Index

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

AFM see atomic force microscopy (AFM)
N-aminoethyl-*N*-aminopropyltriethoxysilane (AEAPS), 9, 10, 40, 41
γ-aminopropyltrimethoxysilane (APS), 9, 10
amphiphilic nanostructured coatings
amphiphilic surface, 321, 322
biocompatibility, 321
characterization techniques, 327
chemical ambiguity, 321
ethoxylated fluoroalkyl, 322
hydrophilic coatings, 320
ionic and nonionic polymers, 327, 328
microfouling biofilms, 320
nano-segregated surface, 321–2
OEG segments, 322–3
PEG-fluoropolymers amphiphilic coatings, 323–7
polymeric composites, hybridization, 321
submicro- and nanoscale physical topographies, 323
anodic aluminum oxide (AAO) replications, 110
antibacterial agents, 279, 285, 285, 286, 309
antibacterial coatings, 56–7, 57, 280–281
anit-bioadhesion
dual-/triple-scale structured,
superhydrophobic surfaces, 88, 88
fibrinogen and *E. coli*, 87, 87
Staphylococcus aureus and *Pseudomonas aeruginosa*, 87
anti-fogging coatings
bare glass vs. superhydrophilic porous TS film, 113, 113
motorcycle helmets and goggles, 122
PEG-functionalized PVA/PAA multilayer film, 113, 114
relative humidity, 111
sports and sanitary equipment, 113
superhydrophilic coatings, 111, 112
TiO2 technology, 112
UV irradiation, 101, 101
antifouling (AF) coatings see also marine biofouling
amphiphilic nanostructured coatings, 320–328
bioinspired micro-topographical surfaces, 314–20
fouling release coatings, 300–303
hydrophilic surfaces
bio-antifouling, 115
fouling, 114–15
silicone oil droplet, on PMCP, 115, 116
interdisciplinary cooperation, 330, 331
marine biofouling, 294
mesoscopic simulation, 330
nanofouling see nonfouling coatings strategies, 294, 295
TBT SPCs, 294
trial and error, 330
types, 295
antigen-responsive polymers, 171, 171
anti-icing, 89, 150
antimony-doped tin oxide (ATO) nanoparticles
IR shielding performance, 42–3 and ITO, 42
physical properties, 3, 4
UV–Vis–NIR spectra, 42, 42
t wet chemical method, 50
antireflective coatings
high RI coatings, 34
solar modules, production, 112
TiO₂ technology, 112
atomic force microscopy (AFM)
in fluid mode, 327
master, mold and coating, 246, 246
raspberry-like superhydrophobic film, 75–6, 76
and STM, 226
atom transfer radical polymerization (ATRP), 170, 220, 229, 305, 307, 309
azobenzene, 167, 167–8, 174

bamboo strand boards (BSBs), structural color coating
glass and polypropylene substrates, 267, 268
polymer spheres, sizes, 267, 267
unfinished and finished, 267, 267
barnacles, 296, 297, 298, 303, 309
barrier and corrosion protection, polymeric coatings
capsule opening, 151
Ce³⁺ and diethyldithiocarbamate, 152
DA-based polymers, 152
disulfide-based systems, 152
doped nanoparticles, 152
EIS, 152
encapsulated healing agents, 152
hydrotalcites, 151
inorganic nanoparticles, 151
liquid healing agents, 151
local electrochemical techniques, 152–3
NaY zeolite carrier, 152
ORP-EIS, 152
silyl ester as healing agent, 153
SVET, 152–3
zeolites, 151

