A Historical Introduction

1.1 The Discovery of the Elements

The discovery of the noble gases is one of the most fascinating episodes in the history of science. It tells about creativeness and intuition, as well as rigour and perseverance. It is also a real showcase of fundamental and applied science working in concert.

All the noble gases (but radon) are natural constituents of air, with percentages in volume which range from c. 0.9% (Ar) to less than 9×10^{-6}% (Xe) (see Appendix A). However, while apparently so accessible, these elements remained unknown until the end of the nineteenth century, when physical methods, particularly spectral analysis and liquefaction of gases, became sufficiently well developed. It was not that chemists and physicists had not previously encountered them. In particular, in 1785, when reporting about his 'Experiments on air', Cavendish (1785, p. 382) wrote:

Having by these means [exhaustive electric sparking] condensed as much as I could of the phlogisticated air [N_2], I let up some solution of liver of sulphur to absorb the dephlogisticated air [O_2]; after which only a small bubble of air remained unabsorbed, which certainly was not more than $1/120$ of the bulk of the phlogisticated air let up into the tube; so that if there is any part of the phlogisticated air of our atmosphere which differs from the rest, and cannot be reduced to nitrous acid, we may safely conclude, that it is not more than $1/120$ part of the whole.

He had actually isolated argon (and, probably, also other noble gases), but he did not recognise this residue as a new element. The official discovery had to wait more than one century, and its announcement was the epilogue of a really intriguing story. In 1892, Lord Rayleigh (born John William Strutt) had observed that the nitrogen obtained from the reaction of ammonia with oxygen was lighter than the nitrogen recovered from common air. The difference was small (nearly one part in 1000), but, as Rayleigh wrote in a letter to *Nature* of September 29 (Rayleigh, 1892, p. 512), it was 'entirely outside the errors of experiment'. He declared to be 'much puzzled' by these findings, 'obliged if any of your chemical readers can offer suggestions as to the cause'. No proposals came at that time, and Rayleigh continued to work on this anomaly. He could thus confirm that,
irrespective of the preparation method, the ‘chemical’ nitrogen was, invariably, lighter than the ‘atmospheric’ nitrogen (Rayleigh, 1893). In a paper read on 19 April 1894, Rayleigh (1894, p. 340) wrote:

Upon the assumption that similar gas should be obtained by both methods, we may explain the discrepancy by supposing either that the atmospheric nitrogen was too heavy on account of imperfect removal of oxygen, or that the ammonia nitrogen was too light on account of contamination with gases lighter than pure nitrogen.

He could, actually, safely discard the first alternative, but the contaminant lighter than the ammonia nitrogen remained elusive, and he honestly recognised that ‘the difficulties in the way of accepting the second alternative are hardly less formidable’. After the lecture, Ramsay, who was sitting in the audience, suggested to Rayleigh that the atmospheric nitrogen could be contaminated by a heavier component other than oxygen. The episode was recalled by Ramsay himself in his Nobel Lecture of 1904 (Ramsay, 1904):

Before leaving Bristol, I had carried out some experiments in connection with the combination of gaseous nitrogen with hydrogen and with oxygen, with the aid of platinum as a catalysing agent; the results of the research were negative, and were not published. But I must have read the well-known account of Cavendish’s classical experiment on the combination of the nitrogen and the oxygen of the air at that date; for in my copy of Cavendish’s life, published by the Cavendish Society in 1849, opposite his statement that on passing electric sparks through a mixture of nitrogen with excess of oxygen, he had obtained a small residue, amounting to not more than 1/120th of the whole, I find that I had written the words “look into this”. It must have been the latent memory of this circumstance which led me, in 1894, to suggest to Lord Rayleigh a reason for the high density which he had found for “atmospheric nitrogen”.

