Index

Note: page numbers in italics refer to figures or tables

adhesion, work of 200
adsorbed layers 130–1
concentration profiles 153–4
dispersion viscosity 298
effect on contact angle 198
polymers 59–63
proteins 89
surfactants 203–4
see also steric interactions
advancing contact angle 193
aerosols 3
AFM (atomic force microscopy) 259–60
agar 73
aggregation
diffusion-limited 174, 177–8
emulsion droplets 225–8
mechanisms 166–9
strongly aggregated systems 359–60
structures 173–5
terminology 165
weakly aggregated dispersions 360–3
Airy disc 246–7
alginites 74
n-alkane series 98, 99
aluminosilicates 4
amphiphilic molecules 17
amylopectin 73
amylose 72–3
anionic polyelectrolytes 171
anionic surfactants
applications 87–8
micellization 80–1
aqueous systems
electrostatic interactions 129–30, 161
emulsions 220–1
interfaces 14–18
oil droplets 118
polymer solutions 57
surfactants 78–9
aromatic hydrocarbons, lyophobic moiety 17
Arrhenius relationship 350
associative thickeners 48
atomic force microscopy (AFM) 259–60
attapulgite 4
ball milling 30
Bancroft’s rule 223
batch sedimentation 303–5
bead mills 30–1
Beer–Lambert law 251
bimodal systems 3, 355
biodegradability 68, 89–90
biological applications
magnetite nanoparticles 34
polymer–iron nanocomposites 41
biopolymers 67–75
bitumen 350–3
Born repulsion 111
bridging flocculation 165, 170–1
Brownian motion 1–2, 11
bubbles see gas bubbles
Burger body 344, 345
butter 8–9

Colloids and Interfaces with Surfactants and Polymers, Second Edition James Goodwin
© 2009 John Wiley & Sons, Ltd
calcium alginate 74
capillarity 205–12
capillary condensation 210
capillary flow 281–2
capillary pressure 205–6
captive bubble method 195–6
carbon nanotubes 31
carboxymethylcellulose 70
carrageenan 73–4
cationic polyelectrolytes 170–1
ccc (critical coagulation concentration) 168
cellular imaging 35
cellulosics 69–71
characteristic ratios, polymers 50
charge patch flocculation 170–1
chemical potential 21
china clay see kaolinite
chrysotile asbestos 4
clay minerals 3–4
hetero-coagulation 171–2
isomorphous substitution 132–3
montmorillonite 38, 39
particle size determination 243–4
polymer–clay nanocomposites 39–40
swelling clay particles 38–9
synthetic hectorite clay laponite 38–9
see also kaolinite
 cleaners, household 8, 333–5
 cleaning agents 88
 cloud point 57, 86
 CLSM (confocal laser scanning microscopy) 256–8
 cmc (critical micelle concentration) 23, 79–80, 83–5
 coagulated dispersions 313–14, 354
 coagulation
 critical coagulation concentration (ccc) 168
 hetero-coagulation 169–77
 mechanisms 166–9
 rate of coagulation 177–81
 terminology 165
 coalescence 165, 225–8
 coatings 4–6, 214–17
 cohesion, work of 199–200
 co-ions 130
 collective diffusion 11
 collision efficiency factor 183
 collision frequency 181–4
 colloidal crystals 11
 colloidal dispersion types 3
 complex fluids 309, 322
 complex number manipulation 100–4
 complex viscosity 331, 338–9
 compressibility 311, 315–16
 concentrated dispersions 9–13, 309–63
 linear viscoelasticity 327–55
 rheology 316–27
 sedimentation 355–63
 structure 310–16
 viscosities 319–27
 concentration profiles 60–1, 153–4, 160–2
 condensed phases 12, 309
 conductivity, microemulsions 234
 conductivity cells 261
 confocal laser scanning microscopy (CLSM) 256–8
 contact angle 192–4
 dynamic 214–17
 formula 201
 hysteresis 198–9
 measurement 194–8
 temperature effects 212–13
 contrast matching 272–3
 coordination number 11
 copolymers
 characterization 67
 stabilizers 62
 steric interactions 152, 153–4
 surfactants 87
 correlation delay time 277
 correlation length, polymer solutions 59
 counter-ions 23–4, 130
 Cox–Mertz rule 323
 creaming 9, 220, 226, 302, 355
 creep compliance 343–6
 critical coagulation concentration (ccc) 168
 critical micelle concentration (cmc) 23, 79–80, 83–5
