1

Decoding and Encoding the “DNA” of Teaching and Learning in College Classrooms

Michel A. Wattiaux
Department of Animal Science, University of Wisconsin–Madison, WI, USA

Introduction

The success of the human species on Earth has derived in part from its ability to understand, predict, manipulate, govern, and preserve biological lifecycles from the microscopic to the planetary scale. Since the rediscovery of Mendel’s work at the beginning of the twentieth century, the mechanisms of inheritance and nature versus nurture have been enduring themes for geneticists. What a living organism (plant, animal, or microbe) exhibits, its recorded performances, and its observed behaviors, depends in part upon the inherited genes, the environment, and their interactions. At the molecular level, the deoxyribonucleic acid (DNA) encodes the genetic instructions. The DNA, organized in chromosomes, is found in the nucleus of cells that make up tissues and organs, which in turn contribute to the proper functions of the organism as a member of a species in constant dynamic equilibrium with other components of an ecosystem. Irrespective of the unique contribution of molecular biology, cellular and organismal physiology, ecology, and evolution to the field of biology as a whole, DNA is the molecule that fundamentally connects these disciplines to each other. Is there such a thing as the “DNA” of teaching and learning? What are the fundamental structures and processes that underpin the education of human beings? Could one look at kindergarten, primary, secondary, and higher education, the household, the workplace, the places of worship, the public squares, and public libraries as places of teaching and learning that form a continuum made of distinct but interacting parts in one’s life, and the life of human communities? Could we think of these parts as forming cultural heritages and educational traditions that humans pass on from one generation to the next? If so, what are the roles of institutions of higher education and what are their functions? What educational purpose do they serve when four years on a university campus is approximately 5% of one’s lifespan (Figure 1.1)? Is a scientific fact to critical thinking what DNA is to a gene? Could we imagine teaching and learning as the two complementary strands of a DNA molecule where the information that has been acquired by previous generations is stored and preserved, but where mechanisms for change during duplication are essential to allow for adaptation to changing conditions?

In this chapter we have attempted to address what students do when they learn and what teachers do when they teach at a fundamental level. Our goal was to summarize the current literature only to the extent necessary to challenge long-held views about the role of the instructor, the role of the student, and the traditional instructional design of a college classroom. We hope that by analyzing definitions, exploring theories of learning, and reviewing teaching-related institutional reforms, we have created a context and laid the foundation for a deeper understanding of an instructor’s role as the designer of a learning environment. The overarching aim is greater fulfillment and reward for both the instructor and the students as they engage in a college classroom intended to equip the latter for a successful career in the twenty-first century.

Teaching and learning: definitions

Teaching and learning are multifaceted and closely related concepts as revealed in the subtleties of their multiple definitions (Table 1.1 and Table 1.2). A close look at these definitions shows the intricacies of the relationships between teaching and learning. For example, although teaching – the act, practice, or profession of a teacher – is to cause to know, to impart knowledge or skills; to teach is also defined as to accustom to some action or attitude (item 1c, Table 1.1) or to guide a study (item 2, in Table 1.1). Not surprisingly, knowledgeable individuals are not the only sources of teaching. One’s own experience can be a “teacher” (item 4b, Table 1.1). Similarly, experience may cause learning to occur. To learn – to gain knowledge, understanding of, or skill in – can be completed by the self, by instruction or by experience as illustrated in Table 1.2 items 5a, 5b, and 5c, respectively. The verbs describing teaching and learning are important because they reflect and reveal aspects of the two contrasting, yet complementary, learning theories that will be discussed next: behaviorism and constructivism. Although the former implies a cause and effect relationship between teaching and learning, the latter describes the relationship in broader associative terms. For example item 5c (Table 1.2) and item 4b (Table 1.1) can be combined to reflect a constructivist approach to learning that emphasizes mental processes: “First year college is a learning experience that taught us our limitations.”

These definitions reveal the diversity of interpretation, and highlight the complexity of the transactions that take place in the classroom. Similarly, the adherence to either learning theory has
to create more holistic forms of education, Kaufman et al. (1971) pleaded with his colleagues in the animal sciences more than 40 years ago to be mindful of their classroom design as they wrote:

> Education experiences in a course should include the recognition of cognitive domain (objectives which deal with … knowledge and intellectual abilities and skills), the affective domain (objectives which describe changes in interest, motivation attitudes, values and aspirations) and the psychomotor domain (objectives which emphasize manipulation of materials or objects or action which requires neuromuscular coordination).

In addition to these three domains, researchers have recognized the importance of reflection as an essential component of learning (Kolb, 1984). The awareness or analysis of one’s own learning or thinking processes, referred to as metacognition, has been incorporated in a recently revised version of the taxonomy of learning that identified four knowledge dimensions and characterized them as follows (Anderson and Krathwohl, 2001; Krathwohl, 2002):

- **Factual knowledge**: The basic elements that students must know to be acquainted with a discipline or solve a problem in it;
- **Conceptual knowledge**: The interrelationships among the basic elements within a larger structure that enable them to function together;
- **Procedural knowledge**: How to do something; method of inquiry, and criteria for using skills, algorithms, techniques, and methods;
- **Metacognitive knowledge**: Knowledge of cognition in general, as well as awareness and knowledge of one’s own cognition.

