Contents

Contributors

xi

Preface

xiii

1 Transparent Organic–Inorganic Nanocomposite Coatings

Shuxue Zhou and Limin Wu

1. Transparent Organic–Inorganic Nanocomposite Coatings

1.1 Introduction

1.2 Fabrication Strategies

1.2.1 Blending Method

1.2.2 Sol–Gel Process

1.2.3 Intercalation Method

1.3 Mechanically Enhanced Nanocomposite Clearcoats

1.3.1 Solventborne Polyurethane Nanocomposite Coatings

1.3.2 Waterborne Nanocomposite Clearcoats

1.3.3 UV-Curable Nanocomposite Coatings

1.3.4 Other Mechanically Strong Nanocomposite Coatings

1.4 Optical Nanocomposite Coatings

1.4.1 Transparent UV-Shielding Nanocomposite Coatings

1.4.2 High Refractive Index Nanocomposite Coatings

1.4.3 Transparent NIR-Shielding Nanocomposite Coatings

1.5 Transparent Barrier Nanocomposite Coatings

1.6 Transparent Conducting Nanocomposite Coatings

1.7 Other Functional Nanocomposite Coatings

1.8 Conclusions and Outlook

References

57

2 Superhydrophobic and Superoleophobic Polymeric Surfaces

Jie Zhao and W. (Marshall) Ming

2. Superhydrophobic and Superoleophobic Polymeric Surfaces

2.1 Introduction

2.2 Surface Wettability

2.3 Various Approaches to Obtain Super-Repellent Surfaces

2.3.1 Template-Replicating Methods

2.3.2 Hierarchically Structured Particles

74
2.3.3 LbL Deposition 78
2.3.4 Plasma Treatment 79
2.3.5 Chemical Vapor Deposition 81
2.3.6 Electrospinning 83
2.3.7 Electrochemical Polymerization 85
2.3.8 Other Methods 86
2.4 Applications of Super‐Repellent Polymeric Surfaces 86
 2.4.1 Self-Cleaning 86
 2.4.2 Anti-bioadhesion 87
 2.4.3 Anti-Icing 89
 2.4.4 Oil–Water Separation 89
2.5 Summary and Outlook 90
Acknowledgments 90
References 90

3 Superhydrophilic and Superamphiphilic Coatings 96
Sandro Olveira, Ana Stojanovic, and Stefan Seeger
3.1 Introduction 96
3.2 Basic Concepts of Superhydrophilicity 97
3.3 Naturally Occurring Superhydrophilic and Superamphiphilic Surfaces 100
3.4 Artificial Superhydrophilic Coatings 101
 3.4.1 TiO₂ Coatings 101
 3.4.2 SiO₂ Coatings 103
3.5 Methods for Fabricating Superhydrophilic and Superamphiphilic Surfaces 104
 3.5.1 Sol–Gel Method 104
 3.5.2 Layer-By-Layer Assembly 105
 3.5.3 Electrochemical Methods 106
 3.5.4 Electrospinning 106
 3.5.5 Etching 107
 3.5.6 Plasma Treatment 107
 3.5.7 Hydrothermal Method 108
 3.5.8 Dip Coating 109
 3.5.9 Phase Separation 109
 3.5.10 Templating Method 109
3.6 Applications 110
 3.6.1 Self-Cleaning 110
 3.6.2 Antifogging and Antireflective Coatings 111
 3.6.3 Antifouling Properties 114
4 Self-Healing Polymeric Coatings

A.C.C. Esteves and S.J. García

4.1 Introduction 133
 4.1.1 Self-Healing Materials 134
 4.1.2 Self-Healing Polymeric Coatings 137
4.2 Self-Healing Approaches for Functional Polymeric Coatings 138
 4.2.1 Intrinsic Healing 138
 4.2.2 Extrinsic Healing 147
4.3 Functionalities Recovery and Possible Applications 149
 4.3.1 Surface Properties: Wettability and Anti-(bio)adhesion 149
 4.3.2 Barrier and Corrosion Protection 151
 4.3.3 Interfacial Bonding between Dissimilar Materials 153
4.4 Concluding Remarks and Challenges 154
Acknowledgments 155
References 155

