Contents

Contributors, ix
Manuscript reviewers, xi
Preface, xiii

1 Decoding and Encoding the “DNA” of Teaching and Learning in College Classrooms, 1
Michel A. Wattiaux

Introduction, 1
Teaching and learning: definitions, 1
Understanding learning, 2
Understanding teaching, 5
Implications for classroom design in the twenty-first century, 6
Final thoughts, 9
References, 10
Review questions, 11

Section 1: Quantitative and Population Genetics, 13

2 Mating Systems: Inbreeding and Inbreeding Depression, 15
David L. Thomas

Introduction, 15
Inbreeding, 15
Cause of inbreeding depression, 18
Quantifying inbreeding, 20
Genomics and inbreeding, 23
Summary, 23
Further reading, 24
References, 24
Review questions, 24

3 Genomic Selection, Inbreeding, and Crossbreeding in Dairy Cattle, 25
Kent Weigel

Introduction, 25
Genomic selection, 25
Crossbreeding, 28
Inbreeding and genetic defects, 29
Summary, 30
References, 30
Review questions, 31

4 Basic Genetic Model for Quantitative Traits, 33
Guilherme J. M. Rosa

Introduction, 33
Quantitative traits, 33
Expected value and variance: the normal distribution, 33
Basic genetic model for quantitative traits, 35
Heritability and selection, 35
Predicting rate of genetic change from selection, 36
Further reading, 37
References, 37

5 Heritability and Repeatability, 39
Guilherme J. M. Rosa

Introduction, 39
Heritability, 39
Estimation of heritability and variance components, 40
Prediction of breeding values and of response to selection, 41
Repeatability, 41
References, 42

6 Applications of Statistics in Quantitative Traits, 43
Hayrettin Okut

Population and sample, 43
Descriptive statistics, 43
Graphically examining the distribution of the data, 47
Normal distribution, 49
Exploring relationships between variables, 53
Summary, 59
Appendix 6.1, 62
Further reading, 62
References, 62
Review questions, 63

Section 2: Applications of Genetics and Genomics to Livestock and Companion Animal Species, 65

7 Genetic Improvement of Beef Cattle, 67
Michael D. MacNeil

Introduction, 67
Single trait selection, 67
11 Equine Genetics, 107
Jennifer Minick Bormann
Color, 107
Genetic defects, 110
Inbreeding and relationship, 113
Selection and improvement, 114
New technologies, 116
Further reading, 117
References, 119
Review questions, 119

12 Genetics and Genomics of the Domestic Dog, 121
Leigh Anne Clark and Alison Starr-Moss
Introduction to canine research, 121
The dog genome, 122
Uncovering the genetic basis of phenotypes, 125
Future challenges, 127
Summary, 128
Further reading, 129
References, 130
Review questions, 130

13 The Sheep Genome, 131
Noelle E. Cockett and Chunhua Wu
Investment in sheep genome research, 131
Overview of the sheep genome, 131
Genomic resources in sheep, 131
Application of genomic resources, 134
Summary, 134
References, 135
Review questions, 136

14 Goat Genetics and Genomic Progress, 137
Mulumebet Worku
Introduction, 137
Genetics and goat domestication, 137
Taxonomy, 138
Goat chromosome number and structure, 138
Patterns of inheritance, 139
Quantitative trait loci (QTL), 139
Progress in goat genomics, 139
Biotechnologies and goat genetics, 140
Summary, 140
Further reading, 140
Review questions, 141

Section 3: Molecular Genetics of Production and Economically Important Traits, 143

15 Bioinformatics in Animal Genetics, 145
José A. Carrillo and Jiuzhou Song
Introduction, 145
Bioinformatics and animal genetics, 145
The importance of bioinformatics in genomics research, 146
Gene expression, 148
Gene regulation, 150
Contents

15 Epigenetics, 151
Genomic data manipulation, 151
Bioinformatics perspectives in animal genetics, 153
References, 153
Review questions, 154

16 Genome-wide Association Studies in Pedigreed Populations, 155
Dirk-Jan de Koning
Introduction, 155
Methods and tools for GWAS in pedigreed populations, 159
Things to remember about analysis, 160
What did we miss?, 160
Acknowledgments, 162
References, 162

17 Molecular Genetics Techniques and High Throughput Technologies, 163
Wen Huang
Central dogma of molecular biology, 163
Review of properties of nucleic acids, 163
Purification of nucleic acids from cells, 164
Determining the quantity and purity of nucleic acids, 165
Polymerase chain reaction (PCR), 166
Determining the identity of DNA, 167
Concept of parallelization and high throughput assays, 168
Next generation sequencing technology, 171
Summary, 174
Further reading, 174
Review questions, 174

18 Single Genes in Animal Breeding, 177
Brian W. Kirkpatrick
Introduction, 177
Mapping and identifying single genes, 177
What types of DNA sequence alterations create single gene effects?, 180
Examples of single genes in animal breeding, 181
Summary, 185
References, 185
Review questions, 186