Understanding learning

Research in learning

Historically, the data on how people learn have come from the field of educational psychology, which is the study of how humans learn in educational settings. Most of the current recommendations and “best teaching practices” have been derived from more than 100 years of research in child development and efforts to bring learning research into the primary and secondary education (“K-12”) classrooms (Bransford et al., 2000). The insights gained from research addressing issues of gender and ethnicity, and specialized fields of investigation targeted at gifted students, students with disabilities, or students from diverse socioeconomic backgrounds have contributed substantially to creating more inclusive and effective learning environments for all. Measures of teaching and learning success have included students’ score on standardized tests, reduction in achievement gaps (differential grades of students “at-risk”), and years to graduation and dropout rates. However, there are numerous reasons to caution against simple extrapolation of the K-12 literature to the university classroom. As illustrated in Figure 1.1, college students are in transition from late adolescence (“teenagers”) to young adulthood, and thus, in creating learning environments for their students, university instructors may take heed of the emerging literature on adult and continuing education (Cross, 1981; Kazis, 2007) and adult learning theory (Merriam, 2001; 2008). Research in adult and continuing education has focused not only on skills required of individuals interested in promotion within their organization...
Decoding the “DNA” of Teaching and Learning

is apt to be suppressed. Thorndike believed that a neural bond would be established between the stimulus and response. Learning takes place when the bonds are formed into patterns of behavior. However, Burrhus Skinner (1904–1990) considered to be the “grandfather of behaviorism” in educational settings focused on cause-and-effect relationships that could be established by observation, arguing that no scientific measure could address the mental processes that operate in the brain during learning (Roblyer et al., 1997). To Skinner, teaching that brings about learning is a process of arranging effectively “contingencies of reinforcement” or, in other words, arranging situations for the learner in which reinforcement is made contingent upon a correct or desired response. Thus, behaviorists believe that people learn (i.e., change behavior) when stimuli are provided and a voluntary response is either reinforced or punished, a theory referred to by psychologists as operant conditioning (Figure 1.2). Teachers and instructional materials are the antecedents/stimuli, whereas the skills that the students demonstrate are the responses/behaviors (Figure 1.2a). Behaviorists concentrate on immediate observable changes in performance (e.g., test scores, athletic level) as indicators of learning and thus they would agree that carefully prepared didactic interactions (e.g., delivery of highly structured lectures), repetition (drills, exercises, practice, etc.) and prompt feedback are important in promoting learning (Figure 1.2b). Skinner believed that high-level capabilities such as critical thinking and creativity could be taught in this way; it was simply a matter of establishing “chains of behavior” through principles of reinforcement.

Behaviorism, however, does not explain all the phenomena observed in learning situations, and as a learning theory it has its limitations. First, it does not account for “internal influences” such as mood, thoughts, and feelings of the learner (i.e., it does not consider internal mental states, emotions, or consciousness).

Behaviorism
The behaviorist views of learning emphasize dualisms: giver and receiver, stimuli and response, right and wrong, reward and punishment. At its roots, behaviorism emerged from early research that succeeded in conditioning (i.e., “training”) animals to a certain reflex behavior (a response) from sufficiently repeated pairings with a stimulus, which previously did not elicit the response. This type of research was pioneered by the Russian physiologist Ivan Pavlov (1849–1936) and has led to what is now referred to as classical conditioning. Edward Thorndike (1874–1949), another pioneer of this kind of learning formulated the “Law of Effect,” which implies that behavior that brings about a satisfying effect (reinforcement) is apt to be performed again, whereas behavior that brings about negative effect (punishment) is apt to be suppressed. Thorndike believed that a neural bond would be established between the stimulus and response. Learning takes place when the bonds are formed into patterns of behavior. However, Burrhus Skinner (1904–1990) considered to be the “grandfather of behaviorism” in educational settings focused on cause-and-effect relationships that could be established by observation, arguing that no scientific measure could address the mental processes that operate in the brain during learning (Roblyer et al., 1997). To Skinner, teaching that brings about learning is a process of arranging effectively “contingencies of reinforcement” or, in other words, arranging situations for the learner in which reinforcement is made contingent upon a correct or desired response. Thus, behaviorists believe that people learn (i.e., change behavior) when stimuli are provided and a voluntary response is either reinforced or punished, a theory referred to by psychologists as operant conditioning (Figure 1.2). Teachers and instructional materials are the antecedents/stimuli, whereas the skills that the students demonstrate are the responses/behaviors (Figure 1.2a). Behaviorists concentrate on immediate observable changes in performance (e.g., test scores, athletic level) as indicators of learning and thus they would agree that carefully prepared didactic interactions (e.g., delivery of highly structured lectures), repetition (drills, exercises, practice, etc.) and prompt feedback are important in promoting learning (Figure 1.2b). Skinner believed that high-level capabilities such as critical thinking and creativity could be taught in this way; it was simply a matter of establishing “chains of behavior” through principles of reinforcement.

Behaviorism, however, does not explain all the phenomena observed in learning situations, and as a learning theory it has its limitations. First, it does not account for “internal influences” such as mood, thoughts, and feelings of the learner (i.e., it does not consider internal mental states, emotions, or consciousness).