barrier nanocomposite coatings, transparent OINCs
blend, high-barrier material, 46, 46
clay, 47
multiscale hierarchical approach, 46–7
open nano brick wall structure, construction, 48, 49
properties, 45–6
PU/OMMT composites, 47–8
SiO₂ films, 46
UV-curable barrier coatings, smart preparation process, 47
water uptake profiles, pure PU, 48
bead milling, 4, 5
bioactive polymers, 281
biocidal polymers, 281
biocide-based coatings, 300, 329
biocides, 280, 300
biofoulers, 295, 329
bioinspired micro-topographical surfaces
AF coatings with surface topographies
HW coatings, 319, 320
HWST, 318
methods, 318
thermal, 318, 318
and UV stimuli, 319, 319
wrinkles, 318
attachment point theory, 315–16
characteristics, 314
ERI, 316
in marine environments, 314
microtopographical surfaces, 314
Monte Carlo simulation, 317
rhizoids and adhesives, 316
Sharklet AF patterns, 316–17, 317
shark skin, 314, 315
surface contact, 315
topography, 314–15
biologically responsive polymer systems
antigen-responsive, 171
enzyme-responsive, 170–171
glucose-responsive, 168–70
redox/thiol-responsive, 171–2
blending method, transparent OINCs
colloidal and pyrogenic silica, in coatings, 3, 3
deagglomeration, nanopowder bead milling, 4, 5
dispersing nanoparticles, 3
blending method, transparent OINCs (cont'd)
nanocomposite coatings preparation,
4, 5
photocatalytic self-cleaning, TiO2, 4
three-roll milling, 6, 6
nanostructures, 2–3
physical properties, nanostructure materials, 3, 4
surface modification, nanoparticles
commercial polymer dispersants, 6
dendritic-linear copolymers, structures, 6, 7
“grafting to” and “grafting from” method, 7
organophiliation, 7–8
polyelectrolytes, 6
principles, 7, 8
SCAs see silane coupling agents (SCAs)
brominated tetramethyl bisphenol polysulfone (Br-TMPS), 282
carbon black (CB)
absorption characteristics, 265
doping, 262
structural color coatings, 262, 264, 265
carbon nanotubes (CNTs)
m metallic conductivity, 52
MWCNT, 53–4
PEDOT:PSS/SWCNT films, 54, 55
SWCNT, 54
waterborne PU/CNT nanocomposite coatings, 52–4, 53
chain migration, 223–4
chemical sensors, 163–4, 164, 182
chemical vapor deposition (CVD)
CNT forest, 83, 83
description, 81
and electrospinning, 81
plasma-enhanced, 81, 83, 103
RF PECVD technique, 103
super-repellent nanocellulose aerogels, 83
chromoionophores, 184, 185
clay
aqueous dispersions, 47, 47
dispersion state, in UV-curable coatings, 12, 12–13
intercalation method, 11
properties, 13
related products, 12
waterborne polymer latex/clay nanocomposite coating, 47
clay-containing nanocomposite coatings applications, 13
aqueous dispersions, 47
corrosion resistance and barrier properties, 13
in UV-curable coatings, 12, 12–13
clearcoats, enhanced mechanical properties applications, 13
cross-linking behavior, 14
GPS-based hard nanocomposite coatings, 26–8
hardness (H), composite coatings, 13–14
interfacial phase, volume fraction, 14
mechanically-improved clearcoats, 14
solventborne PU nanocomposite coatings, 15–17
UV-curable nanocomposite see UV-curable nanocomposite coatings
waterborne nanocomposite clearcoats, 17–19
Cloisite 20A, 11, 47
Cloisite 30B, 11, 47
coatings, antibacterial
bacteria/fungi reduction, 280
biofilm, formation and growth, 280
electrostatic repulsion, 280
hydrogels, 280
repelling mechanisms, 280
toxins release, 280–281
zeolites, 281
coaxial electrospinning operation, 85, 85
colloidal assembly
Bragg law Equation, 3D colloidal crystal, 251
centrifugation sedimentation, 252
field-induced deposition see field-
duced deposition
flow-induced deposition see flow-
duced deposition
gravity sedimentation, 252
soft polymer spheres see soft polymer spheres, colloidal assembly
vertical deposition, 252
colloidal silica, in coatings, 3, 3
color responses, structural color to electricity, 270–271, 272
dip-coating
 colloidal self-assembly, 253, 253
 modification fabrication procedure, 253–4, 254
 silicon nanowires, 109
 spin coating, 109