 delayed sedimentation 360–1
 cross-linking 48
 curved interfaces 204–5, 209–11
 Deborah number 317–18
 Debye interaction 96–7
 Debye–Hückel approximation 139–41
 Debye–Hückel approximation 139–41
 delayed sedimentation 360–1
 depletion flocculation 5, 171
 depletion interaction 120–7
 depletion layer 60
 depth of field (microscopy) 248
 detergents 8
INDEX

- di-chain surfactants 86
- dielectric constant 99
- diffuse double layer 137–48
- diffusion 2
- diffusion-limited aggregation 174, 177–8
- diffusive motion 2–3, 11
- dilute dispersions 10, 295–301
 - polymer solutions 49–52, 57–8
 - surfactants 78–9
 - transition to a condensed phase 12, 57–9
 - viscosity 295–301
- dimensions of dispersed phase 1
- directional motion 2
- disc centrifuge 302–3
- disjoining pressure 227
- dispersion interaction 97–8
 - contribution to surface tension 201–2
 - dispersion forces between particles 104–10
 - calculation strategy 115–20
 - general or Lifshitz theory 112–14, 115
 - retardation 111
- dispersion of powders 207–9
- dissymmetry ratio 269
- DLVO theory 163–5
- Dorn effect 288–9
- droplets see liquid droplets
- dry powder dispersion 207–9
- DuNoüy tensiometer 24
- Dupré equation 201
- dynamic compliance 346
- dynamic contact angles 193
- dynamic light scattering 276–8
- dynamic viscosity 331
 - effective hard sphere diameter 13
 - effective medium 317, 319
 - effective volume fraction 12, 298
 - Einstein–Smoluchowski equation 3
 - elastic behaviour 11, 318
 - see also rheology; viscoelasticity
 - elastic modulus 227, 316, 328
 - elastomers 48
 - electrical double layer 24, 130, 134
 - electrical properties, colloidal particles 278–95
 - electrical sensing 260–2
 - electro-acoustic methods 294–5
 - electrokinetic methods 279–82
 - electromagnetic scattering 262–75, 310
 - electron microscopy 258–9
 - electronic inks 7–8
 - electro-osmosis 285–8
 - electrophoresis 289–94
 - electrorheological fluids 99
 - electrostatic interactions 129–30
 - between diffuse double layers 144–8
 - effect of particle concentration 149–52
 - between two spheres 148–9
 - electrostatically stabilized dispersions 166–9
 - electrostatic stabilization 89
 - electroviscous effects 299–301
 - emulsification 220–5
 - emulsifiers 223–4
 - emulsion polymerization 219
 - coatings, paper 6–7
 - polymer nanoparticles 36–7
 - vinyl monomers 4
 - emulsions 219–37
 - emulsification 220–5
 - microemulsions 230–7
 - stability 225–30
 - types 222–5
 - enthalpy of mixing 54–6
 - entropy of mixing 53–4
 - equilibrium spreading coefficient 200–1
 - excess osmotic pressure 144–7
 - excess polarizability 100
 - ferrofluids 33
 - FISH (fluorescence in situ hybridization) 256
 - flat plates, interactions between 144–7
 - flocculation 5, 165, 169–77
 - Flory–Huggins interaction parameter 55
 - Flory–Huggins theory 52–6
 - flow properties 11
 - aggregation behaviour 181–9
 - capillarity 206
 - emulsification 222, 227
 - viscometry 295–301
 - see also viscoelasticity
 - fluid droplets see liquid droplets
 - fluorescence 34, 250–4
 - fluorescence in situ hybridization (FISH) 256
 - fluorescence lifetime 251
 - fluorescence microscopy 248–58
 - fluorescence resonance energy transfer (FRET) 252–4
 - fluorescent probes 255
INDEX

foams 3, 129, 220
see also gas bubbles
form factor 269
Förster distance 253–4
free energy of mixing 55
FRET (fluorescence resonance energy transfer) 252–4
froth flotation 203
gas bubbles 3
contact angle measurement 195–6
creaming 302
pressure drop across the interface 204–5
stabilizers 71
viscosity 299
wetting of surfaces 205, 210
see also foams
Gaussian chain 51–2
gel permeation chromatography 66–7
gelatin 75–6
generalized Maxwell model 335–7
Gibbs adsorption isotherm 21
Gibbs dividing surface 18, 19–20
Gibbs effect 227
Gibbs–Duhamel equation 20