Behaviorism
The behaviorist views of learning emphasize dualisms: giver and receiver, stimuli and response, right and wrong, reward and punishment. At its roots, behaviorism emerged from early research that succeeded in conditioning (i.e., “training”) animals to a certain reflex behavior (a response) from sufficiently repeated pairings with a stimulus, which previously did not elicit the response. This type of research was pioneered by the Russian physiologist Ivan Pavlov (1849–1936) and has led to what is now referred to as classical conditioning. Edward Thorndike (1874–1949), another pioneer of this kind of learning formulated the “Law of Effect,” which implies that behavior that brings about a satisfying effect (reinforcement) is apt to be performed again, whereas behavior that brings about negative effect (punishment)
Second, it does not account for other types of learning that occur without the use of reinforcement and punishment, such as learning based on intrinsic motivation (i.e., learning for the sake of learning). Rewards for attaining a gradually increasing standard of performance may enhance intrinsic motivation in some situations, but undercut it in others, such as when the learner starts with a high level of intrinsic motivation. Third, because the theory assumes that knowledge exists in concrete bits of information, fact and figures independent and separate of the learner, it does not provide a space for the learner to evaluate or reflect as part of the learning process. Thus, in a behaviorist learning environment, a student could confidently assume that the professor knows the answer to any question, and it can only be right or wrong. Finally, behaviorism does not easily account for change in previously established behavioral pattern in response to introduction of new information. In short, excessive reliance on behaviorism in the classroom has led to severe critiques and warnings against the risk of indoctrinating students rather than educating them (Schillo, 1997). Whereas behaviorism is not as dominant today as it was during the middle of the twentieth century among educational psychologists, it has nevertheless provided useful insights for the development of effective classroom instruction techniques (Skinner, 1968), classroom management techniques, and computer-assisted learning, which have been deeply rooted in this approach to learning (Roblyer et al., 1997).

Constructivism

The research in child development by the Russian psychologist Lev Vygotski (1896–1934), the Swiss psychologist Jean Piaget (1896–1980), and many others in the second half of the twentieth century, has provided the foundation for the modern movement in education broadly referred to here as constructivism. Toward the end of his life, Piaget challenged the policymakers and educational administrators of his time to rethink the goals of the schools and the educational system as a whole. He asked:

… The question is whether schools serve to train children and individuals who are capable of learning what is already known, to repeat what has been gained by prior generations, or to develop creative and innovative minds capable of inventing, discovering, starting at school and then throughout their entire lives.

(Piaget, undated.)

The constructivist view of learning emphasizes active mental processes (the very processes deemed unobservable by behaviorists and thus unworthy or scientific experimentation) and the social context in which it takes place. Rather than “acquiring” new knowledge, the learners build their own knowledge because they naturally seek meaning. The learners bring internal motives, distinct levels of aptitudes and consciousness, past experiences, a variety of world-views, preconceptions, and even cultural biases to a learning situation. Learning occurs when one has internalized information and created their own representation of reality by making connection with prior knowledge (or skills) through both individual and social activities. Two inter-related core concepts espoused by constructivists are the zone of proximal development (Vygotski, 1978) and scaffolding (Wood et al., 1976), which have been merged in the illustration presented in Figure 1.3. The zone of proximal development is “the distance between the current developmental level as determined by independent problem solving and the level of potential development as determined through problem solving under guidance from more competent peers or the guidance of an adult” (Vygotski, 1978). It is in the zone of proximal development that teachers must focus their attention. Scaffolding is a process through which a teacher or a more competent peer helps focus on the elements of the task that are initially beyond the reach of the learner’s capacity, but within reach with adequate support. Scaffolds are teaching and learning structures put in place to allow the learner to achieve higher level of performances on their own. However, just as scaffolds in building construction are eventually no longer needed and are removed, instructional scaffolding should eventually become unnecessary as the newly added knowledge or skills have been completely internalized (i.e., have become part of an expanded mental structure or set of skills). Instructional scaffolding is thus the temporary means by which experts (defined here as individuals with higher performance skills than the learner) assist a novice or an apprentice on the path to more experience and greater expertise. For the most part, constructivists see teaching and learning as a highly contextualized process mediated through social interactions.

Thus, constructivism has helped teachers understand that classroom design and implementation should account for diversity in the learners, should rely on a variety of teaching methods and should include formative assessments techniques (CATs) as ongoing processes. Numerous CATs have been tested and are now available (Angelo and Cross, 1993; FLAG, 2012). Furthermore, in a classroom designed according to constructivist principles, the instructor’s main role has shifted from a mode of delivery of course content to that of a guide, a facilitator, or a learning coach. However, it would be a misconception to believe that constructivism demands that instructors never “tell” students nor provide “formal” instruction for fear of interfering with their knowledge construction.
Constructivism assumes that all knowledge builds on the learner’s previous knowledge, regardless of how one is taught. Thus, even listening to a lecture may involve active attempts to construct new knowledge. However, a more typical constructivist classroom has teams of students working together to form a “knowledge-building” (i.e., learning) community. Such classroom environment could be characterized, “among other things,” by activities such as in-class group quiz and problem sets, or out-of-class inquiry-based team projects followed by discussions, written reports, or oral presentations as primary modes of sense-making.