 superhydrophilic and superamphiphilic method, 109
 vertical deposition approach, 253
DNA sensors, 181
Doctor blade coating
 application, 254
 colloidal self-assembly, 255, 255
 fabrication procedures, 255
 packing colloids, procedure, 255–6, 256
dynamic optodes, 185–6
effective medium approximation (EMA)
 theory, 51, 52, 53
efficient water evaporation, 118, 118
electrochemical impedance spectroscopy (EIS), 152, 153
electrochemical methods, 106
electrochemical polymerization, 85–6, 106
electroless (EE) silicon etching method, 107
electro-responsive polymers, 166
electrospinning
 coaxial electrospinning operation, 85, 85
description, 83–4
 α-Fe₂O₃ nanofibers, 106–7
 superamphiphilic coating, 107
 superhydrophilic surfaces, 106
 superhydrophobic PS film, 84
 superoleophobic surfaces, 84–5
 surfaces with reentrant texture, 85
ellipsometry, 224
energy dispersive X spectroscopy (EDX), 213–14, 214
engineered roughness index (ERI) model, 316
enhanced boiling heat transfer
 bubbles growth, 117
 CHF see critical heat flux (CHF)
 superhydrophilic surface, 116–17
 surface wettability, 116
enzyme-based coatings
 and biocide-based, 300, 329
 biopolymers degradation, 298
enzyme-based coatings (cont’d)
covalent immobilization, 299
mechanisms, 298, 299
PDMS, 299
PEMA-based coatings, 299
SAM, 299
serine protease subtilisin A, 298
sol–gel entrapment, 299
SWNTs, 299–300
enzyme-responsive polymers, 170–171
Escherichia coli, 57, 87, 88, 282, 284, 287–289
etching
EE method, 107
plasma etching process, 80
plasma treatment, 79
PMMA surface, 108
PP and PTFE surface, 79
on silicon wafer, 107
Ti-PVD surfaces, 107
Fabry–Perot interferometers, 176
field effect transistor (FET)-based transducer, 178
field-induced deposition
electrophoretic deposition technique, 258
gravity, 257–8
magnetic field-induced colloidal assembly, 259, 259–60
sedimentation, 258
self-assembly, electrophoretic deposition, 258, 258–9
field-responsive polymers
electro-responsive, 166
magneto-responsive, 166–7
photoresponsive, 167–8
film growth, kinetics
monomer concentration effects, 242, 243
pHEMA film, 242
polymer growth, 242
Flory–Huggins theory, 206
flow-induced deposition
colloidal assembly approaches, 252–3
dip-coating, 253, 253–4, 254
doctor blade coating, 254–6, 255, 256
spin coating, 254, 255
spray coating, 256–7, 257
vertical deposition, 253
fluorenylmethoxycarbonyl-tyrosine phosphate, 170
fluorinated acrylic copolymer, 208, 208
fluoropolymer-based fouling release coatings, 300, 303
fouling
biomedical devices, 115
in marine engineering, 114
in membrane technologies, 114–15
fouling release coatings
elastic modulus, 301
fluoropolymer-based, 300, 303
low surface tension, 300–301
nonstick properties, 300–301
silicone-based, 300, 302
thickness, 302
wettability, 301
functional coatings
antibacterial, 56–7, 57
corrosion-resistant performance, 54
superhydrophilic nanocomposite, 54, 55
superhydrophobic, 56
functional polymeric coatings
extrinsic healing
advantage, 147
containers filled with liquid healing agents, 147–8
solid inorganic nano-and microcarriers, 148–9
intrinsic healing
healing agent, 142
molecular inter-diffusion and chain segregation, 138–43, 141
noncovalent bonds, 145–7, 147
phase-separated polymer systems, 143
poly(urethane polyester) coatings, 142
reversible bonds, 143–5, 144, 145
selection, 139–40
self-replenishing ability, 142, 142
solvent-induced, 141
stages, 138
thermal-induced, 141
glass transition temperature (T_g), 141, 165, 209, 223
glucose-responsive polymers, 168–70
glucose sensors, 181–2
γ-glycidoxypropylmethoxytriethoxysilane (GPS)
and APS, 9
hard nanocomposite coatings, 26
prehydrolyzed, 9
goniometry, 225
GPS-based hard nanocomposite coatings
boehmite nanorod filled coatings, 27
light transmittance, in wear track, 27, 27
mechanical protection coatings, 27–8
scratch resistance, in modified Vickers test, 26, 26
and silica weight ratio, 26
ultrahard coating, 26, 27

