Interstate System, 300. See also specific interstates by name

Interstate System Access Informational Guide (FHWA), 285

IPI (International Parking Institute), 490–493

IRR (internal rate of return), 32–33

ISG (Individual Space Guidance) system, 486

Islands:
forced turn, 532
median, 519, 526, 526f, 532, 536

ITE, see Institute of Transportation Engineers

ITSs, see Intelligent transportation systems

ITS America, 3

ITS ePrimer, 3, 278–279

Joint Program Office (JPO), 3

Junction control, dynamic, 318

KABCO coding scheme, 131–132

Kailua, Hawaii, 537–538

Kankakee, Illinois, 308–310, 310f

“K” factor, 210, 211, 213f

Kihapai Street (Kailua, Hawaii), 537–538

King’s Highway 406 (Ontario, Canada), 94

Knoxville, Tennessee, 511

Koepke, F., 406, 408, 410, 414, 418

Koonce, P., 341, 342r, 346, 348

Lag, gap vs., 127

Lag–lag left-turn phasing, 345, 345f

Laguna Hills, California, 514f

La Habra, California, 517f, 525f

Landing areas, 332–333

Landscaping, of traffic calming measures, 533, 534

Land-use inputs, in trip-based travel demand modeling, 181

Lanes. See also Bicycle lanes; Turn lanes
bypass, 414–415, 414f, 414t–415t
collector–distributor, 287, 307–309, 308f, 309f
deceleration, 413–414, 413f, 414t
dedicated shoulder, 301
dedicated toll, 315–318, 316f, 317f
high-occupancy toll, 300
high-occupancy vehicle, 300
managed, 299–300, 319
mixed traffic, 377–378
number of, 297, 565
parking, 378
priced dynamic shoulder, 301
reversible, 559
shared, 384
speed-change, 254
time, 248, 300–303
truck, 559

Lane balance, 295–297, 296f

Lane based routing, 619

Lane closures, 548, 549f, 566t, 575

Lane configurations, 343, 343t

Lane constriction, 548

Lane lines, 514–515, 514f

Lane position control, 88

Lane regulation strategies, 267–268

Lane rental, 591

Lane use control, dynamic, 318

Lane widths:
temporary, 565, 566, 566t
for urban areas, 377–378

Large object illusion, 85

Large-scale emergency events, 612–616

Lateral shifts, 518, 531
Law enforcement, 579, 604
Layout, parking facility, 450–451, 451f
Leading pedestrian interval (LPI), 68
Lead–lag left-turn phasing, 345, 345f
Lead–lead left-turn phasing, 344, 344f
LED light fixtures, 481, 482f
LEED program:
- motorcycle and bicycle parking in, 471
- preferential parking in, 449, 450, 491
Lee Summit, Missouri, 323f
Left turns:
- red clearance interval for, 350
- safety of U-turns vs., 416
- sight distance for, 335
- signal phasing for, 344–345, 344f
- for uninterrupted flow facilities, 226–227, 227r, 229–232, 230f
- in urban areas, 305, 376–377
- LEVs (electric/low emitting/fuel efficient vehicles), 449–450, 490–491
- License plate recognition (LPR), 467
- Light–dark adaptation, 52
- Lighting, in rural areas, 267
- Lighting levels:
 - for nighttime construction work, 591–592
 - in parking facilities, 480–482, 481r, 482f
- Limited mobility, evacuees with, 624, 630
- Linear regression, 27–28
- Link-node networks, 181
- Liquidated damages, 593
- Livability, 160–161, 160f
- Location, of parking facility users, 444
- Long Beach, California, 519f
- Long-span construction, 463, 464f
- LOS, see Level of service
- Lost-time studies, 126–127
- Louisiana:
 - Hurricane Gustav evacuation in, 623–626
 - route closures in, 618–619
- Louisiana Department of Transportation and Development (DOTD), 624, 625
- Louisiana State Police, 624
- Louisiana State University (LSU), 611
- Low stress bikeway networks, 538
- LPI (leading pedestrian interval), 68
- LPR (license plate recognition), 467
- LSU (Louisiana State University), 611
- McCormick Place (Chicago, Illinois), 485
- McGee, H. W., 349, 350
- Macroscopic analysis of traffic flow, 203–205, 205f
- Macroscopic travel models, 191
- Mailers, about work zones, 560
- Main streets, 159
- Maintenance, of traffic calming measures, 534
- Major deviations, from access management standards, 426
- Managed lanes, 299–300, 319
- Managing demand, 178
- Manual data collection, 117–118
- Manual of Traffic Signal Design (ITE), 349
- Manual of Transportation Engineering Studies (MTES) (ITE), 109, 112–114, 113f
- Manual on Uniform Traffic Control Devices (MUTCD) (FHWA):
 - bicycle traffic signals in, 72
 - intersections in, 322
 - modifications to, 363
 - parking facilities in, 438, 454, 458
 - pavement markings in, 266
 - pedestrian safety in, 472
 - pedestrians safety in, 367, 581, 582
 - roadway design in, 235
 - signal timing in, 346, 349, 351, 352
 - signs in, 263–265, 305, 324, 485, 522, 523, 573
 - speed limits in, 578
 - traffic calming measures in, 523, 524, 524f, 526, 527
 - traffic control devices in, 335–336, 479–480, 571
 - traffic signals in, 324, 337, 338, 360
 - walking speed in, 66
 - warrants in, 337, 339–341
 - work zones in, 542–545, 561, 563–565, 570
- MARC, 627
Marijuana legalization, 97
MARR (minimum attractive rate of return), 32–33
Massachusetts, minimum shoulder width in, 305. See also Boston, Massachusetts
Massachusetts Department of Transportation (MassDOT), 314
Maximum capacity, 215
Maximum green time, 348
MDOT (Mississippi Department of Transportation), 274–275
Mean, 13
 population, 13, 25–27
 sample, 13, 25
 trimmed, 14
Mean saturation flow rate, 126
Mean speed, 218. See also Space-mean speed (SMS); Time-mean speed (TMS)
Mechanical parking, 442
Media alerts (as PI strategy), 560
Median (mathematical), 14
Medians (roadway):
 access management with, 423
 design of, 333
 nontraversable, 401, 416
 openings in, 406
 public concerns with, 428–430, 430r
 for road segments/interchanges in rural areas, 248, 249f
 for urban freeways, 292–293
Median area, 248
Median barriers:
 at conflict points, 410
 for traffic calming, 520–521, 521f, 532
Median crossover, 550, 551f, 570, 570f
Median islands, 519, 526, 526f, 532, 536
Median U-turn intersections, 361–362, 362f
Meetings, 429, 560
Memphis, Tennessee, 536
Mesoscopic analysis of traffic flow, 204
Mesoscopic travel models, 191
Metropolitan planning organizations (MPOs), 631
Michigan, indirect left-turn options in, 407
Microscopic analysis of traffic flow, 203–205, 205r
Microscopic travel models, 191
Micro-simulation modeling paradigm, 198
Midblock crossings, 387, 407, 410
Midwest Research Center, 377
Minimum attractive rate of return (MARR), 32–33
Minimum green time, in signal timing plan, 347–348, 347r–348r
Mini-roundabouts, 386
Ministry of Transportation Ontario (MTO), 253
Minneapolis, Minnesota:
 temporary use of shoulder, 301, 299f
 traffic volume variation, 209, 209f
Minnesota Department of Transportation (Mn/DOT), 273, 274, 303, 306
Minnesota Trunk Highway 61 North Shore Scenic Drive, 273–274
Minor deviations, from access management standards, 426, 426r
Mississippi Department of Transportation (MDOT), 274–275
Missouri Department of Transportation (MoDOT), 590
Mixed traffic lanes, 377–378
Mixed-use parking facility, 441
MMIRE (Model Minimum Inventory of Roadway Elements), 134
MMLOS, see Multimodal level of service analysis
MMUCC (Model Minimum Uniform Crash Criteria), 134
Mn/DOT, see Minnesota Department of Transportation
Mobile apps for finding parking, 486f, 496
Mobility:
 and access, 157, 298
 evacuees with limited, 624, 630
 and ITS in work zones, 595
 during planned events, 612
 in work zones, 541
Modal balance approach to Complete Streets, 371
Modal choice, 183–184, 181f
Modal class, 14, 15r
Modal hierarchy, 371, 371f
Modal mix, 157–158
Modal priority streets, 387–388
Modal “score” methods, 173
Mode (mathematical), 14
Mode choice approach to modeling, 198
Model adequacy, 192
Model Minimum Inventory of Roadway Elements (MMIRE), 134
Model Minimum Uniform Crash Criteria (MMUCC), 134
Mode-specific policy priorities, 393
MoDOT (Missouri Department of Transportation), 590
Money, time value of, 29
Monte Carlo simulations, 41
Monthly adjustment factors (traffic volume), 214r
Motorcycles:
 parking facilities for, 470–472
 on temporary roadways, 563
 in volume counts, 205–206
Motorcyclists:
 as road users, 64–65
 in TTC zones, 542–543
Motorist information signs, 263, 264f
Motorized modes of traffic, 157
Movement groups, 343, 343t
Movement in depth, 53
Moving observers, measurements of traffic flow with, 218
MPOs (metropolitan planning organizations), 631
M Street Southeast/Southwest Transportation Planning Study (Washington, D.C.), 167–171, 171t
MTO (Ministry of Transportation Ontario), 253
Multimodal data, in MTES, 114
Multimodal environments, 156–161
 adapting service concepts to, 160–161
 modal mix in, 157–158
 and transit quality of service, 153
types of, 158–160
Multimodal intersections, 321–364
capacity of, 353–354
 case studies, 358–360
control of, 335–346
cross-sectional considerations for, 333–335
defined, 322
design of, 325–330
 functional design and safety considerations, 322–324
and interrupted vs. uninterrupted flow, 321
operational considerations, 324
 performance measurements for, 353–354
roundabouts at, 354–358
signal progression and coordination in, 352–353
signal timing plans for, 346–352
trends, 360–363
Multimodal level of service analysis (MMLOS), 161–174
case studies, 166–172
challenges with, 165
 HCM 2010 Urban Streets methodology, 161–166
 preconditions, 165–166, 166f
 trends, 172–174
Multimodal Level of Service for Urban Streets, 393
Multimodal objectives, access management and, 421–422
Multimodal parking facilities, 470
Multimodal transportation planning, 624
Multi-Objective Optimization Model, 393
Multiple linear regression, 28
Multiplication rule, 19–20
Multiway boulevards, 387
Murray, Utah, 515f
MUTCD, see Manual on Uniform Traffic Control Devices (FHWA)
Naïve before—after studies, 47
National Association of City Transportation Officials (NACTO):
on bicycle boulevards, 384
on bus stops, 384
on cycle tracks, 383–384
on signals for urban streets, 386
on traffic forecasting in urban settings, 182
on urban street design, 372, 376, 510
National Committee on Uniform Traffic Control Devices (NCUTCD), 264, 480
National Complete Streets Coalition, 367
National Cooperative Highway Research Program (NCHRP). See also specific NCHRP Reports
design research by, 235
 passing sight distance study by, 243
 superelevation criteria research by, 245
 yellow change and red clearance interval study by, 349, 350
National Highway Traffic Safety Administration (NHTSA), 61, 173
National Incident Management System (NIMS), 605
 and Incident Command System, 600, 601
 transportation functional areas in, 610f
 transportation resources in, 614t–615t
National Response Framework (NRF), 600, 602, 610
National Special Security Event (NSSE), 626
National Work Zone Safety Information Clearinghouse, 90
Naturalistic driving studies (NDSs), 94–95
Navigation, 52, 262
NB (negative binomial) distribution, 23
NCDOT (North Carolina Department of Transportation), 390, 391
NCHRP, see National Cooperative Highway Research Program
NCHRP Report 348: Access Management Guidelines for Activity Centers, 406
NCHRP Report 420: Summary Impacts of Access Management, 415, 416
NCHRP Report 457: Evaluating Intersection Improvements, 412
NCHRP Report 491: Crash Experience Warrant for Traffic Signals, 337
NCHRP Report 562: Improving Pedestrian Safety at Unsignalized Crossings, 387
NCHRP Report 581: Design of Construction Work Zones of High Speed Highways, 541
NCHRP Report 687: *Guidelines for Interchange and Ramp Spacing*, 285