With the permission of Rayleigh, Ramsay started independent work, aimed at isolating the suspected, and still unknown, heavier component of air. After removal of O₂ by reaction with hot copper, he fixed N₂ by repeated reactions with hot magnesium (to form Mg₃N₂), and showed that, after each run, the residual nitrogen became progressively denser. From May to August 1894, Ramsay was in continuing correspondence with Rayleigh, and, on August 4, he communicated to him to have isolated the gas. Two days later, Rayleigh responded that he, too, had isolated the gas, ‘though in miserably small quantities’. The two scientists decided to join the efforts, and asked Sir William Crooks to examine the spectrum of the new gas. The observed lines were definitely different from those of nitrogen. The results were communicated on 13 August to the British Academy for the Advancement of Science. The new proposed element resulted chemically inactive, and was therefore called argon (after the Greek ἀργόν, the inactive). The achievement was really astonishing, and prompted some criticisms and debate.
1.1 The Discovery of the Elements

Thus, Rayleigh and Ramsay spent 5 additional months to reinforce the evidence, and, on 31 January 1895, in a crowded theatre of the University of London, they could officially read to the Royal Society (the president Lord Kelvin sitting in the chair) their long-waited paper on ‘Argon, a new constituent of the atmosphere’ (Rayleigh and Ramsay, 1895). A picture of Sir William Ramsay and Lord Rayleigh taken shortly after the isolation of argon is shown in Figure 1.1.

The independent role in this discovery of this ‘non-inert pair’ of British scientists (according to a nice definition by Thomas (2004)) was officially recognised in 1904, when the Royal Swedish Academy of Sciences awarded Lord Rayleigh the Nobel Prize in Physics ‘for his investigations of the densities of the most important gases and for his discovery of argon in connection with these studies’, and Sir William Ramsay the Nobel Prize in Chemistry ‘in recognition of his services in the discovery of the inert gaseous elements in air, and his determination of their place in the periodic system’. The latter motivation highlights also that, for Ramsay, the discovery of argon was just the first episode of an exceptional scientific adventure that led him to isolate, within 4 years, an entire new group of
chemical elements (a nice account of the salient legs is given by Ramsay (1904)).
The second conquered element was helium. In seeking for a clue which would
guide to the formation of argon compounds, Ramsay learnt about a report by
Dr. Hillebrand, a chemist to the Geological Survey of the United States, on the
occurrence of nitrogen in uranium minerals. Hillebrand noticed that compounds
such as uraninite and cleveite, when heated with dilute sulphuric acid, gave off a
gas, which he identified as nitrogen based on its chemical behaviour and spec-
tral lines. Ramsay doubted on this assignment, and believed that the gas could
be argon. He therefore re-examined the spectra (evolving the gas, in particular,
from cleveite), and noticed a brilliant yellow line, absent in the argon spectrum,
and nearly, but not quite, coincident with the \(D \) line of sodium. He asked Crooks
to examine this line, and the answer was astonishing: the measured wavelength
of 587.49 nm was exactly coincident with the \(D_3 \) line detected in the solar chro-
mosphere! This emission was, actually, known to the astronomers since 1868,
and had been assigned to an element unknown on the earth, named \textit{helium} after
the Greek \(\eta \lambda \omicron \varsigma \) (the sun) (Hillebrand subsequently wrote to Ramsay that, when
examining the spectrum of the evolved gas, he noted, indeed, lines that could not
be identified with any mapped one. However, taking into account the well-known
variability in the spectra of some substances under the varying operating condi-
tions of the discharge tube, he ascribed causes similar to these anomalous appear-
ances, and rejected the considered hypothesis that a new element might be in
question). Ramsay communicated the identification of the terrestrial helium on
26 March 1895 (Ramsay, 1895), beating on time the Swedish chemist Abraham
Langlet, who shortly afterwards independently isolated the element working in
Cleve’s laboratory. In a subsequent and more extensive account of his findings
(Ramsay, Collie and Travers, 1895), Ramsay, honestly, noted that, in 1882, Luigi
Palmieri, on examining a lava-like product ejected by Vesuvius, found a soft sub-
stance which gave a yellow spectral line of wavelength 587.5 nm. However, the
Italian scientist did not investigate this point in further detail.