graft density (σ), 222–3, 223
grafted chains, 220, 222–3
“Graftfast™” process, 7
grafting hydrophilic oligoethylene glycol, 325

N-halamines, 286, 286–7, 287
hard polydimethylsiloxane (h-PDMS), 245
heat island phenomenon, 118
hexadecyltriethoxysilane (HDTS), 9, 10
hierarchically structured particles
AFM, 75–6
cotton fiber with raspberry-like particles, 77, 78
polystyrene particles, 76, 76
raspberry-like particles, preparation, 75, 75
triple-scale structured surface, 77, 77
hierarchically wrinkled (HW) coatings, 319, 320
hierarchically wrinkled surface topographies (HWST), 318
high refractive index (RI) nanocomposite coatings
calculation, RI (n), 34–5
Maxwell–Garnett approximation, 35
as optical coatings, 34
PbS nanoparticles, 35, 35
ZnO nanoparticles, 40
ZnS nanoparticles, 35–6
ZrO2 nanoparticles, 39–40, 41
humidity sensors, 180, 181
hydrogels, stimuli-responsive
analytes detection, 176–7
diffusion controlled swelling processes, 175
DNA sensors, 181
Fabry–Perot interferometers, 176
FET-based transducer, 178
glucose sensors, 181–2
humidity sensors, 180, 181
metal ion sensors, 179–80
miniaturized pH sensors development, 176–7
nanocomposite, 175
PCs, 178
pH sensors, 178, 178–9
piezoresistive sensors, 177–8
PNIPAM, polymeric matrix, 175–6, 176
stimuli-responsive catalyst, 175
Hydrotect technology, 121–2, 122
hydrothermal method, STN films, 108–9
hyperbranched fluoropolymers (HBFP), 323, 323–5, 324