NCHRP Report 745: *Left-Turn Accommodations at Unsignalized Intersections*, 412, 414

NCUTCD (National Committee on Uniform Traffic Control Devices), 264, 480

NDSs (naturalistic driving studies), 94–95

Needs, user, 619–621

Negative binomial (NB) distribution, 23

Neighborhood signage, 514

Neighborhood traffic calming programs, 503–508, 527, 528
 - plan approval, 507–508
 - plan development, 506–507
 - plan implementation, 508
 - project initiation, 505–506
 - updates to, 511

Net present value (NPV) analysis, 37–38

Networks:
 - access management, 401
 - bikeway, 538
 - link-node, 181
 - and LOS, 155, 156

Network data, in MTES, 114

Network screening, 256

New Jersey Department of Transportation, 285

New Mexico, turn lane warrants in, 413

New Orleans Regional Transit Authority (RTA), 624

New residential developments, traffic calming in, 509

New York, New York:
 - cruising in, 457
 - economic impact of multimodal improvements study, 170–172, 172
 - emergency services for people with access and functional needs, 630
 - traffic calming in, 534

New York City Department of Transportation (NYCDOT), 170–172

NHTSA (National Highway Traffic Safety Administration), 61, 173

Night restrictions, 558

Nighttime conditions, 67, 72, 91

Nighttime construction work, 591–592

NIMS, *see* National Incident Management System

99th percentile vehicle, 445

Noise level, speed choice and, 86

Noise pollution, 557

Nominal safety, 3

Non-locking mode, signal, 342

Non-motorized modes of traffic, 157

No-notice evacuation simulation, 628–630, 629

Nonparametric statistics, 10

Non-physical traffic calming measures, 512–515

Non-sampling error, 10

Nontraversable medians, 401, 416

No-passing zones, 267

Normal probability distribution, 24

North Carolina Department of Transportation (NCDOT), 390, 391

Novice drivers, 62–63

NPV (net present value) analysis, 37–38

NSSE (National Special Security Event), 626

Null hypothesis, 26

NYCDOT (New York City Department of Transportation), 170–172

Obama, Barack:
 - EV goals of, 491
 - inauguration of, 612, 626–628

Objectives, transportation system, 152–153

Observed travel characteristics, 182

Occasional parking programs, 449

Occupancy:
 - in actual uninterrupted flow, 223, 224
 - roadway, 547–548
 - as surrogate for traffic density, 217

Office districts, 159

Off-peak work hour restrictions, 558

Offset dimension, 463

Offset turn lanes, 328, 328

Off-street parking, 461–470
 - accessible, 474–477
 - defined, 439, 440
 - flow capacity of ramps for, 467–468
 - long-vs. short-span construction for, 463, 464
 - queuing analysis for, 468–470
 - ramps for, 463–466, 465
 - with two-vs. one-way traffic flow, 461–463, 463
 - vehicular access to, 466–467