The physical and chemical properties of helium and argon were strictly simi-
lar, making it evident that they belonged to the same natural family. In addition,
their atomic weights of 2 and 40 made evident the necessity of at least one ele-
ment with the atomic weight of 20 (as a matter of fact, Ramsay was convinced
that two other elements awaited discovery). Thus, with the help of his assistant
Dr. Travers, he started a wide research programme, and spent nearly 3 years to
examine the gases evolved from minerals and meteorites, or collected from hot
or mineral springs, and to perform the fractional diffusion of patiently collected
samples of helium and argon. The results were sometimes encouraging, but real
breakthrough advances were achieved only in the early summer of 1898, when Dr.
Hampson, who had invented a machine for the liquefaction of gases, placed at the
disposal of Ramsay and Travers about 750 cc of liquid air. As Ramsay reported in
the accounting paper of 3 June 1898 (Ramsay and Travers, 1898a), the sample
was evaporated almost entirely, and a small residue of 10 cc was slowly boiled off
into a gas holder. After removal of oxygen and nitrogen, there remained 26 cc of
a gas which showed, besides the spectrum of argon, new lines not seen before.
The new element was named \textit{krypton} after the Greek \(\kappa \rho \upsilon \pi \tau \omicron \nu \) (the hidden), and
its atomic weight was estimated as 80. Only 10 days later, Ramsay and Travers (1898b) announced the isolation of still another gas, contained in the lower boiling portions of a previously collected sample of 18 l of argon. They proposed the name neon after the Greek νέος (the new). The element showed a spectrum featuring a brilliant flame-coloured light, consisting of many red, orange, and yellow lines. Its density turned out to be intermediate between that of helium and argon, although it had not yet been isolated as a pure gas. The complete separation of neon and argon was achieved only later.

In September 1898, Ramsay and Travers (1898c) announced the discovery of xenon (after the Greek ἕξ, the stranger). It was separated from krypton by fractionation, and, indeed, it possessed a still higher boiling point. The pure element was, however, obtained only in the middle of 1900 (Ramsay and Travers, 1900).

The discovery of radon is dated 1900, and is attributed (Partington, 1957) to the German physicist Friedrich Ernst Dorn, who reported about the emission by radium of a radioactive material, that he called simply ‘emanation’ (Dorn, 1901). A similar emission had been, however, observed earlier by Rutherford (1900) as an emanation of thorium, and this raises the question as to who should be actually awarded credit for the discovery of radon (Marshall and Marshall, 2003). The apparatus used by Dorn was, indeed, very like that used by Rutherford, and, in his accounting paper, Dorn (1901) mentioned and confirmed Rutherford’s experiments. We currently know that Dorn had stumbled onto the most stable 222Rn isotope, which has a ‘long’ half-life of 3.823 days, while the isotope emanated from thorium, 220Rn (called also ‘thoron’), has a half-life of only 54.5 s. In any case, a major subsequent contribution came from Rutherford, who showed, together with Soddy, that thorium and radium emitted the same material, that it was a gas, and that it was chemically inert and analogous in nature to the members of the argon family (Marshall and Marshall, 2003, pp. 78–79). Rutherford introduced the name ‘radium emanation’, subsequently changed to ‘niton’ by Ramsay in 1915, and definitely replaced by radon in 1923 by the International Committee of Chemical Elements (Aston et al., 1923, p. 871). Ramsay was, indeed, deeply involved in the study of the radium emanation, and reported, in particular (in collaboration with Soddy, Collie and Gray) its emission spectrum in 1904 (Ramsay and Collie, 1910), and its density in 1910 (Ramsay and Gray, 1910), showing that it was the densest among the known gases.

1.2 The Emerging of Different Chemistries

In their landmark paper on the discovery of argon, Rayleigh and Ramsay (1895, p. 234) accounted also their attempts to chemically combine the new element. They wrote in the conclusions:

We do not claim to have exhausted the possible reagents. But this much is certain, that the gas deserves the name “argon”, for it is a most astonishingly indifferent body, inasmuch as it is unattacked by elements of very
opposite character, ranging from sodium and magnesium on the one hand, to oxygen, chlorine, and sulphur on the other. It will be interesting to see if fluorine also is without action.