indiumdoped tin oxide (ITO) nanoparticles
and ATO, 42–3
compositions and properties, 51, 52
as functional nanofiller, 41
GPS/ITO coatings, 50
ITO–MPTS–PVP coatings, 51
MPS/ITO coatings, 50, 50
physical properties, 3, 4
PVP/ITO coatings, 50, 51
solvothermal synthesis, 41
UV–Vis–NIR spectra, 42, 42
inorganic–organic (I/O) hybrid coating, 10, 31
inorganic particles, antibacterial activities
silver, 288–9
titanium dioxide, 287–8
zinc oxide, 288
in situ polymerization method, 3, 12, 16, 48
intercalation method, transparent OINC
alkylammonium/alkylphosphonium salts, quaternary, 12
and exploitation, 12
intercalation method, transparent
OINCs (cont’d)
layered silicates, commercial names and
suppliers, 11, 11
“solution dispersion” technique, 12
UV-curable clay-containing coatings, 12,
12–13
ionophore-based sensors
chromoionophores, 184
dynamic optodes, 185–6
ion-selective electrodes, 182–3, 183
optodes, 185
ion-selective electrodes, 182–3, 183
isobutyltrimethoxysilane (IBTMS), 56
isotactic polypropylene (i-PP), 86
ITO nanoparticles see indiumdoped tin
oxide (ITO) nanoparticles
Klarite® master, 246–7, 247
lanthanum hexaborides (LaB₆)
nanoparticles
NIR shielding efficiency, 43
UV–vis–NIR spectrum, 43
layer-by-layer (LbL) deposition
PEMs
self-assembly technique, 78
stability, 79
superhydrophobic coating, 78, 79
triple-scale structured surfaces,
77, 77
superhydrophilic and superamphiphilic
surfaces, 105–6
light-responsive polymeric micelles, 168
liquid binders, self-stratification, 200
lower critical solution temperature (LCST)
light-induced isomerization, 174
P(MEOMA-co-CMA) block, 175
PNIPAM, 166
macrofouling
biofoulers, 295–6
green algae and barnacles, 296
in ocean, 297
soft/hard fouling, 298
magneto-responsive polymers, 166–7
Marangoni flow effect, 201
marine antifouling coatings see antifouling
(AF) coatings
marine biofouling
barnacles, 297
biofoulers, 295
cyprids, 297
definition, 295
development processes, 297, 297–8
diatoms, 296
fouling organisms, diversity and size
scales, 295, 296
macrofouling, 296–7, 298
melamine formaldehyde (MF) resin, 208, 209
metal ion sensors, 179–80
γ-methacryloxypropyltrimethoxysilane
(MPS)
application, 8
functionalized ATO, 8
functionalized ZrO₂, 9, 39
modified SiO₂ particles, 24
MPS/ITO coatings, 50
methyl methacrylate-vinylbenzyl chloride
(MMA-VBC), 282, 282–3
micromolding SIP
AFM, 246
DCM, 245
DFEA master, 246, 246
h-PDMS, 245
Klarite® master, 246–7, 247
microtextured pNBF8 films production, 245
μMSIP, 245
overfilling, 245
surface topography, 245
Wenzel equation, 246
micromolding surfaceninitiated
polymerization (μMSIP), 245
multiwalled CNT (MWCNT), 19, 53, 53–4
nanoscale hybrid coatings, 1
naturally occurring surfaces
Cicada orni wing, 75
hierarchically structured, 74
superhydrophilic and superamphiphilic
Anubias barteri, 100
lotus leaf, 100
Ruellia devosiana, 100
Sphagnum mosses, 100
near-infrared (NIR)-shielding
nanocomposite coatings
applications, 41
ATO nanoparticles
IR shielding performance, 42–3
UV–Vis–NIR spectra, 42, 42
ITO nanoparticles
as functional nanofiller, 41
solvothermal synthesis, 41
UV–Vis–NIR spectra, 42, 42
LaB₆ nanoparticles, 43
VO₂ nanoparticles, 45, 45
WO₃, 44, 44–5
Nelumbo nucifera, superhydrophobic replicate, 74, 74
noncovalent bonds, intrinsic self-healing mechanisms
donor–acceptor π–π stacking, 147
H-bonded cross-links, 146
hydrogen bonds use, 146
ionomers, 146
molecular interactions, 146
principle, 145–6
supramolecular polymer networks, 146
temperature and pressure, 146
nonfouling coatings
in aqueous environments, 304
biocontamination, 303
grafted hydrophilic polymer chains, 304
hydrophilicity, molecular chemistry, 304
hydrophilic materials
peptoid-based protein resistant surfaces, 313–14
self-generating hydrogel surfaces, 311–13
hydrophilic PEG moieties, 303
nonspecific protein adsorption, 303
PEG-based coatings, 305–6, 307, 308
poly(zwitterionic) NF coatings, 309–11, 310
repulsion, 304
steric repulsion theory, 304
surface modification, 304–5
non-residue-producing, 279
norfloxacin (NOR), 284, 284–6, 285
odd random phase multisine
electrochemical impedance spectroscopy (ORP-EIS), 152
oil–water separation, 84, 89–90
OINCNS see organic–inorganic nanocomposite coatings (OINCNs)
oligoethylene glycol (OEG) segments, 322–3
optodes, 182, 185
organic–inorganic (O/I) hybrid coatings, 10, 36
organic–inorganic nanocomposite coatings (OINCNs)
antibacterial, 56–7, 57
applications, 2
barrier nanocomposite see barrier nanocomposite coatings, transparent OINCNs
blending method see blending method, transparent OINCNs
clay-containing, 12, 12–13
corrosion-resistant performance, 54
inorganic domain, 1
intercalation method see intercalation method, transparent OINCNs
LaB₆-based composites, 43
NIR-shielding OINCNs, 41
O/I hybrid coatings, 10
sol–gel process see sol–gel process, transparent OINCNs
superhydrophilic nanocomposite, 54, 55
superhydrophobic, 56
transparent conducting, 49–52
transparent sol–gel-derived, 11
partially fluorinated polymers
advantage, 239
classical deposition approaches, 239
Grubbs second-generation catalyst, 240
PTFE, 239
SAM, 240
SIPs, 239–40
SI-ROMP, 240
PCs see photonic crystals (PCs)
PFG-fluoropolymers amphiphilic coatings
(dil)(meth)acryloxy-terminated photocurable PFPE precursors, 326
bilayer strategy, 325
contact angle analysis, 326–7