Gibbs–Marangoni effect 227
glassy compliance 344
glucan 71
gold nanoparticles 32
Gouy–Chapman model 137–43
Guinier approximation 274
haematite 3
heat of wetting 212–13
heats of immersion 213
Helmholtz free energy 20
Henry equation 293–4
hetero-coagulation 169–77
hetero-flocculation 169–77
high-frequency elastic response 347
Hildebrand solubility parameter 225
HLB (hydrophilic–lipophilic balance) 223–5
Hofmeister series 166
homopolymers
adsorbed 60
rheology modifiers 61–2
stabilizers 27
household cleaners 8, 333–5
HPC (hydroxypropylcellulose) 71
HPMC (hydroxypropylmethylcellulose) 71
Hückel equation 293
Huggin’s coefficient 63
Huggins equation 63–4
hydrodynamic stress 214–17
hydrodynamic thickness 298
hydrophilic moiety 17
hydrophilic–lipophilic balance (HLB) 223–5
hydrophobic effect 78, 80–1, 86, 89
hydroxypropylcellulose (HPC) 71
hydroxypropylmethylcellulose (HPMC) 71
iep (isoelectric point) 132
immunofluorescence 255–6
indifferent electrolytes 130, 166
interaction free energy 93–4
Born repulsion 111
Debye interaction 96
dispersion interaction 97, 104–10
effect of flow 184–9
Keensom interaction 96
pair potential 163–5
interactions
calculation strategy 115–20
concentrated colloidal dispersions 10–11
depletion interaction 120–7
dispersion forces see dispersion interaction
electrostatic see electrostatic interactions
intermolecular attraction 16, 95–100
interfaces 14–21
terminology 16
see also surfaces
interfacial tension 193
emulsions 227, 229, 230
formulæ 201–2
intermolecular forces 16, 95–100
internal conversion (fluorescence) 250
interparticle forces 1, 93–5
calculation strategy 115–20
concentrated dispersions 309
Debye interaction 96–7
depletion interaction 120–7
dispersion forces see dispersion interaction
effect of flow 184–9
electrostatic interactions see electrostatic interactions
INDEX

general or Lifshitz theory 112–14
generalized description 98–100
intermolecular attraction 95–100
Keesom interaction 95–6
London or dispersion interaction 97–8
monitoring 260
retarded dispersion forces 111–12
intersystem crossing (fluorescence) 250
intrinsic viscosity, polymer solutions 63–4
ion-exchange resins 48
ionic surfactants 83, 88, 130
ionogenic surfaces 131–2
ion–surface interaction 130
iron oxide nanocomposites 41–2
iron oxide nanoparticles 33–4
isoelectric point (iep) 132
isomorphous substitution 132–3, 172
Jablonski diagram 250
Janus particles 42–3
kaolinite 4
hetero-coagulation 171–2
isoelectric point (iep) 132
Janus particles 42
in paper 6–7
stabilizing agents 28, 131
surfactants adsorption 25–6
Keesom interaction 95–6
Kelvin equation 209–11
Kelvin model 343
Kelvin retardation time 344
Kolmogorov scale 222
Krafft point 78–9
Krafft temperature 78–9
Krieger equation 322
Krieger–Dougherty equation 320
Langmuir isotherm 135
Laplace pressure 204, 228
laponite 38–9
latex 4
latex paints 71
LCST (lower consolute solution temperature) 57
Lennard–Jones–Devonshire equation 111
Lifshitz theory 112–14, 115
light scattering 262–71
dynamic 276–8
microemulsion characterization 234
limiting osmotic pressure, polymer solutions 64–5
line tension 194
liquid aerosols 3
liquid crystalline mesophases 85
liquid droplets 3
change in vapour pressure across the interface 210
characterization 298–9
dispersion viscosity 298–9
droplet size 14–15, 228
emulsions 222, 226–7, 236
pressure drop across interface 204–5
specific surface area (SSA) 14–15
see also emulsions
liquid foams 3, 129, 220
liquid-in-liquid dispersions see emulsions
liquid–solid transition 12–13
liquid–vapour interface 16–21
change in vapour pressure due to curvature 209–10
interfacial region 17
surface excess 17–21
London constant 97, 112
London dispersion forces see dispersion interaction
long-time self-diffusion 11
lower consolute solution temperature (LCST) 57