Thus, constructivists would agree that student learning is the focal objective of any instruction. Activities should be student-level appropriate. Constructivist instructors have the ability to perceive students’ conceptions of material from the students’ perspective. They will see students’ “mistakes” as reflecting a particular stage of development. Thus, constructivist instructors do not fall victims to the “expert blind spot” (i.e., the inability to remember what it was like to be a novice learner of the material at-hand; Nathan and Petrosino, 2003). In addition, constructivist instructors recognize that substantial learning occurs in periods of conflict, surprise, over time, and through social interaction (Biggs, 1996; Wood, 1995).

Transferable and life-long learning skills and aptitudes
As illustrated in Figure 1.1, half of one’s lifespan is spent in professional settings during which continuing education is becoming increasingly part of the expectation. As indicated earlier, effective teaching and learning in the college classroom should be informed also by the literature on adult and continuing education. In other words, learning at the university should not only be about what is measurable in the short term or what can be done with temporary assistance of a knowledgeable instructor, but should also be about learning to be an adaptable life-long learner, which comes in part with the ability to reflect and exercise metacognition. Wingate (2007) described “learning to learn” in college as first, understanding “learning” and becoming an independent learner, and second, understanding “knowledge” and becoming competent in constructing knowledge within the discipline (Table 1.3). In addition to delivering knowledge, higher education curricula and classrooms should be designed to prepare students with a set of skills and experiences that reflect certain habits of the mind (Wattiaux, 2009). Furthermore, the curricula and the classroom should emphasize transferable skills and aptitudes that are relevant in most professional situations, such as oral and written communication, problem solving, creative thinking, interpersonal skills (e.g., respect of diverse views), leadership skills (e.g., self-motivation, decisiveness, risk-taking), and personal aptitudes (e.g., integrity, reliability, diligence) among many others (Assiter, 1995). Transferable and life-long learning skills are important not only as a means for university graduates to stay current in their professional fields, but also for personal enrichment and enhancement of quality of adult lives (Dunlap and Grabinger, 2003). Authors have grouped life-long learning skills in three categories:

<table>
<thead>
<tr>
<th>(a) Becoming competent in independent learning</th>
<th>(b) Becoming competent in knowledge construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gaining awareness of conceptions of learning and knowledge in the discipline</td>
<td>2. Approaching information (lectures, texts) in a focused and critical manner</td>
</tr>
<tr>
<td>2. Assessing one’s current abilities as learner</td>
<td>3. Setting short-term and long-term goals and targets</td>
</tr>
<tr>
<td>3. Setting short-term and long-term goals and targets</td>
<td>4. Planning action for reaching targets</td>
</tr>
<tr>
<td>4. Planning action for reaching targets</td>
<td>5. Monitoring progress in reaching targets</td>
</tr>
</tbody>
</table>

Understanding teaching
Research in teaching
In contrast to research on the learner and the learning, the research on the teacher and the teaching has been more limited and has a shorter history, especially in institutions of higher education. Over the course of the twentieth century, higher education has not benefited to the same extent as K12 from the type of research in which a community of educational scientists uses their training and expertise to study teaching effectiveness. Furthermore, with the availability of students’ performance on standardized tests as a metric of student learning, researchers have revealed what effective K12 teachers do in their classrooms and the extent of their influence on students’ performance (Stronge et al., 2011). In comparison, the quality of undergraduate education in institutions of higher education has suffered for the lack of attention, especially as research accomplishments prevailed as the principal means of recognition and prestige for both individual scientists and their institutions throughout the second half of the twentieth century (Serow, 2000). However, about 20 years ago, the Carnegie foundation for the advancement of teaching released the Boyer’s report: “Scholarship Reconsidered: Priorities of the Professoriate” (Boyer, 1990) challenging universities to expand the definition of scholarship beyond the realm of scientific discoveries. The report identified three other types of scholarships that had been core to the professional identity of university professors in the United States since the inception of the land grant system, namely, the scholarship of teaching, the scholarship of outreach, and the scholarship of integration. Since then, at least two distinct areas of research to enhance the quality of teaching in higher education have emerged. The first area focused on changing the institution whereas the second focused on changing the classroom.

Changing the institutional paradigm
Throughout the second half of the twentieth century there were few institutional concerns about the quality of undergraduate
education. As institutions were competing to hire the most promising scientists, the assumption that good researchers were good teachers was—and unfortunately, for the most part remains—pervasive. The presence of a disciplinary expert in the classroom was deemed a sufficient guarantee of teaching quality. However, since Boyer’s report (Boyer, 1990), research has been conducted to guide and document institutional reform and there is now an increasing body of literature on institutional structure and organization to sustain and advance the educational mission of the university and the instructors within (Dooris, 2002). The following examples illustrate the issues that have been documented through this type of research:

- The relationship between research and teaching (Marsh and Hattie, 2002), and the belief system about teaching at research universities (Kane et al., 2002; Wright, 2005);
- The financial compensation disparity between teaching and research (Fairweather, 2005);
- The faculty evaluation and accountability system (Arreola, 2000);
- The reward system through promotion and tenure (Keele, 2008) and whether multiple forms of scholarship has been increasingly rewarded or not in the last decade (O’Meara, 2005; 2006);
- The current systems of expectations and standards of faculty performances in research universities (Colbeck, 2002; Hardré and Cox, 2009).