The reaction with fluorine was actually soon attempted by Moissan (1895), but it was as well unsuccessful. One year later, Ramsay and Collie (1896–1897) had to recognise the likewise inertness of helium, incapable of forming compounds even under vigorous conditions. The amounts of neon, krypton, and xenon available at that time were, instead, too small to assay their reactivity (a somewhat unfortunate circumstance that, probably, delayed the development of noble gas chemistry). Thus, soon after their discovery, argon, helium, and their companions appeared as, essentially, inactive. A challenge for the inventive chemists who never ceased to search for their reactivity. What about the results of these efforts? After more than one century, it is possible to state that, if one refers exclusively to compounds synthesised in macroscopic amounts under ordinary, or nearly ordinary, conditions, the challenge was definitely won only for krypton and xenon, several hundreds of bulk-phase compounds of these elements (especially xenon) having been already isolated and structurally characterised. Radon chemistry was also assayed, but its study is, generally, hampered by the radioactive character of the element, and by the short lifetime of its isotopes. A first (and, to date, unique) helium compound, Na₂He, was also quite recently obtained (Dong et al., 2017), but only at the highest pressures. The variety of the noble gas-observed species becomes, instead, really impressive if one turns to environments such as the supercritical fluids, the cold matrices or the gaseous phase. Under these conditions, all the elements, including helium and neon, exhibit a rich chemistry, typically investigated by spectroscopic, mass spectrometric, and other experimental methods, as well as by theoretical calculations. It is, thus, possible to recognise different noble gas chemistries, and the salient events that marked their beginning are briefly accounted in the subsequent paragraphs.

1.2.1 Bulk-Phase Compounds

The first officially recognised compound of the noble gases is the celebrated ‘Xenon exafluoroplatinate(V) Xe⁺(PtF₆)⁻’ announced by Niel Bartlett in a short communication dated 23 June 1962 (Bartlett, 1962). Graham et al. (2000) subsequently showed that this compound was, actually, a mixture of XeF⁺PtF₆⁻, XeF⁺Pt₂F₁₁⁻, and PtF₅. The arguments that inspired this synthesis are accounted in most inorganic textbooks, and were often recalled by Bartlett himself. He had previously prepared the solid dioxygenyl hexafluoroplatinate(V), O₂⁺(PtF₆)⁻, by direct combination of O₂ and PtF₆ (Bartlett and Lohmann, 1962). Since the first ionisation potential of O₂ is nearly the same as that of xenon, he speculated that this element also could be oxidised by PtF₆. Here is Bartlett’s description of the attempted experiments (Bartlett, 1963, pp. 114–115):

The predicted interaction of xenon and platinum hexafluoride was confirmed in a simple and visually dramatic experiment. The deep red platinum exafluoride vapor, of known pressure, was mixed, by breaking a glass
diaphragm, with the same volume of xenon, the pressure of which was greater than that of the exafluoride. Combination, to produce a yellow solid, was immediate at room temperature and the quantity of xenon which remained was commensurate with a combining ratio of 1:1.

Soon after Bartlett’s synthesis, the group of Claassen, Selig, and Malm at the Argonne National Laboratory and the group of Hoppe at the University of Münster announced the preparation, respectively, of the xenon tetrafluoride (Claassen, Selig, and Malm, 1962) and difluoride (Hoppe et al., 1962). XeF2 was soon prepared also at Argonne (Weeks, Chernick, and Matheson, 1962), and first insights into xenon–oxygen and radon–fluorine chemistry were as well achieved (Chernick et al., 1962). The Argonne group recognised the inspiring role of the first Bartlett report in these terms (Chernick et al., 1962, p. 138, note 6):

At Argonne National Laboratory the reaction with platinum hexafluoride was duplicated and xenon was shown to react at room temperature with ruthenium hexafluoride, but not with uranium, neptunium, or iridium hexafluorides. When the ruthenium exafluoride system was studied quantitatively, a larger than equimolar consumption of the exafluoride was observed, and some reduction of the ruthenium seemed to occur. This suggested the role of a hexafluoride as a fluorine carrier and led to the studies with xenon and fluorine.