Ohio Department of Transportation, 578

Older drivers, 61–62, 77, 80

Older pedestrians, 67–68

Ombudsman, 547

One lane with alternating two-way operation, 550

One-time planned events, 612

One-way streets, pedestrians on, 68–69
One-way traffic flow, off-street parking with, 461–463, 463f
On-road count technologies, 118
On-street parking, 456–462
 accessible, 477–478, 477f, 478f
 angled vs. parallel, 458–461, 459f, 461f
 capacity of, 458–461, 461f
 defined, 439
 guidance systems for, 485, 485f
 pricing of, 456–458
 traffic calming with, 515
 in urban streets, 378
Ontario, Canada, 92–94
Open house meetings, 429
Open to public travel (OPT) designation, 438
Operating speed, 216, 240
Operational analysis, travel demand forecasts in, 192
OPT (open to public travel) designation, 438
Optimal speed, 216
Optimism bias, 192
Oregon Department of Transportation, 424
Osage County, Oklahoma, 275–276, 275f, 276t
Ottawa, Canada, 189, 199
Outliers, 17
Outreach strategies, in work zones, 586–587
Overhead work, 575
Overlap, signal, 343
Overrepresentation analysis, 257
Pace speed, 216
Paid advertisements (as PI strategy), 560
Painting, of parking facilities, 482
Paired roundabouts, 289, 289f
Palo Alto, California, 537
Parallel parking, 458–459, 459f, 478f
Parallel-type entrance ramps, 294
Parameters (statistical), 9
Parametric statistics, 10
Parking, See also Off-street parking;
 On-street parking
 angled, 453–454, 453f, 458–461, 459f, 461f
 back-in angled, 459–461, 461f
 “handicapped,” 473, 474
 intermodal, 440
 mechanical, 442
 parallel, 458–459, 459f, 478f
 private and public, 440
 shared, 441
 tandem, 450, 451f
 thirty-degree, 459, 460f
 types of, 439–442
 valet, 451, 451f
 wrapped, 441–442, 441f
Parking cash out, 449
Parking Consultants Council, 445, 447, 448f
Parking demand management (PDM), 448–450
Parking efficiency, 450
Parking equipment service rates, 468, 469
Parking facilities, 437–497
 accessibility of, 473–478
 case studies, 487–490
 costs associated with, 442–443
 design resources for, 438
 design vehicles for, 445–448
 geometry of stalls in, 452–455
 for motorcycles and bicycles, 470–472
 multimodal, 470
 off-street, 461–470
 on-street, 456–462
 and parking demand management, 448–450
 pedestrian considerations in, 472–473
regulatory considerations for, 437–438
 safety issues, 478–484
 signs in, 485–487
 and smarter parking principles, 437
 terminology for layout of, 450–451
 trends, 490–497
 types of parking, 439–442
 user considerations with, 443–444
 walking distance to, 473
 wayfinding in, 444–445
Parking lanes, in urban streets, 378
Parking lots, 439
Parking meters, 466–467, 478
Parking ramps:
 express, 464, 465
 for off-street parking, 463–466, 465f
 vehicular clearance in, 464–466, 466f
Parking restrictions, 559
Parking stalls:
 for angled parking, 453–454, 453f
 dimensions of, 452f, 453f
 geometry of, 452–455
 for parallel parking, 458
 restriping of, 455, 456f
 small-car-only, 447, 454–455, 455f
Parking structures:
 defined, 439, 440
 eliminating gridlock in, 487–489, 488f
 guidance systems in, 485–487, 487f
 types of, 441–442
Parklets, 439, 439f
Park Slope neighborhood, cruising in, 457
Partial cloverleaf interchanges, 253, 291
Passage time, 343
Passenger vehicles, 445–448, 446f, 446t
Passing sight distance (PSD), 242–243, 243f, 267

Path(s):
- bicycle travel, 130
- delineation of road, 88–89, 89f
 - in intersections, 81
- pedestrian, 130, 472–474, 472f–474f, 582
 - shared use, 287, 288f
- Pavement drop-offs, 65
- Pavement edge drop, 87

Pavement markings:
- in parking facilities, 454
- road safety audits of, 142
- in rural areas, 266
- for traffic calming, 514, 522–527
- as traffic control devices, 78–79
- transverse, 78–79, 89
- for trucks, 64
- in urban areas, 305–306
- in work zones, 574

PAZs (pedestrian analysis zones), 199

PBC (Pedestrian and Bicycle Council), of ITE, 299

PDM (parking demand management), 448–450

PDSLs (priced dynamic shoulder lanes), 301

Peak hour factor (PHF), 211

Peak Hour Volume (Warrant 3), 339

Pedestrians:
- benefits of access management for, 416
- defined, 367
- fatality risk for, 373f
- on freeways and expressways, 287
- information processing by, 54
 - older, 67–68
- in parking facilities, 472–474, 478–479
- performance measures for, 155–156
 - as road users, 65–70
 - at roundabouts, 83
- in rural areas, 268–269
- search pattern of, 56
- separation of transit vehicles and bicyclists from, 386
- traffic signals for, 346, 360
- in transportation networks, 181
- in TTC zones, 542–543
- vision of, 53
- volume counts of, 115

Pedestrian accommodation:
- in roundabouts, 330
- in work zones, 581–583

Pedestrian analysis zones (PAZs), 199

Pedestrian and Bicycle Council (PBC) of ITE, 299

Pedestrian and Bicycle Safety in Parking Facilities (ITE), 479

Pedestrian behavior studies, 129–131, 129f

Pedestrian clearance time, 66, 351–352

Pedestrian crossings:
- midblock, 387, 407, 410
- at roundabouts, 385–386

Pedestrian environment, 155

Pedestrian gap studies, 127

Pedestrian index of environment (PIE), 199

Pedestrian paths, 130, 472–474, 472f–474f, 582

Pedestrian priority streets, 388

Pedestrian safety audits, 96

Pedestrian Safety Countermeasure Selection System (PEDSAFE), 268–269

Pedestrian Safety Guide and Countermeasure Selection System (FHWA), 359

Pedestrian timing intervals, 351–352

Pedestrian Volume (Warrant 4), 339–340

Pedestrian walking speed studies, 128–129

Pedestrian walk path studies, 130

Pedestrian zone, sidewalk, 379–380

PEDSAFE (Pedestrian Safety Countermeasure Selection System), 268–269

Perceived safety, 154–155

Percentiles, 16–17, 17f

Perception:
- of dangerous situations, 63
- of railroad crossing hazards, 84
- and speed choice, 86–87, 87f