Among current concerns is an institutional failure to support adequate teaching-related training for graduate students aspiring to a professional career in academia. At the turn of the twenty-first century, roughly 70% of instructors in the 3200 institutions offering four-year degrees in the United States had received their Ph.D. from one of the roughly 150 “Research and Doctoral” (R&D) institutions (Bob Mathieu, personal communication). Most Ph.D. programs at R&D institutions do not encourage, let alone require, training in undergraduate education and, therefore, most of the current instructors in the United States’ higher educational system were utterly unprepared to engage undergraduate students in a semester-long course as they began their academic career. Although some may argue otherwise, there are some signs of change as an increasing number of R&D institutions have begun to offer their graduate students and post-doctoral trainees opportunities to gain knowledge, skills, and meaningful experiences related to undergraduate education (CIRTL, 2012). Furthermore, teaching experience and teaching philosophy have increasingly become points of differentiation in the screening and selection of candidates for faculty positions.

Changing the classroom paradigm

In parallel to institutional reform that began in the 1990s; another important movement emerged as committed educators pointed to a necessary paradigm shift from teaching to learning in the classroom (Barr and Tagg, 1995; Bass, 1999; 2012; Shulman, 1999). Focusing on student learning outcomes rather than the instructor teaching performance has led to what is known as the Scholarship of Teaching and Learning (SoTL). Committed teachers have taken upon themselves to conduct “classroom research” as a way to improve the quality of teaching and learning within their own discipline (Cross and Steadman, 1996; Reagan et al., 2009). Typically, this type of research involves an institutional review board (IRB) approved data collection protocol designed to address pedagogical issues with the intent of contributing to a body of peer-reviewed literature, as illustrated in Crouch and Mazur (2001), Wattiaux (2006), or Wattiaux and Crump (2006). As SoTL gained recognition, confusions arose for lack of a clear definition and differentiation from “good” teaching or “excellent” teaching. Fortunately, Kreber (2002) outlined the distinction among excellence in teaching, expertise in teaching, and the SoTL. In addition, the same author helped bring some consensus to delineate the defining features of SoTL, which accordingly is an activity that, in the context of promoting student learning, meets a series of criteria. For example, it requires high levels of discipline-related expertise, it should break new ground, be replicable, peer-reviewed, and provide significant or impactful insights that can be elaborated upon by others (Kreber 2003).

Although Asmar (2004) described successful attempts to engage the faculty of a research-intensive university to improve their teaching practices, SoTL has met with resistance for a number of reasons. Our current Ph.D. programs rarely engage graduate students in issues related to undergraduate teaching and learning. A lack of knowledge and training is likely associated with a lack of confidence, interest, and motivation for SoTL as a basis to build a successful academic career. Similarly, institutional priorities and reward systems rarely foster faculty engagement in SoTL. According to Boshier (2009) low adoption of SoTL may be related also to continued confusion about the concept, the difficulty to operationalize classroom research in absence of appropriate resources (e.g., lack of expertise and financial support), the over-reliance on peer-review publications as the main criteria to measure scholarship, and the fact that SoTL fits poorly in the twenty-first century modus operandi of universities as businesses delivering education as a commodity to be sold. Notwithstanding the uncertain future of the SoTL in its current form, college science classroom research (the contextualized environment in which the teaching and learning is taking place) has been identified along with brain research (Taylor and Lamoreaux, 2008) and cognitive psychology (which focuses on mental processes including how people think, perceive, remember, speak, and solve problems) as the three components of trans-disciplinary research that will advance our ability to create effective university classroom in the twenty-first century (Wieman, 2012). Furthermore, it is clear that engaging in SoTL should be dependent upon one’s institutional context and professional priorities. Not all STEM (science, technology, engineering, and math) scientists should be expected to become educational scientists within their classroom. However, the difference between excellence in teaching and SoTL is not entirely categorical as most features and evaluation criteria lay on continuous scales most indicative of one or the other (Wattiaux et al., 2010). For example, reflective practices (Kane et al., 2004), classroom assessment techniques (FLAG, 2012), and engagement in faculty learning communities are simple steps that may transform one’s classroom overtime and place an instructor on the path towards excellence in teaching without necessarily engaging in SoTL.

Implications for classroom design in the twenty-first century

Architecture of an effective classroom

As described so far in this chapter, the implicit or explicit assumptions made about learning, the institutional context, and the inclination of an instructor to engage in teaching improvement initiatives are only some of the factors that influence the instruc-
tional design of a university classroom. Interestingly, undergraduate instructors willing to reconsider the architecture of their classroom may act at times as behaviorists (“tell me what to do!”) and at times as constructivists (“let me try this!”). The propensity toward one or the other may depend upon professional expectations and personal factors such as intrinsic motivation, level of knowledge, prior experience, prospect of reward, and the context of a particular classroom (e.g., the type of course and the intended learning outcomes).

Regardless of the context, the seven principles for good practice in undergraduate education promoted since the late 1980s (Chickering and Gamson, 1987) remain a solid foundation and a useful guide in designing an impactful undergraduate classroom. These principles are:

1. student-faculty contact,
2. cooperation among students,
3. active learning,
4. prompt feedback,
5. time on task,
6. high expectations, and
7. respect for diverse talents and ways of learning.