fabrication process, 326, 327
grafting hydrophilic oligoethylene glycol, 325
HBFP, 323–5, 324
hydrophobic perfluoroalkyl side chains, 325
hyperbranched amphiphilic polymers, 325
perfluoroalkyl chains, 325, 326
SEBS, 325
peptoid-based protein resistant surfaces, 313–14
perfluoroalkyl chains, 325, 326
phase-separation method, porous polymer coatings, 109
photocatalysts, 104, 287–8
photocatalytic disinfection, 287–8
photonic crystals (PCs)
applications, 251
colloidal assembly approaches see colloidal assembly
colorful appearance, 267
diffraction wavelength and forbidden gap, 251
electrical, 271, 272
humidity-sensitive PC hydrogel film, 268
humidity sensors, 180
one-dimensional PC, 180, 181
periodicity, 252
PVA and PAA with PS colloid crystals, 180
temperature and monomer ratio, 268
3D PC, 251, 259
photonic paper
Fe$_3$O$_4$–SiO$_2$ colloids, fabrication, 266, 266
and ink system, 265
photopolymerization, 266
photoresponsive polymers, 167–8
pH sensors, 178, 178–9
plasma treatment
CAs, superoleophobic surfaces, 80, 82
CVD, CNT and PMMA, superamphiphilic surfaces, 108
etching and polymerization, 79
oxygen, 107–8
PMMA substrates, spin-coated PS microparticles, 80, 82
self-adaptive surfaces (SAS), two-level structure, 79–80, 81
semicrystalline PP surface, 79, 80
poly(2-vinylpyridine) (PVP), 50, 51, 150
poly(dimethylsiloxane) (PDMS)
hybrid silicone-based FR coatings, 302
TiO$_2$–PDMS thin films, 104
ZrO$_2$–PDMS nanocomposite, 40
poly(N-isopropylacrylamide) (PNIPAM), 166
poly(styrene-co-N-isopropylacrylamide) (PS-co-NIPAm), 260
poly(tetrafluoroethylene) (PTFE) CRT forest, 83, 83
etching/sputtering, 79, 80
surface energy, 244
polyacrylamide (PAAm) graft density, 180, 223
polyaniline (PANI) nanofibers, 106
poly(ethylene-alt-maleic anhydride) (PEMA)-based coatings, 299
poly (styrene-block-ethylene-random-butylene)-block-polystyrene (SEBS), 325
polyelectrolyte multilayers (PEMs), 78, 79, 79
polyelectrolytes, 6, 105, 115
polymeric coatings, self-healing barrier and corrosion protection, 151–3
damage, 134
functional coatings, 133–4
interfacial bonding between dissimilar materials, 153–4
self-healing materials, 134–7
surface properties healing reservoirs, 151
layer-by-layer method, 149–50
PVP network, 150
reactive chain ends, 150
self-repairing mechanisms, 149, 150
superhydrophobic surfaces, 149
wettability, 149
polymers and antimicrobial coating binders
bioactive polymers, 281
biocidal polymers, 281
N-halamines, 286, 286–7, 287
NOR, 284, 284–6, 285
QA compounds, 281–2
quaternary phosphonium groups, 282–3
poly[2-(methacryloyloxy)ethyl phosphorylcholin] (PMCP), 115, 116
poly(zwitterionic) nonfouling coatings, 309–11, 310
poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), 54, 55
polypropylene (PP)
filtration processes, 119
i-PP, 86
plasma etching and polymerization, 79, 80
structural color coatings, 267, 268
poly(methyl methacrylate) (PMMA)
substrates
plasma etching process, 80
superamphiphilic surfaces, 108
polyurethane-based organic-inorganic hybrid coatings, 289
polyurethane (PU) coatings
nanosilica, 19
oligomer, in UV-curable formulation, 24
PU/OMMT composites, 47–8
solventborne two-component (2K) PU coatings see solventborne PU nanocomposite coatings
WBPU, 19
n-propyltrimethoxysilane (PTS), 9, 10
pyrogenic silica, in coatings, 3, 3
quaternary alkylammonium salts, 12
quaternary ammonium (QA) compounds, 281–2
quaternary phosphonium groups, 282–3
radiofrequency plasma-enhanced chemical vapor deposition (RF PECVD) technique, 103
Rayleigh scattering theory, 1–2
redox-/thiol-responsive polymers, 171–2
residue-producing, 279
reversible bonds, intrinsic self-healing mechanisms
DA adducts, 143, 144
DA reactions, 143
disadvantage, 144–5
(epoxy-amine)-based coatings formulations, 143
hybrid architectures, 145
hybrid sol–gel architecture, 145
organic-inorganic cross-linked networks, 145
photo-induced healing, 144
reversibility, 145
sulfur bonds, 144
roll-off angle, 72, 75, 77, 78
routine sanitation, 278
scanning probe microscopy (SPM), 226–7
scanning tunneling microscopy (STM), 226–7
scanning vibrating electrode technique (SVET), 152–3
SCAs see silane coupling agents (SCAs)
self-assembled monolayers (SAMs)
graft density, 222
“grafting-to” strategy, 220
initiator-containing, 21
protein resistance, 229
self-cleaning see also commercial coatings
antifogging coating, 122
applications, 110
building walls, 110, 111
lotus effect, 86
“Pilkington Active”, 120
special wettability, 149
superamphiphilic surfaces, 110
superhydrophilic surfaces, 110
superhydrophobic surfaces, 86
super-liquid-repellent surface, 86–7
TiO2–SiO2, 55
underwater mechanism, SHRHS, 311, 311
windows, 120, 121
self-disinfecting coatings, 290
self-generating hydrogel surfaces, 311–13
self-healing materials, polymeric coatings damages
accidental, 134
cracks, 136
macro-down direction, 136
management, 136–7
nano-up direction, 136
recovery, 136
scales, 135–6, 136
self-healing concept, 135–6, 136
detection and activation mechanisms, 135
healing agents, 135
local reconstruction, 135
performance, 134, 135
ripening, 135
self-healing polymeric coatings see polymeric coatings, self-healing
self-stratification
evaporation effect, 200–201
kinetically controlled reactions
amine-containing polymers, 205
barrier and active anticorrosive pigments, 207, 207