Perception–reaction time, 56–57, 237, 349

Performance measurements. See also Level of service (LOS); Traffic engineering performance measurement for Complete Streets, 368–369

for different modes of transportation, 151–156

for multimodal intersections, 353–354

for roundabouts, 355–358

for simulations in urban areas, 305

traffic flow in, 204–205

for traffic incident management, 606f

Performance pricing, for on-street parking, 457–458

Peripheral vision, 52–53, 86, 89

Permission, for data collection, 110–111

Permissive laws, yellow change interval under, 348–349

Permissive period, 352

Permissive window, 352

Permitting process, 425–427

Peru, Indiana, 367–368

PEV (plug-in electric vehicles), 490–493, 492f

PHF (peak hour factor), 211

Philadelphia, Pennsylvania, 327, 375

Physical area (of intersections), 322, 322f
PIE (pedestrian index of environment), 199
PI (public information) strategies, 559–561
Planned events:
 case studies, 623–628
 challenges with, 621–623
 current practice in, 609–612
defined, 599
 key stakeholder relationships during, 602–604
 modeling and simulation for, 621–623
 operational strategies in, 616–619
 regulations on, 599–602
 traffic management research on, 631
 unplanned and emergency events vs., 599–600
Plans, specifications, and estimates (PS&Es), 545
Planting/furniture zone, sidewalk, 379
Plug-in electric vehicles (PEVs), 490–493, 492
Podium parking facility, 440
Point counts, 115–116
Point measurements of traffic flow, 217–218
Poisson distribution, 22–23
Policy inputs, in demand modeling, 182
 access management in, 399
 cloverleaf interchanges in, 290
 Complete Streets and intersections in, 371–372, 376, 377
design criteria in, 235
design speed in, 241
design vehicles in, 237
horizontal alignment in, 245, 563–564
medians in, 333
ramp design in, 293
road segments/interchanges in urban areas in, 284
turn lanes in, 328, 328f
vertical alignment in, 246
Pomona, California, 527, 528f
Poole, Bryan W., 536
Population (statistical), 9
Population mean, 13, 25–27
Population standard deviation, 16, 25–27
Population variance, 15
Portable changeable message signs, 573–574
Portable concrete barriers, 568
Portland, Oregon:
 active transportation modeling in, 199
 bicycle boulevards in, 509
 bicycle boxes in, 72
 intersection spacing in, 327
 two-stage turn queue boxes in, 330f
Portland Bureau of Transportation, 508
Position, measures of, 16–17
Positive guidance approach, 73, 262
Post delineators, 79
Posted speed limit, 216, 240
Precision, in travel demand forecasts, 192
Preemption control, 352
Pre-mode choice approach to modeling, 198
Press releases (as PI strategy), 560
Pre-timed operation, signal, 341
Pre-timed signals, 386
Pre-trip distribution approach to modeling, 198, 199
Prevailing conditions, 353
Priced dynamic shoulder lanes (PDSL), 301
Pricing:
 congestion, 558
dynamic, 319
 of parking, 188, 448, 456–458
 performance, 457–458
road pricing initiatives, 188, 193–194
toll, 558
Prima facia speed limit, 216
Prioritization, in road safety management, 260–261
Prioritized level of service measures, 155–156, 393–394
Priority approach to Complete Streets, 371
Priority control, 352
Priority value, sign, 573
Private elements, in circulation system, 403, 404
Private parking, 440
Proactive approach to road safety, 133, 255
Probabilistic risk analysis, 40–41, 40f, 41r
Probability, rules of, 18–20, 18f
Probability distributions, 21–25
Profiles, of rural freeways, 250
Profile grades, of intersections, 332–333
Program planning, for transportation incidents and events, 604–606
Project websites, construction, 560
Property values, 420
Protection:
 in parking facilities, 482–483, 483f
 in work zones, 568–569
Protruding objects, in sidewalks, 380
PROW (public right of way), 438, 477–478
PROWAG (Public Right-of-Way Accessibility Guidelines), 346
PSD, see Passing sight distance
PS&Es (plans, specifications, and estimates), 545
Public communication, about work zones, 586–587, 590
Public information centers, 560
Public information (PI) strategies, 559–561
Public interest, in traffic calming, 539
Public involvement, in access management, 428–431. See also Stakeholder involvement
Public meetings, 506–507, 560
Public parking, 440
Public relations, in TTC zones, 543
Public Right-of-Way Accessibility Guidelines (PROWAG), 346
Public streets, in circulation system, 403, 404
QOS (quality of service) measures, 130–131
Qualitative variables, 10
Quality of service. See also Level of service (LOS):
 transit, 153–154
for uninterrupted flow facilities, 226–227, 229–232
Quality of service (QOS) measures, 130–131
Quantitative variables, 10
Québec, Canada, 92–94
Queue clearance, 348t
Queue jumps, 384
Queue lengths, 124, 355–358
Queue warning, 319
Queuing analysis, 324, 468–470
QuickZone, 557
Radar speed trailers, 515
Railroad Crossing Locator app, 86
Railroad crossings:
 intersections at, 327
 roadway design of, 83–86
 trucks at, 64
Raised crosswalks:
 cost of constructing, 535
 design of, 530
 in parking facilities, 484
 signage for, 526–528, 527f, 528f
 as traffic calming measures, 516, 518f
Raised intersections, 518, 530
Ramps. See also Interchange ramps;
 Parking ramps
 entrance, 294, 570, 570f
 exit, 570, 570f
 express, 464, 465
 grade-separated, 295
 for rural interchanges, 254, 254f
 safe speed for trucks on, 64
 safety of, 299
 slip, 464, 465f
 in urban areas, 293–294
Ramp closures, 558, 619, 629–630, 629f
Ramp metering, 318, 558
Ramp spacing, 254, 255f
Range, 14
Rapid construction techniques, 592–593
Rates of return, 32–33
Rate quality control (RQC), 137–138, 140
Reactive approach to road safety, 132–133, 254, 255
Realigned intersections, 331–332, 332f, 520
Real Time Evacuation Planning Model (RTEPM), 621
Recall, signal, 343
Recommended Design Guidelines to Accommodate Pedestrians and Bicycles at Interchanges (ITE), 284, 299
Rectangular rapid flashing beacons (RFFBs), 330, 363–364
Recurring planned events, 611
Red clearance interval, in signal timing plan, 350
Red-light running, countermeasures for, 358–359
“Red” midblock crossing devices, 387
Reentry, after evacuations, 630
Reference points, for lost-time studies, 126
Regional travel demand forecasting models, 177, 188
Regression modeling, 27–28
Regression-to-the-mean (RTM) bias, 46–47, 47f, 133, 133f
Regulation(s):
 for parking facilities, 437–438
 on planned, unplanned, and emergency events, 599–602
 of road segments/interchanges in urban areas, 298–299
 of travel demand forecasting, 190
Regulatory signs, 74, 262–263, 262f
Relative Severity Index (RSI), 137, 140
Reliability, automobile LOS and, 152
Reno, Nevada, 523
Research and Innovative Technology Administration (RITA), 3, 278
Residential multimodal environments, 160
Residential Traffic Management (FHWA), 502
Resiliency:
 community, 631, 631f
 transportation network, 599, 630–631, 631f
Response, in perception–reaction time, 57
Reston, Virginia, 359–360
Restrictive laws, yellow change interval under, 349
Restriping of parking stalls, 455, 456f
Retail business districts, 159
Retroreflectivity, of signs, 265
Retroreflectorization, 573
Return on investment (ROI), 284
Reverse-flow roadways, 286, 287
Reversible flow lane systems, 318
Reversible lanes, 559
Reviews of traffic control plans, 575–576
Revisions, traffic control plan, 575–577, 577f
RFFBs (rectangular rapid flashing beacons), 330, 363–364
Ride-sharing programs, 449
Right turns, signal phasing for, 346
Right-turn channelization, 382, 383f
Right-turn lanes, length of, 413–414, 414f
Right-turn-on-red (RTOR) rule, 66
Ring barrier diagram, 343, 344, 344f
Ring roads, 480, 481f
Risk, perception of, 70, 87, 87f
Risk management, 38–41
RITA (Research and Innovative Technology Administration), 3, 278
Roads, classification of, 157–158, 157f
Road diets, 162, 515
Road path, delineation of, 88–89, 89f
Road pricing initiatives, 188, 193–194
Road safety audits, 96, 141–143, 275–276
Road safety management process, 255f
Roadway, defined, 248
Roadway capacity, 552–554, 553f, 554f
Roadway characteristics, bicycle LOS and, 155
Roadway circulation systems, 400–405
functional, 400–403, 400f, 401f, 402f, 402f, 403f
public and private elements of, 403, 404f
urban major street spacing in, 404–405, 404f
Roadway corridors, 433
Roadway design:
for bicyclists, 71–72
for Complete Streets, 378–379
human factors in, 97
of interchanges, 83, 252–254
of intersections, 79–83, 81f, 325–335, 361–363
and naturalistic driving studies, 94–95
for pedestrians, 68–70
of railroad grade crossings, 83–86
of ramps, 254, 293–294
of road segments, 86–89
for road users, 79–92
of roundabouts, 79–83, 81f, 329–331
in rural areas, 235–254, 267–271
standards vs. regulations on, 427–428
for traffic calming, 510
in transition zones, 94