Since then, however, books have been written in designing effective courses and curricula (Diamond, 1998; Wiggins and McTighe, 2006). This recent literature emphasizes the importance of proper alignment among three essential components of any course syllabus: the intended learning outcomes, the teaching and learning activities, and the learning assessment (i.e., the grading scheme). It is not difficult to appreciate that this type of alignment serves both the constructivist-leaning classrooms (Biggs, 1996) and the behaviorist-leaning ones. As designers of learning environments, instructors should make these alignments deliberately at the planning stage or as part of the revamping of a course. Table 1.4 was constructed to illustrate what instructors “do” and correspondingly what students “do” at each of the six cognitive processes recently published as a revised Bloom’s taxonomy of learning (Krathwohl, 2002). Instructional activities, learning activities, how students demonstrate learning, and how instructors assess learning should vary substantially given the intended learning outcome (remember, understand, apply, analyze, evaluate, and create). Thus, there should be a conscious effort to provide the learner with clearly stated goals, activities that are appropriate for the task, and assessment criteria that reflect the intended goals. In their book Understanding by Design, Wiggins and McTighe (2006) coined the phrase “backward design” to describe instructional design as a process that includes the following three sequential steps:

1. Identifying the desired learning outcomes;
2. Determining the acceptable evidences [of learning];
3. Planning the instruction and learning experience.

Although this three-step approach may be counterintuitive, it demands that instructors focus first on the “end-point” (i.e., the goal), then determine how to assess the desired knowledge or skills to be gained (e.g., create the exams, homework, or rubrics for written reports that will be used to assign grades), and finally decide on what tools to use from one’s teaching toolbox to provide students with the most appropriate learning experience (i.e., instruction). Note that the backward design is a scalable process that may be applied not only when writing the syllabus

Table 1.4 Example of an alignment scheme among instructors’ activities, students’ activities and tests to assess learning using the revised Bloom’s Taxonomy (Krathwohl, 2002) as a frame of reference.

<table>
<thead>
<tr>
<th>Cognitive process dimension</th>
<th>Examples of instructional activities (instructor)</th>
<th>Examples of learning activities (student)</th>
<th>Examples of how students demonstrate learning</th>
<th>Examples of how instructors assess learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remember: Ability to retrieve knowledge from long-term memory</td>
<td>Lecture; Tell; Show</td>
<td>Read; Review; List; Match</td>
<td>Memorize and recite; Name; Define; Recognize</td>
<td>True-False; Multiple choices</td>
</tr>
<tr>
<td>2. Understand: Ability to make sense of oral, written, mathematical or graphical information</td>
<td>Discuss (Q&A); Demonstrate; Illustrate</td>
<td>Give examples; Explain; Solve problems; Infer</td>
<td>Write a summary; Complete worksheet; Compare</td>
<td>Short answers; Mini-essay; Calculation; Comparison</td>
</tr>
<tr>
<td>3. Apply: Ability to carry out or use a procedure in a given situation</td>
<td>Train; Coach; Guide</td>
<td>Work on scenarios; Use a procedure</td>
<td>Solve real-world problems</td>
<td>Written report; Oral presentation</td>
</tr>
<tr>
<td>4. Analyze: Ability to break material into parts, detect connections and an overall purpose</td>
<td>Provide resources; Model</td>
<td>Compare sources of information, scenarios, or procedures</td>
<td>Organize information; Differentiate associations from causality</td>
<td>Assess a literature review; Evaluate oral answers or reasoning</td>
</tr>
<tr>
<td>5. Evaluate: Ability to make judgments based on criteria and standards</td>
<td>Provide resources; Facilitate</td>
<td>Assess; Critique; Check</td>
<td>Provide feedback to peers</td>
<td>Assess student’s ability to provide feedback to peers; Portfolio</td>
</tr>
<tr>
<td>6. Create: Ability to put elements together to form a coherent and original product</td>
<td>Provide resources; Collaborate</td>
<td>All of the above as needed</td>
<td>All of the above as needed</td>
<td>Assess the design and content of a web page or a research proposal</td>
</tr>
</tbody>
</table>

Listed here as “learning objectives”: listed in increasing order of complexity and level of abstraction (from concrete to abstract). Note that the mastery of each simpler category is assumed to be a pre-requisite to mastery of the next more complex one. Level 3 and above are usually referred to as “critical-thinking” skills.
Long learning in the design of a college classroom may not only lay the foundation for life-long learning but may also contribute to enhance academic achievement (Masui and De Corte, 2005).

Instructional features for life-long learning

Separate from the constructivist approach to instructional design discussed so far, there are five instructional features to foster life-long learning as suggested by Dunlap and Grabinger (2003):

- Develop student autonomy, responsibility, and intentionality (e.g., set learning goals, assess current knowledge, set time lines);
- Provide intrinsically motivating learning activities (e.g., relate learning to personal needs and goals, solve problems that students might encounter in their non-school lives, place the learners in authentic decision-making roles to which they may aspire);
- Enculturation into a community of practice (e.g., help students learn the habits of minds, the tools and approaches of the professionals they regards as their role models – a concept referred to as “signature pedagogy”: Reagan et al., 2009; Watti-aux, 2009);
- Encourage discourse and collaboration (e.g., engage in debates, authentic team-work, or peer evaluation and review);
- Encourage reflection (e.g., engage students in oral and written self-evaluation of their learning with journals, online posting or portfolios).