self‐stratification (cont’d)
 EDX, 213–14, 214
 Flory–Huggins theory, 206
 fluorinated acrylic copolymer, 208, 208
 fluorine‐modified acrylic/polyester/vinyl ether polyols, 205
 glycidoxypropyl functional silsesquioxane, 211, 211
 industrial coating, 206
 isophorone triisocyanurate urethane dendrimer, 209–11, 211
 matting agents, 207
 metallic substrates, 207
 MF resin, 208, 209
 multicomponent coating, 207
 -OH functionality, 208, 209
 phase separation, 208–9, 209, 210, 210
 schematic representation, 206, 206
 solubility and polarity, 205
 thermosetting self‐stratifying systems, 205–6
 liquid binders, 200
 stratified coating, schematic representation, 201, 202, 211, 212, 213
 substrate‐wetting force, 203–5
 surface free energy resins, 201, 202, 202
 surface tension gradient, 201–2
 thermoplastic systems, 200
self‐stratifying polymers and coatings average specific gravities, 197, 198
 corrosion‐inhibiting pigment, 199
 CPVC, 199
 epoxy‐based primers, 198–9
 hydrophobic coatings, 199
 multilayer, 198
 oleophobic coatings, 199
 organic, 198
 surface‐functional coatings, 199
 temporary and strippable, 198
sensors
 chemical, 163–4, 164
 hydrogel layers see
 hydrogels, stimuli‐responsive
 ionophore‐based see ionophore‐based sensors
silane coupling agents (SCAs)
 AEAPS, 9, 10
 APS, 9
GPS, 9
HDTs, 9, 10
 with hydroxyl groups, 8
 ladder‐like structure, 8, 9
 as molecular modifiers, 8
MPS, 8
PTS, 9, 10
VTS, 9
silicone‐based fouling release coatings, 300, 302
single‐walled carbon nanotubes (SWNTs), 54, 55, 299–300
smart coatings, 329
soft polymer spheres, colloidal assembly absorption characteristics, CB, 262
 chroma and milky white colors, 264–5
 diameters, binary colloidal assembly, 262, 263
differences and advantages, 260
 mechanical strength, 260
 and nanosilica concentrations, 262, 263
 PS‐co‐NIPAm particles, 260
reflection spectra, structural color coatings, 260, 261
robust structural color coatings, 260, 261
silica and polymer colloids, 260–261
3D‐ordered binary assembled films, 260, 262
sol‐gel entrapment, 299
sol‐gel process
complex oxide (InNbO₄) coating, 105
description, 104
 superamphiphilicity, 105
 TiO₂–PDMS composite films, 104
transparent OINCAs
 as‐synthesized inorganic sol, 10
 vs. blending methods, 11
 controlling phase separation, 11
 I/O and O/I hybrid coatings, 10
 precursors, 10
 TEOS and TMOS, 10
UV blocking coatings, TiO₂ nanophase in situ, 30
“solution dispersion” technique, 12
solventborne PU nanocomposite coatings
 abrasion resistance, 16, 16
 acrylic‐based PU coatings, 15
 automotive refinish clear coat, 16–17
 fumed silica, 15
in situ polymerization, 16
nano-SiO2 particles, 15
silica content and diameter, 16, 17
transparency, 15
spin coating, 30, 103, 108, 109, 254, 255
spiropyran, 167, 167–8
spray coating, 256–7, 257
stimuli-responsive polymers
biologically relevant see biologically
responsive polymer systems
feedback-controlled communication, 165
field-responsive polymers, 166–8
hydrogels see
hydrogels, stimuli-responsive
noncovalent bonds, 165
self-assembled amphiphilic structures, 164
temperature and light-responsive
polymers, 172–5
thermally responsive polymers, 165–6
thermoresponsive materials containing
cross-linkable motifs, 175
structural color coatings
application
color responses see color responses,
structural color
crystal flakes, 273, 274
as effect pigments, 273
inverse opal films using TiO2, 272
photonic paper, 265–6
substrates, coloring and protection,
267–8
superhydrophilic properties, 272
Bragg’s law, 251–2
colloidal assembly see colloidal
assembly
description, 250
merits, 250–251
PCs see photonic crystals (PCs)
peacock feathers and natural opals, 250
substrate-wetting force
crystal latex/alkyd emulsion blends, 203
defoamers, 205
Hildebrand solubility parameters, 204
incompatible polymers, 203–4
interfacial tensions, 203
liquid polymers, 205
microgels, 205
surface tension gradients, 203, 203–4
superamphophilic coatings
antifogging coatings, 111
dip-coating process, 109
electrospinning, 107
etching, 107
hydrothermal method, 108–9
PANI surface, 106
plasma treatment, 107–8
self-cleaning, 110–111
sol–gel method, 104–5
TiO2 coatings, 101–3
superamphiphilicity
description, 97
sol–gel method, 105
Ti–PVD surfaces, 107
2D and 3D capillary effects, 105
superamphiphilic titanate network (STN)
films, 108, 109
superhydrophilic coatings
CHFs, 116, 117
dip-coating process, 109
electrospinning, 106–7
etching, 107
naturally occurring
surfaces, 100
phase-separation method, 109
plasma treatment, 107–8
polypropylene filter, 1119
self-cleaning, 110–111
SiO2 coatings, 103–4
superhydrophilicity
Anubias barteri, 100
description, 96
lotus leaf, 100
publication, 96
roughness factor, 98, 98
Ruellia devosiana, 100
Sphagnum mosses, 100
superamphiphilic, 97
3D porous media, “hemi-wicking”
behavior, 99
2D and 3D capillary effects, 99
wettability, solid surface, 97
Young’s equation, 97
superhydrophilic nanocomposite coatings,
54, 55, 56
superhydrophilic–superhydrophobic
patterned surfaces, 118–19
superhydrophobic coatings, 56
superhydrophobic surfaces
anti-bioadhesion
dual-/triple-scale structured, 88, 88
fibrinogen and E. coli, 87, 87
electrospinning, 84
LbL deposition, PEMs, 78, 79
oil repellency, 71
raspberry-like particles, 75
template-replicating methods, 74, 74