for trucks, 64
in urban areas, 292–303
in work zones, 90–92
Roadway facility, 321
Roadway Lighting Design Guide
(AASHTO), 267
Roadway Network (Warrant 8), 340
Roadway occupancy, 547–548
Roadway operations, benefits of access management for, 417–419
Rodegerdts, L., 354, 355
Rodriguez, Daniel A., 536
ROI (return on investment), 284
Roundabouts:
bicyclists in, 72
capacity and performance measures for, 354–358
case study of, 311–313, 313f
characteristics of, 323, 323f
in Complete Streets, 385–386
at diamond interchanges, 289, 289f
mini-, 386
as multimodal intersections, 354–358
operational considerations with, 354
paired, 289, 289f
roadway design in, 79–83, 81f, 329–331
Roundabouts: An Information Guide,
2nd edition (L. Rodegerdts), 354, 355
Route closures, 618–619
Route continuity, 297–298
Routine travel situations, 599–600
RP-20-14 Lighting for Parking Facilities
(IES), 438
RQC (rate quality control), 137–138, 140
RSI (Relative Severity Index), 137, 140
RSIP (Rural Safety Innovation Program), 274–275
RTA (New Orleans Regional Transit Authority), 624
RTEPM (Real Time Evacuation Planning Model), 621
RTM bias, see Regression-to-the-mean bias
RTOR (right-turn-on-red) rule, 66
Rules of the road, 336
Rumble strips, 65, 72, 266, 268
Running speed, 216, 240
Rural areas. See also Road segments and
interchanges in rural areas
bypass lane warrants in, 414t
variation in traffic volume for, 209, 212f
warrants for left-turn lanes in, 412t
Rural Safety Innovation Program
(RSIP), 274–275
Sacramento, California, 522f
SADT (seasonal average daily traffic), 206
Safety:
access management for, 415–416
as bicyclist performance measure, 154–155
and ITS in work zones, 595
in multimodal intersections, 322–324
nominal, 3
in parking facilities, 478–484
perceived, 154–155
reactive vs. proactive approach to, 132–133, 254, 255
in rural areas, 254–262
substantive, 3
and transportation incidents/events, 604–606
and TTC plans, 543, 555, 556f
in urban areas, 299
and use shoulder as travel lane, 302–303
in work zones, 541
Safety Analyst software, 95–96, 256, 260
Safety campaigns, work zone, 561
Safety countermeasures, engineering
economics for, 41–46, 42f, 42t, 44t–46t
Safety data, in MTES, 114
Safety devices:
road safety audits of, 142
in rural areas, 262–266
Safety effectiveness evaluation, 261–262, 274–275
Safety performance functions (SPFs), 136, 139
Safety problems, diagnosis of, 256–258, 257f
Safety studies, 131–145
of collisions, 131–133
identifying hazardous locations with, 133–141
road safety audits, 141–143
tof traffic conflicts, 143–145
Safety tools, human factors and, 95–97
St. Louis, Missouri, 590
Salt Lake City, Utah, 527, 527f
300 South project in, 391–393, 392f
traffic calming in, 520f, 526
Sample mean, 13, 25
Sample size, 119, 125–126
Sample standard deviation, 16
Sample variance, 15
Sampling error, 10
Sampling strategies, 10
San Antonio, Texas, 513f, 514–515
San Bernardino, California, 516
San Diego, California, 518f
San Francisco, California:
active transportation modeling in, 199
parklet in, 439f
road pricing study in, 193–194
San Francisco County Transportation
Authority (SFCTA), 193–194
San Francisco Department of Public
Works, 381
San Francisco Municipal Transportation Authority (SFMTA), 457–458, 489–490
San Luis Obispo, California, 521f
Satisfaction, customer, 151, 172–173
Saturation flow rate, 124–126, 356
Saturation flow studies, 124–126
School Crossing (Warrant 5), 340
SCO stalls, see Small-car-only stalls
Scott County, Minnesota, 359
Screen-line counts, 116
Sea, Lake, and Overland Surges from Hurricanes (SLOSH), 621
Search, visual, 54–56, 66, 80
Search patterns, 55–56, 55f, 56f
Seasonal average daily traffic (SADT), 206
Seattle, Washington:
active traffic management in, 310–312, 313f, 314f
dynamic on-street parking prices in, 188
traffic calming in, 509, 523, 536
Security, for bicycles, 471–472
Segment data, in MTES, 114
Self-driving vehicles, 496–497
Self-explaining roads, 73
Semi-actuated control, 341
Sensitivity, contrast, 52
Sensitivity analysis, 38–40, 39r, 40f, 304
Sensors, for all-vehicle sampling, 122
Service interchanges, 287
Service patrol vehicles, 559
Severity weighting, for collision frequency/rates, 135–136, 140
SFCTA (San Francisco County Transportation Authority), 193–194
SFMTA (San Francisco Municipal Transportation Authority), 457–458, 489–490
SFpark program, 457–458, 489–490
Shared lanes, 384
Shared parking, 441
Shared right-of-way work zone, 554, 554f
Shared space, 203, 394, 395f
Shared use parking areas, 441
Shared use paths, 287, 288f
Shifts, lateral, 518, 531
Short-section measurements of traffic flow, 218
Shoulder, use of, 300–303, 548, 548f
Shoulder width, 248, 303
SHRP2 (Strategic Highway Research Program 2), 94, 278
Side slopes, in rural areas, 248–249
Sidewalk closure, 582–583
Sidewalk zones, 379–380, 379f
Sight distance:
decision, 242, 409–411
at intersections, 334–335
measuring and recording, 246–247, 247f
passing, 242–243, 245r, 267
at railroad grade crossings, 84
in rural areas, 242–243, 246–247, 247f
stopping, 57, 242, 409–411
in urban areas, 293
Sight distance studies, 128, 126f
Signals, see Traffic signals
Signal phasing, 343–346
Signal timing, 324, 341–343, 352–353, 558
Signal timing plans, 346–352, 347f
dilemma zone, 350–351, 351f
maximum green time, 348
minimum green time, 347–348, 347r–348r
pedestrian clearance time, 351–352
pedestrian timing intervals, 351–352
red clearance interval, 350
vehicle extension, 348
walk interval, 351
yellow change interval, 348–349
Signs:
changeable message, 76, 90, 91, 561, 573–574
dynamic speed message, 561
guide, 75, 92, 93f, 263, 263f
identification of, 80–81
motorist information, 263, 264f
in parking facilities, 485–487
regulatory, 74, 262–263, 262f
road safety audits of, 142
for road segments and interchanges in rural areas, 262–266
speed feedback, 515, 517f
static, 485
STOP, 336
street name, 264, 264r, 265
TAAWS, 82
temporary condition, 76
temporary traffic control, 266
for traffic calming, 514, 515, 522–527
as traffic control devices, 74–78
in urban areas, 305–306
warnings, 58, 74–75, 263–264, 263f–265f
in work zones, 573
YIELD, 336
Simple B/C analysis, 33–35, 34r, 35f
Simple interest, 29
Simple random samples, 10
Simulated Guide to the Incident Command System for Transportation Professionals (FHWA), 600
Simulated MMLOS analysis, 173
Simulations. See also Traffic simulation modeling
data collection with, 145
for evacuation modeling, 622
of improvements in urban areas, 303–305
Monte Carlo, 41
of no-notice evacuations, 628–630, 629f