19 Molecular Genetics of Coat Color: It is more than Just Skin Deep, 187
Samantha Brooks
Introduction, 187
Pathways of melanocyte migration and differentiation from the neural crest, 187
Melanocyte signaling and regulation, 188
Melanin production and transport, 190
Conclusions, 192
Summary, 192
Key terms, 192
References, 193
Review questions, 195

20 Molecular Genetics-Nutrition Interactions in Ruminant Fatty Acid Metabolism and Meat Quality, 197
Aduli E.O. Malau-Aduli and Benjamin W.B. Holman
Introduction, 197
Genetics-nutrition interactions in ruminants, 197
Educating Australian undergraduate students in molecular genetics-nutrition interactions in ruminants, 198
Review of fatty acids and their manipulation, metabolism, and effect on quality in ruminants, 200
Concluding remarks, 205
Appendix 20.1: Fats and beef quality laboratory practicals, 206
Appendix 20.2: Sensory evaluation of meat quality in grain-fed versus grass-fed beef, 206
Appendix 20.3: Total lipid extraction from a beef cut for fatty acid analysis, 206
Appendix 20.4: Molecular genetics laboratory practical, 207
References, 212

21 Nutritional Epigenomics, 215
Congjun Li
Introduction, 215
Epigenomic machinery and gene regulation, 216
Nutrients and histone modification, 219
Nutrients and epigenetics in bovine cells: one definitive example of the nutrient-epigenetic-phenotype relationship, 221
Summary, 224
References, 224
Review questions, 225

Section 4: Genetics of Embryo Development and Fertility, 227

22 Genomics of Sex Determination and Dosage Compensation, 229
Jeni Cruickshank and Christopher H. Chandler
Genotypic sex determination (GSD), 229
Environmental sex determination (ESD), 232
Dosage compensation in mammals: X chromosome inactivation, 232
Activity patterns of sex chromosomes during gametogenesis, 233
Escape from X inactivation, 234
Abnormalities in chromosomal sex, 235
Sex reversal, 235
Summary, 236
Further reading, 236
Review questions, 237

23 Functional Genomics of Mammalian Gametes and Preimplantation Embryos, 239
Şule Doğan, Aruna Govindaraju, Elizabeth A. Crate, and Erdoğan Memili
Introduction, 239
Gamete and embryo development, 239
Table of Contents

Transcriptomics, 242
Proteomics, 248
Systems biology, 251
Conclusion, 253
Further reading, 253
References, 253

24 The Genetics of In Vitro Produced Embryos, 257
Ashley Driver

In vitro production: from livestock to humans, 257
Unlocking developmentally important genes in the pre-implantation embryo, 258
IVP: potential source of genetic alteration?, 259
PGD: genetic screening and human embryos, 259
Screening the embryo: to infinity and beyond?, 260
Embryogenetics: what’s next?, 260
Summary, 260
Key terms, 260
References, 261
Review questions, 262
Supplementary videos, 262

Section 5: Genetics of Animal Health and Biotechnology, 263

25 Understanding the Major Histocompatibility Complex and Immunoglobulin Genes, 265
Michael G. Gonda

Introduction, 265
Overview of the immune system, 265
The major histocompatibility complex loci, 267
Immunoglobulin loci, 268
Summary, 272
Key terms, 273
Further reading and references, 274
Review questions, 274

26 Livestock and Companion Animal Genetics: Genetics of Infectious Disease Susceptibility, 275
Michael G. Gonda

Introduction, 275
Why is studying the genetics of disease susceptibility important?, 275
Present applications of genetic selection tools for predicting disease susceptibility, 276
Current research into genetic selection for livestock health, 279
Challenges faced when studying the genetics of disease resistance in livestock, 280
Should we select for increased disease resistance?, 281
Summary, 281
Key terms, 281

Further reading, 282
Review questions, 282

27 Animal Genetics and Welfare, 283
Amit A. Fadl and Mark E. Cook

Introduction, 283
A continued need for genetic improvements and knowledge, 283
Welfare, 284
Genetic advancement and animal welfare, 284
Genetic selection that adversely affects farmed animal welfare, 286
Summary, 287
References, 287
Review questions, 288

Alison L. Van Eenennaam

What is animal biotechnology?, 289
Cloning, 290
Genetic engineering, 293
Ethical, moral, and animal welfare concerns, 297
Summary, 299
Further reading, 300
References, 300
Review questions, 301

29 Intellectual Property Rights and Animal Genetic Resources, 303
Jennifer Long and Max F. Rothschild

Introduction, 303
Old M/cDonald’s Farm meets Dolly (and her lawyer), 303
What is intellectual property?, 303
Forms of intellectual property, 303
Here a patent, there (not) a patent, 304
Forms of payment or remuneration, 305
Case studies, 306
E-I-E-I-O: The alphabet soup of domestic and international issues, 307
Public sector research and IP – domestic and international, 307
Access to animal genetic resources, 307
Summary, 308
Further reading, 308
References, 308
Review questions, 309

Index, 311