These reports traditionally divide the synthetic chemistry of the noble gases into ‘before 1962’ and ‘after 1962’. The events occurring in the former period are, indeed, generally perceived as a sequence of theoretical predictions and experimental facts, which jointly contributed to establish a myth of inertness that resisted up to the early 1960s. A really enjoyable account of the various protagonists and events was reported so far by Laszlo and Schröbilgen (1988). Decisive episodes occurred, in particular, in 1933. In that year, in a paper concerned with the formulas of antimonic acid and the antimonates, Pauling (1933a) predicted the conceivable existence of xenic acid, H₄XeO₆, and of salts such as Ag₄XeO₆ and AgH₃XeO₆, of KrF₆ and XeF₆, and the instability of XeF₈. Stimulated by these suggestions, Yost and Kaye (1933) attempted the combination of xenon with chlorine and fluorine by light irradiation or under electric discharge. We currently know that, under these conditions, xenon fluorides would have to form. The obtained results, while not definitive, were, instead, essentially negative. Yost and Kaye were using the right key, but, for unclear reasons, the door remained closed! The year 1933 saw also the retraction by von Antropoff, Frauenhof, and Krüger (1933) of a previously reported paper (von Antropoff, Weil, and Frauenhof, 1932) that accounted the claimed combination of krypton with chlorine and bromine under an intense electric discharge. Von Antropoff docked at the experimental work based also on own previous theoretical predictions (von Antropoff, 1924) concerning the position of the noble gases in the periodic system, and their ensuing possibility to form bonds with negative elements. The electronegativity
of the binding partners as a criterion to search for noble gas compounds had been, indeed, anticipated, for example, by Kossel (1916). In any case, the negative experimental evidence about xenon and krypton reactivity was in line with the already accepted inertness of their lightest congeners, and appeared well consistent with the octet rule, meanwhile formulated by Lewis in his seminal paper (Lewis, 1916). Thus, since 1933, the myth of noble gas inertness seemed established, and was even reinforced by other subsequent events. In 1935, based on thermal analysis, Booth and Wilson (1935) reported the formation at low temperature of complexes between argon and boron trifluoride. Their inspiring arguments were strictly similar to those behind Bartlett’s synthesis: since boron trifluoride could form complexes with the closed-shell dimethyl ether, it was legitimate to expect analogue compounds with the noble gases. Their observations were, however, subsequently ascertained to be wrong (Wiberg and Karbe, 1948).

Reinforcing evidence against the capability of the noble gases to form true chemical compounds came from the study of other bulk-phase species such as clathrates and metal compounds. An argon hydrate was actually prepared soon after the discovery of the element (Villard, 1896), and the krypton and xenon analogues were subsequently reported (de Forcrand, 1923, 1925). However, between 1949 and 1954, von Stackelberg and coworkers (von Stackelberg, 1949, 1954; von Stackelberg and Frühbuss, 1954; von Stackelberg and Jahns, 1954; von Stackelberg and Meinhold, 1954; von Stackelberg and Müller, 1954) demonstrated that these species were clathrate compounds. The term clathrate was coined by Powell in 1948 to designate ‘a structural combination of two substances which remain associated not through strong attraction between them but because strong mutual binding of the molecules of one sort only makes possible the firm enclosure of the other’ (Powell, 1948, p. 63). Between 1949 and 1950, Powell himself (Powell and Guter, 1949; Powell, 1950a,b,c) obtained the clathrates of argon, krypton, and xenon with quinol, and, in 1960, Waller (1960) prepared the double hydrates of the heaviest noble gases with acetone, methylene dichloride, chloroform, and carbon tetrachloride as the third component. The limited chemical significance of these species was, however, soon recognised. Powell (1950b, p. 300) wrote that ‘no ordinary chemical bonds are needed between quinol and the other molecule’, and Waller (1960, p. 430) described, in particular, the noble gas clathrates in these terms: ‘they can scarcely be called chemical compounds since the electrons of the inert gas atoms are not involved in the binding forces which are responsible for their existence’. As a matter of fact, this implicitly recognised distinction between chemical and physical interactions is of key importance in noble gas chemistry, especially that occurring in the gas phase. In any case, the study of noble gas clathrates and other inclusion and cage compounds was further expanded in the subsequent years, and still remains a research area of current interest.