superoleophobic surfaces
CAH, 71, 72
electrospinning, 84–5
plasma treatment, with CAs, 80, 82

super-repellent surfaces
applications
anti-bioadhesion, 87–8
anti-icing, 89
oil–water separation, 89–90
self-cleaning, 86–7
CVD, 81–3
electrochemical polymerization, 85–6
electrospinning, 83–7
hierarchically structured particles, 75–8
LbL deposition, PEMs, 78–9
plasma treatment, 79–81
template-replicating methods, 74–5

surface chemistry
carbon paper preparation, 242
NBDAC, 241–2
pNBF6 film formation, 241
vinyl-/norbornenyl-terminated groups, 241
X-ray photoelectron spectroscopy, 242

surface-grafted polymer coatings
AFM, 226–7
antifouling coatings
PEG, 228
zwitterions, 229–30
contact angle, 224–5
ellipsometry, 224
exclusion effect, 228
grafted chains, conformation, 222–3
“grafting-from” method, 219, 219–20
“grafting-to” method, 219, 220–222
in situ polymerization, 219
migration, 223–4
preventative techniques, 224
SAMs, 219, 220

SPM, 226–7
XPS, 225–6
surface-initiated polymerizations (SIPs), 239–40
surface-initiated ring-opening metathesis polymerization (SI-ROMP)
Diels–Alder reactions, 240
functionalized norbornene monomers, 240
Grubbs second-generation catalyst, 240–241
kinetics see film growth, kinetics
micromolding SIP, 245–7
5-(perfluoroalkyl)norbornenes, 240, 240
pNBFn films, surface energy, 243–4, 244
pNBFn surface chemistry see surface chemistry

surface wettability
boiling heat transfer, 116
CAs
Cassie–Baxter wetting regime, 73, 73, 74
dynamic CAs, 72
roughness effect, 72–3
static CA, 72
WCA, 72
Wenzel regime, 73, 73
on growth of bubbles, 117
superhydrophilic, 97
topography-induced, 314

temperature and light-responsive polymers
bathochromic shifts, 173
copolymers, 174
double-responsive micellization, 174
merocyanine isomerization, 174
merocyanine stabilization, 173
micelle formation, 172, 173
photoinduced tautomerization process, 172
ring-closing reverse reaction, 173
spiropyran, 172–4
UCST behavior, 172

template-replicating methods
anodic aluminum oxide membrane, 75
Cicada orni wing, surface, 74, 75
epoxy replicates, 75
Nelumbo nucifera, superhydrophobic replicate, 74, 74
steps, 74
superhydrophobic silicone, 74
templating method, 109–10
tetrabutyl orthotitanate (TBOT), 36, 37
tetraethoxysilane (TEOS), 10, 15, 28, 31
tetramethoxysilane (TMOS), 10, 55
thermally responsive polymers
deformation, 165
LCST, 166
liquid crystalline polymers, 165–6
temperature changes, 165
thermoplastic elastomers, 165
thermosetting self‐stratifying systems, 205–6
three‐roll milling, 6, 6, 13
TiO₂ coatings
in dark environment, 102–3
hydrophilicity mechanism, 102, 102
RF PECVD technique, 103
self‐cleaning surfaces containing titanium, 103
sol‐gel/spin‐coating method, 103
UV irradiation, 101, 101–2
WCA, 101
TiO₂–polydimethylsiloxane (TiO₂–PDMS)
composite films, 104
titanium‐physical vapor deposition (Ti‐PVD)
surfaces, 107
transmission (T) of light, OINCs, 1–2
transparent conducting nanocomposite coatings, OINCs
applications, 49
classic percolation theory, 51
CNTs see carbon nanotubes (CNTs)
EMA theory, 51
ITO/PVP nanocomposites, 50, 51
MPS/ITO coatings, 50, 50
nanofillers, use of, 49
OINCs, 49
percolation power‐law equation, 52
PVP, 50
transparency and conductivity, 51, 52
wet chemical method, 50
tributyl tin (TBT) self‐polishing coatings (SPCs), 294
trimethylolpropane triacrylate (TMPTA), 6, 9
tungsten trioxide (WO3)
NIR absorption effect, 44–5
transmittance spectra, 44, 44
upper critical solution temperature (UCST)
behavior, 172
UV‐curable nanocomposite coatings
commercial nanoparticle dispersions, in monomers, 19, 20
curing behaviors
and final conversion, 20, 21
mechanical properties, 19
negative effects, nanofillers, 20
unchanged/deteriorated, 20–21
and EB curable acrylate/nanoparticle systems, 24
mechanical improvement, 21–2
nanoindentation hardness, 23, 23
pendulum hardness, 24, 25
PUA/ZrO₂ photopolymerization profiles, 21, 22
pyrogenic silica and colloidal silica, 23
reinforced efficiency, 22
SR494/HDDA coating, 23, 23, 24, 24
in UV‐waterborne PU‐acrylate, 22–3
wear and scratch parameters, 24, 25
UV‐shielding nanocomposite coatings
CeO₂ nanoparticles, 33
CePO₄ nanoparticles, 34
organic UV absorbers, 28
TiO₂ nanoparticles
chemical bonding design, 31
polymer matrix, uses, 30
in situ sol‐gel process, 30
transparencies/glosses, 28, 30
UV‐vis spectra, 28, 29
ZnO nanoparticles see ZnO nanoparticles,
UV‐shielding coatings
vanadium dioxide (VO₂) nanoparticles, 45, 45
vertical deposition, 252, 253
vinyltrimethoxysilane (VTS), 9–10, 16, 24
waterborne nanocomposite clearcoats
intrinsic hydrophilicity, inorganic nanofiller, 17
mechanical performance, 17
Index

nano-CaCO₃, 19
one-component (1K) self-crosslinkable acrylic dispersion, 19
polymer/nanofiller composite latex, preparation, 17–18
P(BA-St-AA)/silica nanocomposite films with nanosilica contents, 17–18
silica sols, via blending, 18–19

water contact angle (WCA)
hydrophilic, 72
IBTMS layer, 56
self-cleaning coatings, 110
TiO₂ surface, 101

water evaporation
“heat island phenomenon”, 118
quick and efficient, 118

3D-ordered binary assembled films, 260, 262
water-soluble PU resin (WBPU), 19, 53
X-ray photoelectron spectroscopy (XPS), 225–6, 242, 327
Young’s equation, 72, 97

ZnO nanoparticles, UV-shielding coatings quantum dots, 32
spruce wood coated with, 31–2, 32
as UV absorbers, 31
UV–vis absorbance spectra, PBMA/ZnO films, 32, 33
zwitterionic polymer, 309, 310
zwitter-wettable coatings, 113, 114