As suggested by Onderdonk et al. (2009), adult and continuing education should be essentially problem-centered rather than content-centered. Incorporating instructional features for life-long learning in the design of a college classroom may not only lay the foundation for life-long learning but may also contribute to enhance academic achievement (Masui and De Corte, 2005).

Toward an active learning classroom

A comparative analysis of what instructors do and what students do in two contrasting classroom environments has been illustrated in Figure 1.4. In the traditional lecture-based interactions (Figure 1.4a), an instructor typically spends considerable amounts of time prior to class interacting with the material to find the “best way” to present it so that students can “understand” it. A major assumption of this approach is that there is one way to deliver the lecture so that (almost) all students in the class will grasp the material. Not only this approach disregard the diversity in ways of understanding a body of knowledge but it also implies that the instructor “pitch” the material at a level that is neither too boring nor too challenging for an “average” student in the class. Furthermore, using this approach, instructors are at high risk of missing the “target” because of the so-called expert blind spot discussed previously (Nathan and Petrosino, 2003). In this type of classroom, students are rarely encouraged to engage deeply with the material until a scheduled exam is approaching. Students will be rewarded (positively reinforced) with good grades or punished (negatively reinforced) with poor grades based essentially on a limited number of test scores. Instructors following this model of instruction are likely to be teacher-centered and content-delivery oriented. Also, they are likely to view their role as imparting the content of a discipline rather than supporting students’ growth and development (Wingate, 2007).
In contrast, Figure 1.4(b) was constructed to illustrate how this author has attempted to use elements of the constructivist learning paradigm, the backward design process and instructional technology (a course website) in an attempt to create a more student-centered and content-centered learning environment in classes with enrollment of 20–30 students. First, the instructional website serves in part as the repository and mode of delivery of course content that students are expected to view or read as pre-assigned material, and interact with using online quizzes and study guides. The required posting of short comments, questions, or concerns as “blog entries” provides the instructor with an assessment of students’ levels of engagement and understanding of the material prior to class. Using students’ own “thinking,” as a form of formative assessment, the instructor can prepare class activities to engage students in high-order cognitive processes described in Table 1.4. Table 1.5 provides examples of in-class activities that build on students’ preparation and thus substitute partially or entirely for PowerPoint ® presentations. Note also in Figure 1.4(b) that after class, students are expected to continue interact with the material and document their learning by completing out-of-class assignments (workbook, project-based activities, etc.). Eventually students’ grades are assigned as a combination of level of engagement (demonstrated by out-of-class participation), demonstrated skills gained in completing multi-stage class projects, and test scores reflecting knowledge and understanding of course content. Although this approach to grading students has proven useful, measuring student learning remains a tremendous challenge. The documentation of a three-year transition from lecturing (Figure 1.4a) to using discussion as the primary mode of instruction as described in Figure 1.4(b) in an upper class dairy nutrition course can be found in Wattiaux and Crump (2006).

Table 1.5

Examples of learning activities that may be used to substitute for PowerPoint lectures: What to do in a 50 minute lecture to engage students?

<table>
<thead>
<tr>
<th>Simple and easy to implement in-class “shared” learning activities</th>
<th>More elaborate and complex in-class learning activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pairs of students discuss pre-assigned material and identify an issue for subsequent discussion with the class</td>
<td>• Wet lab or computer lab to synthesize and/or provide practical applications and illustrations of principles, concepts and theories</td>
</tr>
<tr>
<td>• Instructor addresses issues raised by students in pre-class web-postings (“discussion board”)</td>
<td>• Instructor demonstrates a procedure</td>
</tr>
<tr>
<td>• Students complete homework or previous year’s exam in groups</td>
<td>• Field trips</td>
</tr>
<tr>
<td>• Students take a group quizzes followed by discussion of quiz items</td>
<td>• Debates</td>
</tr>
<tr>
<td>• Instructor uses online material (videos)</td>
<td>• Case studies</td>
</tr>
<tr>
<td>• Introduce a case-scenario and instruct students to answers multiple choices questions and make recommendations, or predict outcomes based on the information provided</td>
<td>Classroom Assessment Techniques (CATs)</td>
</tr>
<tr>
<td>• Students make short oral presentations (5-min/student) or larger (group based) PowerPoint presentations of out-of-classroom projects</td>
<td>• Students completed a minute paper</td>
</tr>
<tr>
<td></td>
<td>• Mini instructional PowerPoint lecture, only to introduce a topic or synthesize a topic</td>
</tr>
<tr>
<td></td>
<td>• Students are placed in teams and instructed to draw a figure to illustrate a concept followed by presentation to the whole class</td>
</tr>
<tr>
<td></td>
<td>• Peer Instruction (Crouch and Mazur, 2001)</td>
</tr>
</tbody>
</table>

Final thoughts

Given its intentionality, student learning should be inherently related to teaching in the college classroom. Nevertheless, as anyone who has taught but one course knows – and if students’ grades or course evaluations are any indications – teaching and learning may not always be as closely related to one another as one would wish for. It is to be expected that large differences in student learning outcomes occur in response to a given instructional environment. However, research results are becoming increasingly clear. Although the teaching and the learning are rather dichotomous in teacher-centered classrooms, the two are much more tightly correlated when the instructional design incorporates constructivist and life-long learning features.

