Contents

About the Author xi
Preface xiii
Acknowledgment xvii
List of Abbreviations xix

1 Topologies and Operating Principles of Basic Full-Bridge Converters 1
1.1 Introduction 1
 1.1.1 Development Trends of Power Electronics Technology 1
 1.1.2 Classification and Requirements of Power Electronics Converters 2
 1.1.3 Classification and Characterization of dc–dc Converters 3
1.2 Isolated Buck-Derived Converters 4
 1.2.1 Forward Converter 4
 1.2.2 Push–Pull Converter 7
 1.2.3 Half-Bridge Converter 10
 1.2.4 Full-Bridge Converter 11
 1.2.5 Comparison of Isolated Buck-Derived Converters 12
1.3 Output Rectifier Circuits 14
 1.3.1 Half-Wave Rectifier Circuit 14
 1.3.2 Full-Wave Rectifier Circuit 15
 1.3.3 Full-Bridge Rectifier Circuit 17
 1.3.4 Current-Doubler Rectifier Circuit 18
1.4 Basic Operating Principle of Full-Bridge Converters 21
 1.4.1 Topologies of Full-Bridge Converters 21
 1.4.2 Pulse-Width Modulation Strategies for Full-Bridge Converters 21
1.4.3 Basic Operating Principle of a Full-Bridge Converter with a Full-Wave Rectifier Circuit and a Full-Bridge Rectifier Circuit 21
1.4.4 Basic Operating Principle of a Full-Bridge Converter with a Current-Doubler Rectifier Circuit 24
1.5 Summary 32
References 32

2 Theoretical Basis of Soft Switching for PWM Full-Bridge Converters 33
2.1 PWM Strategies for Full-Bridge Converters 33
2.1.1 Basic PWM Strategy 33
2.1.2 Definition of On-Time of Power Switches 36
2.1.3 A Family of PWM Strategies 36
2.2 Two Types of PWM Strategy 38
2.2.1 The Two Diagonal Power Switches Turn Off Simultaneously 39
2.2.2 The Two Diagonal Power Switches Turn Off in a Staggered Manner 41
2.3 Classification of Soft-Switching PWM Full-Bridge Converters 43
2.4 Summary 44
Reference 44

3 Zero-Voltage-Switching PWM Full-Bridge Converters 45
3.1 Topologies and Modulation Strategies of ZVS PWM Full-Bridge Converters 45
3.1.1 Modulation of the Lagging Leg 45
3.1.2 Modulation of the Leading Leg 47
3.1.3 Modulation Strategies of the ZVS PWM Full-Bridge Converters 47
3.2 Operating Principle of ZVS PWM Full-Bridge Converter 49
3.3 ZVS Achievement of Leading and Lagging Legs 54
3.3.1 Condition for Achieving ZVS 54
3.3.2 Condition for Achieving ZVS for the Leading Leg 54
3.3.3 Condition for Achieving ZVS for the Lagging Leg 54
3.4 Secondary Duty Cycle Loss 55
3.5 Commutation of the Rectifier Diodes 55
3.5.1 Full-Bridge Rectifier 56
3.5.2 Full-Wave Rectifier 57
3.6 Simplified Design Procedure and Example 59
3.6.1 Turn Ratio of Transformer 59
3.6.2 Resonant Inductor 59
5 Zero-Voltage-and-Zero-Current-Switching PWM Full-Bridge Converters

5.1 Modulation Strategies and Topologies of a ZVZCS PWM Full-Bridge Converter
5.1.1 Modulation of the Leading Leg
5.1.2 Modulation of the Lagging Leg
5.1.3 Modulation Strategies of ZVZCS PWM Full-Bridge Converters
5.1.4 Method for Resetting the Primary Current at Zero State

5.2 Operating Principle of a ZVZCS PWM Full-Bridge Converter

5.3 Theoretical Analysis
5.3.1 Peak Voltage of the Block Capacitor
5.3.2 Achieving ZVS for the Leading Leg
5.3.3 Maximum Effective Duty Cycle
5.3.4 Achieving ZCS for the Lagging Leg
5.3.5 Voltage Stress of the Lagging Leg
5.3.6 Blocking Capacitor

5.4 Simplified Design Procedure and Example
5.4.1 Transformer Winding-Turns Ratio
5.4.2 Calculation of Blocking Capacitance
5.4.3 Verification of the Transformer Turns Ratio and Blocking Capacitance
5.4.4 Dead Time between the Gate Drive Signals of the Leading Leg

5.5 Experimental Verification

5.6 Summary

References

6 Zero-Voltage-Switching PWM Full-Bridge Converters with Clamping Diodes

6.1 Introduction
6.2 Causes of Voltage Oscillation in the Output Rectifier Diode in ZVS PWM Full-Bridge Converters

6.3 Voltage Oscillation Suppression Approaches
6.3.1 RC Snubber
6.3.2 RCD Snubber
6.3.3 Active Clamp Circuit
6.3.4 Auxiliary Winding of Transformer and Clamping Diode Circuit
6.3.5 Clamping Diode Circuit

6.4 Operating Principle of the Tr-Lead-Type ZVS PWM Full-Bridge Converter
6.5 Operating Principle of the Tr-Lag-Type ZVS PWM Full-Bridge Converter 133
6.6 Comparisons of Tr-Lead-Type and Tr-Lag-Type ZVS PWM Full-Bridge Converters 138
 6.6.1 Clamping Diode Conduction Times 138
 6.6.2 Achievement of ZVS 139
 6.6.3 Conduction Loss in Zero State 140
 6.6.4 Duty Cycle Loss 140
 6.6.5 Effect of the Blocking Capacitor 140
6.7 Experimental Verification 143
6.8 Summary 146
References 147

7 Zero-Voltage-Switching PWM Full-Bridge Converters with Current Transformer to Reset the Clamping Diode Currents 149
7.1 Introduction 149
7.2 Operating Principle of the ZVS PWM Full-Bridge Converter with Clamping Diodes under Light Load Conditions 150
 7.2.1 Case I: $0.5V_{in}/Z_{r1} < I_{Lf}(t_1)/K < V_{in}/Z_{r1}$ (Referring to Figure 7.2a) 156
 7.2.2 Case II: $I_{Lf}(t_1)/K < 0.5V_{in}/Z_{r1}$ (Referring to Figure 7.2b) 156
7.3 Clamping Diode Current-Reset Scheme 158
 7.3.1 Reset Voltage Source 158
 7.3.2 Implementation of the Reset Voltage Source 160
7.4 Operating Principle of the ZVS PWM Full-Bridge Converter with Current Transformer 162
 7.4.1 Operating Principle under Heavy Load Conditions 162
 7.4.2 Operating Principle under Light Load Conditions 167
7.5 Choice of Current Transformer Winding-Turns Ratio 173
 7.5.1 Clamping Diode Current-Reset Time 173
 7.5.2 Output Rectifier Diode Voltage Stress 174
 7.5.3 Current Transformer Winding-Turns Ratio 174
7.6 Experimental Verification 175
7.7 Summary 179
References 180

8 Zero-Voltage-Switching PWM Full-Bridge Converters with Current-Doubler Rectifiers 181
8.1 Operating Principle 182
8.2 Realization of ZVS for the Switches 187