Contents

About the Authors ix
Preface xi
Acknowledgments xiii

1 Introduction: Modern Wind Energy and its Origins 1
 1.1 Modern Wind Turbines 2
 1.2 History of Wind Energy 10
 References 21

2 Wind Characteristics and Resources 23
 2.1 Introduction 23
 2.2 General Characteristics of the Wind Resource 24
 2.3 Characteristics of the Atmospheric Boundary Layer 36
 2.4 Wind Data Analysis and Resource Estimation 53
 2.5 Wind Turbine Energy Production Estimates Using Statistical Techniques 63
 2.6 Regional Wind Resource Assessment 65
 2.7 Wind Prediction and Forecasting 72
 2.8 Wind Measurement and Instrumentation 74
 2.9 Advanced Topics 84
 References 87

3 Aerodynamics of Wind Turbines 91
 3.1 General Overview 91
 3.2 One-dimensional Momentum Theory and the Betz Limit 92
 3.3 Ideal Horizontal Axis Wind Turbine with Wake Rotation 96
 3.4 Airfoils and General Concepts of Aerodynamics 101
 3.5 Blade Design for Modern Wind Turbines 115
 3.6 Momentum Theory and Blade Element Theory 117
 3.7 Blade Shape for Ideal Rotor without Wake Rotation 121
 3.8 General Rotor Blade Shape Performance Prediction 124
 3.9 Blade Shape for Optimum Rotor with Wake Rotation 131
 3.10 Generalized Rotor Design Procedure 133
3.11 Simplified HAWT Rotor Performance Calculation Procedure 138
3.12 Effect of Drag and Blade Number on Optimum Performance 139
3.13 Computational and Aerodynamic Issues in Aerodynamic Design 141
3.14 Aerodynamics of Vertical Axis Wind Turbines 145
References 153

4 Mechanics and Dynamics 157
4.1 Background 157
4.2 Wind Turbine Loads 158
4.3 General Principles of Mechanics 161
4.4 Wind Turbine Rotor Dynamics 172
4.5 Methods for Modeling Wind Turbine Structural Response 200
References 202

5 Electrical Aspects of Wind Turbines 205
5.1 Overview 205
5.2 Basic Concepts of Electrical Power 206
5.3 Power Transformers 217
5.4 Electrical Machines 219
5.5 Power Converters 237
5.6 Electrical Aspects of Variable-Speed Wind Turbines 246
5.7 Ancillary Electrical Equipment 253
References 255

6 Wind Turbine Materials and Components 257
6.1 Overview 257
6.2 Material Fatigue 257
6.3 Wind Turbine Materials 266
6.4 Machine Elements 270
6.5 Principal Wind Turbine Components 276
References 308

7 Wind Turbine Design and Testing 311
7.1 Overview 311
7.2 Design Procedure 312
7.3 Wind Turbine Topologies 316
7.4 Wind Turbine Standards, Technical Specifications, and Certification 322
7.5 Wind Turbine Design Loads 325
7.6 Load Scaling Relations 333
7.7 Power Curve Prediction 336
7.8 Computer Codes for Wind Turbine Design 340
7.9 Design Evaluation 345
7.10 Wind Turbine and Component Testing 346
References 355
Contents

8 **Wind Turbine Control** 359
 8.1 Introduction 359
 8.2 Overview of Wind Turbine Control Systems 364
 8.3 Typical Grid-connected Turbine Operation 370
 8.4 Supervisory Control Overview and Implementation 374
 8.5 Dynamic Control Theory and Implementation 382
 References 404

9 **Wind Turbine Siting, System Design, and Integration** 407
 9.1 General Overview 407
 9.2 Wind Turbine Siting 408
 9.3 Installation and Operation Issues 416
 9.4 Wind Farms 419
 9.5 Wind Turbines and Wind Farms in Electrical Grids 433
 References 446

10 **Wind Energy Applications** 449
 10.1 General Overview 449
 10.2 Distributed Generation 450
 10.3 Hybrid Power Systems 450
 10.4 Offshore Wind Energy 461
 10.5 Operation in Severe Climates 478
 10.6 Special Purpose Applications 480
 10.7 Energy Storage 489
 10.8 Fuel Production 497
 References 501

11 **Wind Energy System Economics** 505
 11.1 Introduction 505
 11.2 Overview of Economic Assessment of Wind Energy Systems 506
 11.3 Capital Costs of Wind Energy Systems 511
 11.4 Operation and Maintenance Costs 519
 11.5 Value of Wind Energy 521
 11.6 Economic Analysis Methods 530
 11.7 Wind Energy Market Considerations 539
 References 543

12 **Wind Energy Systems: Environmental Aspects and Impacts** 547
 12.1 Introduction 547
 12.2 Avian/Bat Interaction with Wind Turbines 549
 12.3 Visual Impact of Wind Turbines 556
 12.4 Wind Turbine Noise 561
 12.5 Electromagnetic Interference Effects 573
 12.6 Land-Use Environmental Impacts 582
 12.7 Other Environmental Considerations 585
 References 589
Appendix A Nomenclature
A.1 Note on Nomenclature and Units 593
A.2 Chapter 2 593
A.3 Chapter 3 595
A.4 Chapter 4 597
A.5 Chapter 5 601
A.6 Chapter 6 604
A.7 Chapter 7 606
A.8 Chapter 8 607
A.9 Chapter 9 608
A.10 Chapter 10 610
A.11 Chapter 11 612
A.12 Chapter 12 613
A.13 Abbreviations 614

Appendix B Problems
B.1 Problem Solving 617
B.2 Chapter 2 Problems 617
B.3 Chapter 3 Problems 621
B.4 Chapter 4 Problems 628
B.5 Chapter 5 Problems 632
B.6 Chapter 6 Problems 637
B.7 Chapter 7 Problems 639
B.8 Chapter 8 Problems 642
B.9 Chapter 9 Problems 647
B.10 Chapter 10 Problems 652
B.11 Chapter 11 Problems 656
B.12 Chapter 12 Problems 658

Appendix C Data Analysis and Data Synthesis
C.1 Overview 661
C.2 Data Analysis 661
C.3 Data Synthesis 671
References 675

Index 677