of planned, unplanned, and
emergency events, 621–623
Simultaneous gap feature, signal, 343
Single payment cash flows, 30
Single-point diamond interchange
(SPDI), 290
Site, defined, 438
Site access systems, 401
Site open to public travel (SOPT), 438
Site operations, road safety audits of,
142
Sites with Promise (SWP) method,
138–140
Size creep, automobile, 447
Slip ramps, 464, 465f
Slopes:
cross, 380
parking ramp, 463–465
side, 248–249
transition, 465, 466f
SLOSH (Sea, Lake, and Overland
Surges from Hurricanes), 621
Slow traffic, warnings about, 575
Small-car-only (SCO) stalls, 447,
454–455, 455f
Smarter parking principles, 437
Smart Growth America, 442, 509
Smart parking meters, 456
Smart traffic signal system, 359–360
Smart work zone systems, 594
SMS, see Space-mean speed
Sneckdowns, 539
Social media, public information on,
560
Socioeconomic inputs, in trip-based
travel demand modeling, 181, 191
Soho, cursing in, 457
SOPT (site open to public travel), 438
Space-mean speed (SMS), 119, 215,
215r, 216
SPDI (single-point diamond
interchange), 290
Speed:
advisory, 216, 241
and automobile LOS, 151–152
as characteristic of traffic flow, 204,
215–217
design, 216, 240–241, 292,
372–374
design vs. target, 372–374
85th percentile, 216
and focus, 373f
free-flow, 216, 230, 417, 417f
and level of service, 231
mean, 216
measuring, see Speed measurements
and motorcycle crashes, 65
operating, 216, 240
optimal, 216
pace, 216
on road segments/interchanges in
rural areas, 240–241
running, 216, 240
and signal spacing/cycle length, 405,
405f
space-mean, 119, 215, 215r, 216
spot, 216
target, 372–374
time-mean, 119, 215, 215r,
216
and transverse markings, 78–79
travel, 216
walking, 66, 128–129
Speed adaptation, 60, 86, 87
Speed bumps, 484, 516
Speed-change lanes, 254
Speed choice, 86–87, 89
Speed control measures:
design of, 529–532
horizontal, 518–520, 530–532
in parking facilities, 483, 484
for traffic calming, 512, 516–520
for urban streets, 374f
vertical, 516–518, 529–530
Speed feedback signs, 515, 515f
Speed humps:
cost of constructing, 535
design of, 529–530
in parking facilities, 484
signage for, 524, 525f
striping of, 523, 524f
for traffic calming, 502f, 516, 517f,
535f
SPEED HUMP sign, 524
Speed kidneys, 538
Speed legend pavement marking, 514
Speed limits:
absolute, 216
dynamic, 319
posted, 216, 240
prima facia, 216
on signage, 514
statutory, 216
in work zones, 578–579
Speed lumps, 516, 517f, 530, 535
Speed management, in work zones,
578–579
Speed measurements:
from actual uninterrupted flow,
222f–224f, 223
at bottlenecks, 225–226, 225f,
226f
conditions for taking, 217
direct vs. indirect, 119
and Edie hypothesis of
uninterrupted flow, 221f, 222f
and Greenshields model of
uninterrupted flow, 219f, 220f
methods of taking, 217–218, 217f
types of, 215–216, 215r
Speed studies, 119–122
Speed tables, 484, 516, 530, 535
SPFs (safety performance functions),
136, 139
Split diamond interchanges, 289
Texas, use of shoulder in, 304. See also specific cities
Texas Department of Transportation (TxDOT), 589
Texas Highway 6 (College Station, Texas), 209–211, 210f, 211f
Texas Transportation Institute, 90
Three-degree parking, 459, 460f
Thoroughfare(s), 373–375, 378–379
300 South (Salt Lake City, Utah), 391–393, 392f
Texas Transportation Institute, 90
Thirty-degree parking, 459, 460f
Three-leg interchanges, 253
TIAs (traffic impact analyses), 188–190, 195–196
TIM, see Traffic incident management
Time headway, 215
Time horizons, for travel demand forecasts, 177
Time-in-queue delay, 123
Time-mean speed (TMS), 119, 215, 215r, 216
Time value of money, 29
TMPs, see Transportation management plans
TMS, see Time-mean speed
Toll lanes:
 express, 315–318, 316f, 317f
 high-occupancy, 300
Toll pricing, 558
Toronto Pearson International Airport (Toronto, Canada), 92, 93f
TO (transportation operations) strategies, 545, 558–559
Tour-based structure, in activity-based modeling, 197
Town centers, 159
Tow patrol vehicles, 559
Traffic Analysis Toolbox, 305
Traffic barriers:
 in medians, 410, 520–521, 521f, 532
 temporary, 559
 for temporary roadways, 568–569
Traffic calming, 501–539
 case studies, 537–538
 defined, 501–502
 designing measures for, 527–537
 horizontal speed control measures, 518–520
 neighborhood programs, 504–508, 511
 non-physical measures, 512–515
 purpose of, 503–504
 resources on, 502–503
 signs and markings for, 522–527
 “toolbox” of measures, 511–512
 trends, 538–539
 urban uses of, 508–511
 vertical speed control measures, 516–518
 volume control measures, 520–522
Traffic Calming: State of Practice (ITE), 501, 502, 509, 527, 536
Traffic circles, 518, 519f
 cost of constructing, 536
 design of, 530–531
 signage for, 524, 526
TRAFFIC CIRCLE sign, 524, 526
Traffic conflict studies, 143–145
Traffic control costs, 557
Traffic control devices (TCDs):
 for bicyclists, 72, 129–130
 defined, 438
 in intersections, 335–346
 in parking facilities, 479–480, 479f
 for pedestrians, 68, 129–130
 in positive guidance approach, 73
 for road users, 74–79
 in transition zones, 93–94
 and truck operators, 64
 in work zones, 90, 571–575
Traffic Control Devices Handbook (ITE), 580
 dilemma zone in, 351
 left-turn phasing in, 344, 345
 signal timing plans in, 348
Traffic control plans, see Temporary traffic control (TTC) plans
Traffic design, evaluating, 167–171, 169f
Traffic engineering:
 as subdiscipline, 1
 for transit quality of service, 153–154
 in urban settings, 283–284
Traffic engineering performance measurement, 9–49
 with before–after studies, 45–49
 confidence intervals for, 25–26
 descriptive statistics for, 11–18
 in engineering economics, 28–46
 hypothesis testing with, 26–27
 probability distributions for, 21–25
 probability in, 18–20
 regression modeling of, 27–28
 statistical analysis for, 9–10
Traffic engineering studies, 109–146
 field data collection in, 110–112
 function, 109
 intersection studies, 123–131
 in MTES, 112–114
 on need for traffic signals, 338
 procedures for, 114–145
 safety studies, 131–145
 selecting techniques for, 109–110
 speed studies, 119–122
 trends in conducting, 145–146
 volume studies, 114–119
Traffic events. See also Emergency events; Planned events; Unplanned events
 defined, 143
 impacts on transportation system of, 608f, 609
 scale, preparedness and government involvement in, 598f, 599
Traffic flow, 203–228. See also Uninterrupted traffic flow
 at bottlenecks, 225–226
 characteristics of, 204–205, 225–226
Index • 663
Traffic flow (continued)
density in, 217
interrupted, 321, 367–368
macroscopic vs. microscopic analysis of, 203–204