To end, let’s return to, and build on, our introductory metaphor. As Mendel (1822–1884) was attending his experimental plots on plant hybridization in the Augustinian Abbey of Central Europe, another naturalist, the Englishman Charles Darwin (1809–1882) was making history by publishing a book called *On the Origin of Species* … after traveling around the world. Both men were profoundly intrigued by the mysteries of nature and biological variation. The former gave us the basic laws of inheritance, whereas the latter gave us the theory of evolution. Their work was, however, only the beginning of the journey. As the genome of human and other species have been decoded by the end of the twentieth century, geneticists have moved from reading the letters of the genetic alphabet to reading its words, sentences, paragraphs, and now chapters of genetic information built in the DNA. New fields of investigations (e.g., epigenetics) and applications (e.g., genomics) have emerged. Although advances in our understanding of biological processes in the last 150 years have been mind-boggling, one could wonder about the trajectory of scientific research in teaching and learning. Thorn-dike Skinner, Piaget, and Vygostki became giants in their fields during their lifetime or posthumously, and collectively they gave us deep insights into basic aspects of learning (and hence teaching). However, so many basic questions remain unanswered and so much variation remains unexplained in our understanding of the college classroom that one wonders whether the field of education is today where the understanding of biological variation was at the time of Mendel and Darwin? One can only contemplate how future research in teaching and learning will transform the college classrooms.
References

Review questions

1. Directions: In the list are examples of simple sentences that describe each of the meaning of the word “To Teach” as defined in Table 1.1. Match each sentence with a meaning as explained in Table 1.1. (Note: that more than one choice may apply – discuss your choices with a partner.)
 a. He enjoys teaching his students about history (#2).
 b. She taught English for many years at the high school (#5).
 c. The church teaches compassion and forgiveness (#4a or #4b).
 d. Someone needs to teach her right and wrong (#1a).
 e. The experience taught us that money doesn’t mean everything (#1c).
 f. Her injury will teach her not to be so careless with a knife (#1d).
 g. It took patience to teach her how to bike (#1b).

2. Directions: In the list are examples of simple sentences that describe each of the meaning of the word “To Learn” as defined in Table 1.2. Match each sentence with a meaning as explained in Table 1.2. (Note: that more than one choice may apply – discuss your choices with a partner.)
 a. People learn throughout their lives (all definitions).
 b. I can’t swim yet, but I’m learning (#2).
 c. She’s interested in learning French (#1a or #2).
 d. We had to learn the rules of the game (#1a or #4).
 e. I’m trying to learn my lines for the play (#1b).
 f. She learned through a letter that her father had died (#3).
 g. I later learned that they had never called (#4).

3. Directions: In the list next are behaviors expected to be acquired through operant conditioning. Identify which type of consequence was responsible for the behavior change (i.e., positive/negative reinforcement; positive/negative punishment). Explain briefly.
 a. A professor has a policy of exempting students from the final exam if they maintain perfect attendance during the quarter. His students’ attendance increases dramatically.

Key: This is an example of operant conditioning because attendance is a voluntary behavior and the exemption from the final exam is a negative reinforcement because something is taken away that increases the behavior (attendance).

b. When a professor first starts teaching about a concept, she’ll praise any answer that is close to the right answer.

Key: This describes the process of shaping the operant behavior of answering questions, using positive reinforcement (praise). In shaping you start by reinforcing anything that is close to the final response. Then you gradually require closer and closer approximations before giving a reinforcer.

c. A student patiently raises her hand, waiting to be called on during a class discussion, after having been rebuffed by the instructors for interrupting others.

Key: This is operant conditioning. Because raising one’s hand is voluntary, the consequence provides negative reinforcement because no rebuff occurs and the behavior of hand-raising increases.

4. Direction: Fill in the table to describe the constructivist and behaviorist attributes of the two models of instructional design illustrated in Figure 1.4. Discuss your findings with a partner.

<table>
<thead>
<tr>
<th>Constructivist attributes</th>
<th>Behaviorist attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key: Figure 1.4(a) (twentieth century)</td>
<td>Key: Figure 1.4(b) (twenty-first century)</td>
</tr>
<tr>
<td>– Students may construct knowledge during lecture and during their periods of study</td>
<td>– Student / content centered</td>
</tr>
<tr>
<td>– The interaction between students and the instructor and the materials is more sustained</td>
<td>– More opportunities for repetitions (exposure) to a certain “stimulus”</td>
</tr>
</tbody>
</table>

Key: Figure 1.4(a) (twentieth century)

- Students may construct knowledge during lecture and during their periods of study.
- The interaction between students and the instructor and the materials is more sustained.
- More opportunities for repetitions (exposure) to a certain “stimulus”.

Key: Figure 1.4(b) (twenty-first century)

- Student / content centered.
- The interaction between students and the instructor and the materials is more sustained.
- More opportunities for repetitions (exposure) to a certain “stimulus”.