5 Stimuli-Responsive Polymers as Active Layers for Sensors

Sergio Granados-Focil

5.1 Introduction 163
5.2 Stimuli-Responsive Soft Materials 164
 5.2.1 Thermally Responsive Polymers 165
 5.2.2 Field-Responsive Polymers 166
 5.2.3 Biologically Responsive Polymer Systems 168
 5.2.4 Multistimuli-Responsive Materials 172
 5.2.5 Stimuli-Responsive Hydrogels 175
5.3 Sensors from Stimuli-Responsive Hydrogel Layers 176
 5.3.1 pH Sensors 178
 5.3.2 Metal Ion Sensors 179
 5.3.3 Humidity Sensors 180
 5.3.4 DNA Sensors 181
 5.3.5 Glucose Sensors 181
5.4 Ionophore-Based Sensors
 5.4.1 Ion-Selective Electrodes
 5.4.2 Chromoionophores
 5.4.3 Optodes
 5.4.4 Dynamic Optodes
5.5 Challenges and Opportunities
References

6 Self-Stratifying Polymers and Coatings
 Jamil Baghdachi, H. Perez, and Punthip Talapatcharoenkit

6.1 Introduction
6.2 Basic Concepts of Self-Stratification
 6.2.1 Evaporation Effect
 6.2.2 The Surface Tension Gradient
 6.2.3 The Substrate-Wetting Force
 6.2.4 Kinetically Controlled Reactions
6.3 Conclusions
References

7 Surface-Grafted Polymer Coatings: Preparation, Characterization, and Antifouling Behavior
 Marc A. Rufin and Melissa A. Grunlan

7.1 Introduction
7.2 Surface-Grafting Methods
 7.2.1 “Grafting-From” Method
 7.2.2 “Grafting-To” Method
7.3 Behavior of Surface-Grafted Polymers
 7.3.1 Conformation of Grafted Chains
 7.3.2 Chain Migration
7.4 Characterization Techniques
 7.4.1 Ellipsometry
 7.4.2 Contact Angle
 7.4.3 X-ray Photoelectron Spectroscopy
 7.4.4 Scanning Probe Microscopies
7.5 Antifouling Coatings
 7.5.1 Surface-Grafted PEG
 7.5.2 Surface-Grafted Zwitterionic Polymers
7.6 Summary
References
8 Partially Fluorinated Coatings by Surface-Initiated Ring-Opening Metathesis Polymerization 239
G. Kane Jennings and Carlos A. Escobar

8.1 Basic Concepts 239
8.2 Surface Chemistry 241
8.3 Kinetics of Film Growth 242
8.4 Surface Energy of pNBFₙ Films 243
8.5 Micromolding SIP 245
8.6 Conclusions and Outlook 247
Acknowledgments 248
References 248

9 Fabrication and Application of Structural Color Coatings 250
Zhehong Shen, Hao Chen, and Limin Wu

9.1 Introduction 250
9.2 General Methods of Colloidal Assembly 252
 9.2.1 Flow-Induced Deposition 252
 9.2.2 Field-Induced Deposition 257
9.3 Colloidal Assembly of Soft Polymer Spheres 260
9.4 Uses of Structural Colors 265
 9.4.1 Photonic Paper 265
 9.4.2 Coloring and Protection of Substrates 267
 9.4.3 Color Responses 268
 9.4.4 Structural Color Coatings with Lotus Effects and Superhydrophilicity 272
 9.4.5 Structural Color as Effect Pigments 273
9.5 Conclusions and Outlook 274
References 274

10 Antibacterial Polymers and Coatings 280
Jamil Baghdachi and Qinhua Xu

10.1 Introduction 280
10.2 Basic Concepts 281
 10.2.1 Coatings that Resist Adhesion 282
 10.2.2 Coatings that Release Toxins 282
10.3 Polymers and Antimicrobial Coating Binders 283
 10.3.1 Polymeric Coatings with QA Groups 283
 10.3.2 Polymers with Quaternary Phosphonium Groups 284