measuring characteristics of, 217–218
in parking facilities, 461–463, 463f
in performance measurement, 204–205
shock waves in, 224–225
at signalized intersections, 355–356, 356f
speed in, 215–217
for uninterrupted flow facilities, 218–224
volume in, 205–215
Traffic flow theory, 203
Traffic impact analyses (TIAs), 188–190, 195–196
Traffic incident management (TIM), 279, 604–606, 606f, 623
Traffic Incident Management Handbook Update (FHWA), 605
Traffic management research, 631
Traffic operations, road safety audits of, 142
Traffic reduction ordinances, 178
Traffic shock waves, 224–225, 225f, 227–229, 229f
Traffic signals, 337–341. See also Signal phasing; Signal timing
in access management, 400, 405–407
for bicyclists and pedestrians, 360–361
coordination of, 352–353, 558
defined, 3
delay at intersections with, 356–358
in HCM 2010 Urban Streets MMLOS, 162r
identification of, 81
progression and coordination of, 352–353
sight distance at intersections with, 335
smart traffic signal systems, 359–360
spacing and operation of, 405–407
temporary, 558
as traffic control devices, 78–79
traffic flow measures at intersections with, 355–356, 356f
on urban streets, 386
Traffic Signal Timing Manual (P. Koonce), 341, 342r, 346, 348
Traffic signal warrants, 339–341
Traffic simulation modeling:
case study, 313–315, 314f, 315f
of congestion, 304–305
for rural areas, 270–271
Traffic volume, see Volume, traffic
Trail corridors, 160
Training personnel:
in TTC zones, 543
in work zones, 579–580
Transit Capacity and Quality of Service Manual, 153
Transit facilities, in freeway medians, 292–295. See also Bus stops
Transit improvements (as TO strategy), 558
Transition areas, on temporary roadways, 571
Transition slopes, 465, 466f
Transition zones, slowing drivers in, 92–93
Transit-oriented developments, 159
Transit priority streets, 388
Transit quality of service, 153–154
Transit vehicles:
and access management, 422
in HCM 2010 Urban Streets MMLOS, 162t
performance measures for, 153–154
separation of pedestrians and bicyclists from, 386
Transportation analysis zones (TAZs), 180–181
Transportation and Land Development (Stover and Koepke), 406, 408, 410, 414, 418
Transportation Conformity Rule, 190
Transportation demand management (TDM):
case study, 196–197
forecasting impacts on, 186–188
and forecasting travel demand, 177
managing demand with, 178
Transportation engineering, travel demand forecasting in, 190–191
Transportation Impact Assessment Guidelines (Ottawa, Canada), 189
Transportation management plans (TMPs):
development of, 546–547
implementation of, 561
temporary traffic control strategies in, 547–558
for work zones, 544–558
Transportation networks:
resiliency of, 599, 630–631, 631f
in trip-based travel demand modeling, 181–182
Transportation operations (TO) strategies, 545, 558–559
Transportation planning, 272, 272r, 378
Transportation Planning for Planned Special Events (USDOT), 611
Transportation Research Board of the National Academies (TRB), 94, 280.
See also Highway Capacity Manual; specific NCHRP Reports
on access management, 285, 327, 399, 408, 410, 414, 433
on context-sensitive design, 270
Transportation systems:
access management's role in, 433
automobile LOS and objectives of, 152–153
collaboration of emergency management service and, 625–626
defined, 178
environmental hazards to, 606–609, 607f
impact of traffic events on, 608r, 609
networks vs., 181
road users in, 51
Transverse markings, 78–79, 89
Travel demand, 178
Travel demand forecasting, 177–199
applications of forecasts, 179
best practices, 192–193
case studies, 193–197
commercial vehicles in, 185
econometric models in, 186
externally-based trips in, 185–186
importance of, 177
process for, 180–185
regulation of, 190
and TDM measures, 186–188
terminology, 177–178
for traffic impact analyses, 188–190
in transportation engineering, 190–191
trends, 197–199
Traveled way, 248
Travel lane(s):
in rural areas, 248
shoulder as, 300–303
Travel models, hierarchy of, 191, 191f
Travel speed, 216
Travel-time delay, 123
TRB, see Transportation Research Board of the National Academies
Trees, in streetside design, 380–381, 381f
Trip assignment, 184–185
Trip attraction equations, 182–183
Trip-based travel demand modeling, 180–185, 180f
Trip distribution, 183
Trip generation, 182–183
Trip production equations, 182
Trip purpose, parking facility users', 443
Trip stage, functional roadway category and, 400f, 401t
Trucks, circulation of, 376f
Truck drivers, 63–64
Truck lanes, 559
Truck-mounted attenuators, 569f
Truck restrictions, 559
True active advance warning signs (TAAWS), 82
TTC plans, see Temporary traffic control plans
T-tests, 27
Turning bays, in two-way parking, 463, 463f
Turning roadways, in rural areas, 245–246
Turning vehicles. See also Left turns; U-turns
in access management, 400, 411–415
pedestrian accidents with, 66
Turn lanes. See also Left-turn lanes and crashes, 416t
right-turn, 413–414, 414t
for vehicle queue storage, 328–329, 328f
Turnover, parking facility user, 444
Turn restrictions, 559, 619
Tuscon, Arizona, 511
Two-regime model for uninterrupted traffic flow, 221–223, 221f–222f
Two-stage turn queue boxes, for bicycles, 329, 330f
2009 Presidential Inauguration Regional After-Action Report Summary, 626, 628
2010 ADA Standards, 438, 483
Two-way left turn lanes (TWTLs), 416
Two-way traffic flow:
off-street parking with, 461–463, 463f
in rural areas, 267
staging construction with, 561–562
TWTLs (two-way left turn lanes), 416
TxDOT (Texas Department of Transportation), 589
Type I error, 27
Type II error, 27
Tysons, Virginia, 376
UFOV, see Useful field of view
Uncontrolled intersections, 334
Underground parking facility, 441
Ungated parking facilities, 466
Unified Command structure, 600
Uniform series cash flows, 30
Uninterrupted flow facilities, 218–234. See also Road segments and interchanges in rural areas; Road segments and interchanges in urban areas
case studies, 227–232
interrupted vs., 203
quality of service on, 226–227, 229–232
traffic characteristics at bottlenecks in, 225–226
traffic flow relationships for, 218–224
traffic shock waves in, 224–225, 227–229
Uninterrupted traffic flow:
actual representation of, 222–223, 222f–223f
Greenshields model for, 218–220, 218f–220f, 219r, 223
interrupted vs., 321
two-regime model for, 221–223, 221f–222f
University Place, Washington, 430–432, 431f, 432f
Unplanned events. See also Emergency events
challenges with, 621–623
current practice for, 609–611
defined, 599
Unplanned events (continued)