lyophilic solute species 17
lyophobic solute species 17
macromolecules, terminology 47–9
see also polymers
magnetic properties
nanocrystal magnetite 33
nanoparticles 29
magnetite
nanocrystal 33–4
polymer–iron nanocomposites 41–2
Marangoni effect 227
Mark–Houwink equation 64
Maxwell model 331–2, 340–1
mechanical stability 163
medical applications
alginites 74
gold nanoparticles 32
membrane osmometers 65
meniscus 206
metal particles 120
metastable structures 174
methane polarizability 102–4
INDEX

methylcellulose 71
micelles 25
micellization 79–86
microemulsions 38, 220, 230–7
 characterization 234
 phase behaviour 231–4
 stability 235–7
microgels 40, 48
microscopy 242–60
 atomic force 259–60
 electron 258–9
 optical 242–58
 confocal laser scanning 256–8
 fluorescence 248–56
Mie theory 271
milk 8
miniemulsions 220, 230
mixed particle systems 172–3
mixing of emulsions 222, 227
molecular tags 35
molecular weight, polymers 48–9
monodisperse systems 3
 concentrated 310, 314, 320, 323
 emulsions 226, 236
 formation 31–3
 sedimentation 303, 305
 stability 174, 176, 177, 188
montmorillonite 4, 38
moving surfaces see dynamic
 multi-molecular aggregates 4
multivalent ions 137, 168
nanocomposites 39–42
nanocrystals 31
 fluorescent 255
 magnetite 33–4
 semiconductor 34–6
nanoparticles
 clay 38–9
 gold 32
 iron oxide 33–4
 Janus particles 42–3
 magnetic properties 29
 polymer 36–8
 preparation
 formation from solution 31–9
 templated growth 31
 from vapour phase 29–31
silica 42
silver halides 32–3
surface free energy 28–9
titania 42
nano-Titania 30
natural rubber latex 131
negative adsorption 17
Nernst equation 134
neutron reflection 275–6
neutron scattering 234, 263–5, 271–5
NMR (nuclear magnetic resonance)
 spectroscopy 234
non-ionic materials
 steric interactions 152–60
 surfactants 86, 160, 174
nuclear magnetic resonance (NMR)
 spectroscopy 234
oil–water emulsions 229
 dispersion interaction 110
 microemulsions 231–2
 oil droplets 118
oligomer 48
opals 3, 11
optical microscopy 242–4
optical resolution 244–8
optical sensing 262
orthokinetic coagulation 181
oscillating strain 329–37
osmometers 65
osmotic compressibility 311, 315–16
osmotic pressure, polymer solutions
 55–6, 64–5
Ostwald ripening 37, 212, 228–30
paints 4–6, 30, 71
pair potential 93, 163–5, 179–80
paper 6–7
paraffin 17
particle concentration 149–52
particle electrophoresis 289–94
particle shape 3, 301
particle size 1, 240–2
 determination 242–78
 dynamic light scattering 276–8
 microscopy 242–60
 neutron reflection 275–6
 scattering methods 262–75
 zonal methods 260–2
distribution 240–1
effect on solubility 211–12
particle–particle interactions see
 interparticle forces
particulate colloids 3–4
 concentrated colloidal dispersions
 9–13
electrical properties 278–95
hetero-coagulation 171–3
INDEX

sedimentation 301–7
viscosity 295–301
Péclet number 303–4, 319, 322
penetration of liquid into porous solid 207
percolation threshold 174
perikinetic coagulation 181
phase behaviour
 microemulsions 231–4
 polymer solutions 57–9
 surfactants in solution 78–86
phase combinations 3
phase inversion 220, 223
phase inversion temperature (PIT) 223
photography 33
photon correlation spectroscopy 276–8
photovoltaic cells 36
pigments 5, 6, 30
PIT (phase inversion temperature) 223
point of zero charge (pzc) 132
Poisceille equation 206
Poisson–Boltzmann equation 139
polarizability of a molecule 101–4
poly(acrylic acid) 47, 131
polydisperse systems 3
 rheology 323
 sedimentation 305–7
polydispersity 49
steric interactions 154, 158
polyelectrolyte effect 131
polyelectrolytes 7, 28, 170, 300
polyelectrolytes 68–9
polyhydroxybutyrate 68
poly(hydroxypropionic acid) 68
poly(lactic acid) 68
polymer films 4–5
polymer gels 349
polymer layers 12–13, 59–63, 152–60
polymer nanocomposites 39–42
polymer nanoparticles 36