key stakeholder relationships during, 602–604
modeling and simulation for, 621–623
operational strategies in, 616–619
planned and emergency events vs., 599–600
regulations on, 599–602
traffic incident management for, 604–606
traffic management research on, 631

Unsaturated intersection approach, 356, 357

Unusual events, 600–602, 601, 602

See also Emergency events; Planned events; Unplanned events

UPRAISED HAND signal, 351

Upstream functional distance, 408–409, 408

Urban areas. See also Road segments and interchanges in urban areas
in access classification system, 424
defined, 285–286
externally-based trips in, 185–186
traffic calming in, 508–511, 527, 528
traffic engineering in, 283–284
warrants for left-turn lanes in, 412

Urban arterials, 321
Urban collectors, 321
Urban major street spacing, 404–405, 404

Urban Street Design Guide (NACTO), 372, 376, 510

Urban streets:
automobile LOS for, 153
bike LOS for, 155
case studies, 388–393
context zones for, 369, 370

design controls and criteria for, 371–378
interrupted traffic flow on, 367–368
intersection design and operations for, 381–386
midblock crossings in, 387
MMLOS methodology for, 161–166
modal priority, 387–388
multiway boulevards, 387
pedestrian LOS for, 156
selecting performance measures for, 368–369
streetside design for, 379–381
transit LOS for, 154
trends, 393–396

U.S. Access Management Manual (TRB), 399

U.S. Census Bureau, 285
U.S. Department of Transportation (USDOT), 3, 91, 278–279, 609–611

U.S. National Environmental Policy Act, 189

U.S. Traffic Calming Manual (American Planning Association), 502, 522, 523, 527

USDOT, see U.S. Department of Transportation

Useful field of view (UFOV), 54–55, 55, 61–62
User-perceived quality of service (QOS) measures, 130–131
User perspective on levels of service, 151

Users, see Road users

US Route 2 (Washington state), 301, 302, 303

US Route 60 (Osage County, Oklahoma), 275–276, 275, 276

US Route 62 (Hamburg, New York), 388–390, 389
US Route 75 (Dallas, Texas), 589
US Route 301 Waldorf Transportation Improvements project, 280

U-turns:
median U-turn intersections, 361–362, 362
operational impact of, 417
safety of direct left turns vs., 416

Valencia, Spain, 538

Valet parking, 451, 451

Variables, 10

Variable work hours, 558

Variance, 15

Variation, in traffic volume, 209–212, 209, 212

VDOT, see Virginia Department of Transportation

VDRPT (Virginia Department of Rail and Public Transportation), 627

Vehicle, design, see Design vehicle

Vehicle extension, in signal timing plan, 348

Vehicle operating costs, 557

Vehicle queue storage, at intersections, 328–329

Vehicular service, livability and, 160–161, 160

Vertical alignment:
coordination of horizontal and, 247–248
in multimodal intersections, 332
in rural areas, 246–248, 250, 251
for temporary roadways, 565
in urban areas, 293

Vertical clearance:
in parking ramps, 465–466, 466
in rural areas, 246

Vertical curves, in rural areas, 246, 246

Vertical grades, see Grade(s)

Vertical speed control measures, 516–518, 529–530

Video-image processing systems, 145

Viewing distance, 53, 53

Virginia, no-notice evacuation simulation in, 628–630, 629
See also specific cities

Virginia Department of Rail and Public Transportation (VDRPT), 627

Virginia Department of Transportation (VDOT), 360, 376, 627
Virginia Railway Express (VRE), 627
Virginia State Police (VSP), 627
Vision:
 community, 378
 peripheral, 52–53, 86, 89
 of road users, 52–53
VISSIM, 316, 317
Visual acuity, 52
Visual search, 54–56, 66, 80
Volume, traffic, 204–215
 in access classification system, 424
 in actual uninterrupted flow, 222f–224f, 223
 adjustment factors for, 210, 211, 213–214, 213f–214t
 and collision rate rankings, 135
 and Edie hypothesis of uninterrupted flow, 221f, 222f
 and Greenshields model of uninterrupted flow, 220f
 identifying hazardous locations from, 134
 in level of service determination, 231
 and signal spacing, 406
 and time headway, 215
 variation in, 209–212, 209f–212f
Volume control measures, 512, 520–522, 532, 536
Volume counts:
 at bottlenecks, 225–226, 225f, 226f
 classification of, 205–208
 duration of, 206, 208
 method of taking, 217–218, 217f
 typical conditions for, 208–209
Volume studies, 114–119
Volume to capacity ratio, 152, 354
VRE (Virginia Railway Express), 627
VSP (Virginia State Police), 627
Walkability Checklist, 173
Walking distance, to parking facilities, 473
WALKING PERSON signal, 351
Walking speed, 66, 128–129
Walk interval, in signal timing plan, 351
WALK signals, 68
Warnings:
 dynamic, 95
 queue, 319
 in work zones, 575
Warning signs, 58, 74–75, 82, 263–264, 263f–265f
Warrants:
 for grade separations and interchanges, 251–252
 for left-turn lanes, 411–413, 412t–413t
 for traffic signals, 339–341
Washington, D.C.:
 M Street Southeast/Southwest Transportation Planning Study, 167–171, 171t
 Barack Obama's inauguration in, 612, 626–628
 traffic calming in, 509, 515
Washington Metropolitan Area Transportation Authority (WMATA), 627–628
 Washington State, temporary use of shoulder in, 301, 302f, 305. See also specific cities
 Washington State Department of Transportation (WSDOT), 303, 310, 311
 Water-filled barriers, 569
Wayfinding, 444–445, 444f, 445f
Weak link analysis, 162
Weaving sections, 295–297, 297f
Weekend restrictions, 558
Weighted average, 13
Weighting, in composite/prioritized level of service measures, 393
West Jefferson Streetscape Project (North Carolina), 390–391, 391f
West Memphis, Arkansas, 587–588
Wheels, volume counts based on, 205
Wheel stops, 483, 484f
Whole community approach, 619–620
Width:
 clear, 380
 lane, 377–378, 565, 566, 566t
 shoulder, 248, 303
WMATA (Washington Metropolitan Area Transportation Authority), 627–628
Worksite Trip Reduction model, 196
Work zones, 541–594
 bicycle accommodation in, 583–584
 case studies, 587–590
 contingency plans in, 577–578
 detour planning and operations in, 576
 geometrics of temporary roadways in, 563–571
 implementing transportation management plans in, 561
 incident management in, 584–586
 motorcyclists in, 65
 MUTCD on, 542–543
 pedestrian accommodation in, 581–583
 public communication and outreach strategies for, 586–587
 public information strategies in, 559–561
 roadway design in, 90–92
 safety, mobility, and constructability issues in, 541
 speed management and enforcement in, 578–579
 staging construction in, 562–563
 traffic control devices in, 571–575
 traffic control plans in, 575–576
 traffic volume measurements near, 209
 training of personnel in, 579–580
 transportation management plans for, 544–558
Work zones (continued)
 transportation operations strategies in, 558–559
 trends, 590–594
Work Zone Safety and Mobility Rule (FHWA), 544, 579, 580
Wrapped parking, 441–442, 441f
WSDOT, see Washington State Department of Transportation

XDL (crossover displaced left-turn) intersections, 362–363, 363f
Yellow change interval, 348–349
Yellow signal, duration of, 82
Yellow trap, 345
Yield-controlled intersections, 335
Yield point, 352
YIELD signs, 336
Yield streets, 520
Yoked comparisons, 47–48
Young bicyclists, 71
Young passengers, 62
Zegeer, Charles V., 536
Zipper merges, 90
Zone definitions, 180–181
\(z \) tests, 27