polymer solutions 27–8
angular light scattering 65–6
‘concentrated’ 59
conformation 49–52, 60–1
enthalpy of mixing 54–6
entropy of mixing 53–4
Flory–Huggins theory 52–6
gel permeation chromatography 66–7
limiting osmotic pressure 64–5
osmotic pressure 53–6
phase behaviour 57–9
viscosity 63–4
polymer–cement nanocomposites 41
polymer–clay nanocomposites 39–40
polymer–iron nanocomposites 41–2
polymerized Pickering emulsions 42
polymers
 characteristic ratios 50
 definitions 47–9
 flocculants 170–1
 molecular structure 49–52
 molecular weight 63–7
 surfactants 86–7, 88
 thickeners 120–1
 poly(methyl methacrylate) latex 116
 polypeptides 67
 polysaccharides 69–75
 polystyrene
 conformation 56
 dispersed in aqueous media 113
 latex particles, pair potential 167
 molecule radius as function of
 molecular weight 51
 nanoparticles 42
 poly(vinyl acetate) 62
 poly(vinyl alcohol) 62
 pore penetration 203–7
 Porod’s law 275
 porous solid, capillarity 207
 Portland cement–polymer
 nanocomposites 41
 potential determining ions 130
 potential of mean force 94
 potential-limited aggregation 179–81,
 184–8
 powder dispersion 207–9
 pressure drop, curved interfaces 204–11
 protein hydrocolloids 75–6
 proteins at surfaces 88, 131
 Q-Dots 36, 256–7
 quantum dots 34–6, 40–1, 256–7
 quantum yield (fluorescence) 251
 quenching (fluorescence) 252
 radius of gyration, polymer molecules
 50–1
 Rayleigh criterion 247
 Rayleigh ratio 66, 267
 Rayleigh scattering 265–8
 Rayleigh–Gans–Debye scattering
 268–71
 receding contact angle 193
reduced viscosity, polymer solutions 64
relative adsorption of solute at surface 20–1
relative permittivity 99
relative viscosity, polymer solutions 64
relaxation spectrum 337
rheology
aggregate structures 173
concentrated dispersions 316–27
rheology modifiers
concentrated dispersions 356–7
homopolymers 62
polymer solutions 27–8
rod-like structures 4, 70, 74, 85
see also 'worm-like' micelles
roughness factor 199
Rouse modes 350
SANS (small-angle neutron scattering) 264
SAXS (small-angle X-ray scattering) 264–5
scanning electron microscopy (SEM) 259
scattering methods 262–75, 310
sedimentation
concentrated dispersions 355–63
dispersions 301–7
preventing 8
stable dispersions 357–9
strongly aggregated systems 359–60
thickened dispersions 356–7
weakly aggregated dispersions 360–3
sedimentation potential 288–9
SEM (scanning electron microscopy) 259
semiconductor nanocrystals 34–6, 40–1
sessile drop method 195
shear flow 181–3, 295–7
shear processing 174
shear rate 280–1, 317
shear stress
definitions 280–1, 317
dynamic contact angles 215
eumulsification 222
shear thinning 301, 321–4
short-time self-diffusive motion 11
Shultz–Hardy rule 166
silica nanoparticles 42
silver chloride 3
silver halides 32–3, 133
size range 1
slow structural changes 175–7
small-angle neutron scattering (SANS) 264
small-angle X-ray scattering (SAXS) 264–5
Smoluchowski equation 291–2
soap films 4, 129
sodium montmorillonite 39
soft solids 13, 309, 322
solid aerosols 3
solid emulsions 3, 8–9
solid foams 3
solid sols 3
sols see particulate colloids
solubility
drop in liquid 229
solid particles 211–12
solubility diagram, polymer solutions 57
solubilization, surfactants in solution 84
solute species 17
solvents, polymer solutions 50
specific surface area (SSA) 14–15
surfactants 26
water 14–15
speckle pattern interferometry 277
spherical particles
and diffuse layer 143–4
interactions between 148–9
spherically structured surfactants 86
spreading 199–204
spreading coefficient 200–1
SSA see specific surface area (SSA)
stability
aggregation mechanisms 166–9
effect of flow 185–7
microemulsions 235–7
terminology 163
stability ratio 179–81
stabilizers
adsorbed layers 298
copolymers 62
eumulsions 227, 228
Janus particles 43
polyelectrolytes 300
polymer solutions 27
proteins 89
steric interactions 152–60
surfactants 87–8
staining, fluorescence microscopy 255
starch 73
step strain experiment 339–43
steric interactions 152–60
INDEX

Stern plane 135–7
Stern potential 136, 166, 280
Stokes drag factor 2
Stokes law 302
Stokes shift 249–50
Stokes–Einstein equation 2
streaming potential 282–5
stress relaxation 11, 318, 323–4, 339–43, 349–50
strongly aggregated systems 359–60
'super absorbers' 48
surface charge 130–44
differential solution of surface ions 133–4
electrical double layer 134–44
surfactants 23, 25
surface charge density 278–9
surface excess 17, 18, 19–21
surface free energy 16–17, 191–2, 201
curved surfaces 204–5
emulsification 221
microemulsions 235
nanoparticles 28–9
surface ions 133–4
surface phase 18
surface tension 16
formula 202
measurement 24–5
surfactants in solution 79
temperature effects 212–13
variation with surfactant concentration 22–6
water 16, 17–18, 202
see also contact angle
surface-active molecules see surfactants
surfaces
contact angle 192–4
hysteresis 198–9
measurement 194–8
heterogeneity 198
roughness 198–9
terminology 16
wetting 191–217
see also liquid–vapour interface
surfactants 4, 17, 22–6, 76–90
adsorption at solid surface 130, 203–4
adsorption on particles in suspension 25–6
choice for applications 87–8
classification 223–4
dilute solutions 78–9
electronic inks production 7
temperature effects, wetting of surfaces 212–13
termination 1
thermal energy 2
thermal motion 2
thickened dispersions 356–7
thickeners associative 48
homopolymers 62
polymer solutions 27–8
polysaccharides 69
tilted plate methods 197–8
time-of-flight spectrometry 263
titania nanoparticles 42
titanium dioxide 5, 6
titration, surface charge determination 278–9
tortuosity factor 207
total potential energy of interaction see pair potential
transmission electron microscopy
microemulsion characterization 234
transmission electron microscopy (TEM) 258–9
turbidity 80, 168, 169
ultrasonic vibration potential 294–5
ultrasonics, polymer nanoparticles 37
upper consolute solution temperature (UCST) 57–9
van der Waals forces 16, 95
vapour pressure, change at curved interface 204–11
vapour pressure osmometers 65
vapour–liquid interface see liquid–vapour interface
vesicles 86
INDEX

vinyl monomers 4–5
viscoelasticity 11, 12
 concentrated dispersions 321–2, 327–55
 constitutive equations 327–8
 creep compliance 343–6
 limiting behaviour at extremes of frequency 337–9
 limiting behaviour at long or short times 346–9
 liquid–solid transition 12
 oscillating strain 329–37
 processing effects 353–5
 stress relaxation 339–43
 time–temperature superposition 349–53
viscometry 295–301
viscosity
 concentrated dispersions 319–27
 decorative paint 5
 definition 280–1
 effect on coagulation rate 178–9
 electronic inks 7
 particle characterization 295–301
 polymer solutions 63–4
viscous deformation 318
viscous stress, effect on surface wetting 214–17
Voight model 343
volume fraction, and viscosity 295–8, 319–21
vorticity 296
Washburn equation 206
water
fraction of molecules in a drop 15–16
intermolecular forces 16
lyophilic moiety 17
specific surface area (SSA) 14–15
surface tension 16, 17–18
see also aqueous systems
weakly aggregated dispersions 360–3
wetting agents 87
wetting line 193
wetting of surfaces 191–217
capillarity 205–12
contact angle 192–4
hysteresis 198–9
measurement 194–8
curved surfaces 204–5
spreading 199–204
temperature effects 212–13
Wilhelmy plate method 196–7
work of adhesion 200
work of cohesion 199–200
‘worm-like’ micelles 85, 333
xanthan gum 74–5
X-ray scattering 234, 263–5, 271–5
Young–Laplace equation 204, 205–6
Young’s equation 193, 199
zero shear viscosity 324–5, 338, 344–5
zero-Kelvin lattice model 348
zeta potential 136, 142, 166
determination 279–95
zonal methods 260–2