What about noble gas metal compounds? In 1897, Ramsay and Travers reported their unsuccessful attempts to cause helium and argon to pass through red-hot palladium, platinum, and iron. In their accounting paper (Ramsay and Travers, 1897, p. 267), they concluded: ‘this would imply their inability to form any compound, however unstable, with these metals, or to dissolve them at a red heat’. Nevertheless, in the subsequent four decades (and, particularly, between
1.2 The Emerging of Different Chemistries

1920 and 1940), tens of reports appeared (nicely accounted, for example by Chernick, 1964), whose authors claimed to have combined by electric discharges not only helium but also argon and neon, with several main-group and transition metals. These findings, however, never received definite credit, and were definitely doubted in 1960, when Waller (1960) re-examined these processes, and concluded that at most some sputtering occurred of the metal of the electrodes, and some occlusion of the noble gas, but no formation of compounds. Whether these findings have some connections with the recently reported Na₂He (Dong et al., 2017) is a point that would, probably, demand further scrutiny.

Overall, yet in 1961, the feeling about the possible preparation of noble gas compounds is clearly expressed by Pauling’s sentence (Pauling, 1961, p. 16):

Xenon is completely unreactive chemically. It has no ability whatever to form ordinary chemical compounds, involving covalent or ionic bonds. The only chemical property that it has is that of taking part in the formation of clathrate crystals.

Only 1 year later, the situation changed dramatically, and the synthetic chemistry of krypton and xenon enjoyed an astonishing and unceasing progress.

1.2.2 Molecules in Cold Matrices

In 1963, Turner and Pimentel (1963) reported the preparation of krypton difluoride, the first and by far most important krypton compound. Despite previous announcements of krypton fluorides, this was the first correct identification of KrF₂, based on infrared (IR) spectroscopy. Turner and Pimentel (1963, p. 974) wrote:

We now report the preparation of KrF₂ by the photolysis of fluorine suspended in a solid mixture of argon and krypton at 20°C. This experimental method is called the matrix isolation technique.

This sentence marks the beginning of noble gas chemistry in cold matrices. The technique is, typically, employed in conjunction with IR measurements, and is, therefore, also called matrix-IR spectroscopy. In the concluding part of their paper, Turner and Pimentel (1963, p. 975) noticed:

This work shows that the matrix technique is useful for preparing compounds of inert gases, and it may have unique value for those that are least stable.

As a matter of fact, the xenon halides XeCl₂, XeF₂, and XeClF were subsequently reported (Nelson and Pimentel, 1967; Boal and Ozin, 1971; Howard and Andrews, 1974). In 1974, Poliakoff and Turner (1974) studied the reactions of [Fe(CO)₄] induced by ultraviolet (UV) photolysis in xenon and krypton matrices, and wrote (p. 2282) that the experiments ‘strongly suggests’ the formation of [Fe(CO)₄Xe], and that another band ‘was possibly due to a very unstable
compound \([\text{Fe(CO)}_4\text{Kr}]\). Evidence for the interaction of \(\text{Cr(CO)}_5\), \(\text{Mo(CO)}_5\), and \(\text{W(CO)}_5\) with noble gas atoms in low-temperature matrices was also obtained 1 year later (Perutz and Turner, 1975), and these experimental findings stimulated the first theoretical questions about the character of metal/noble gas interactions (Demuynck, Kochanski, and Veillard, 1979); the first hints to the numerous noble gas/metal complexes that were detected in cold matrices over the subsequent years, and extensively investigated by theoretical calculations.

But the field of cold noble gas chemistry truly exploded since 1995, when Räsänen and coworkers discovered an entirely new group of somewhat unexpected molecules containing the noble gases (particularly Xe and Kr) bound to a hydrogen and a halogen atom. The evidence about the first reported species was succinctly summarised as follows (Pettersson, Lundell, and Räsänen, 1995a, p. 6430):

In this paper we have shown that the strong infrared absorbers in Kr and Xe matrices, originating from photodissociation of hydrogen halides and subsequent annealing of the matrix, are neutral charge transfer species of type \(\text{HX}^+\text{Y}^-\). The four compounds observed so far are \(\text{HXeI}\), \(\text{HXeBr}\), \(\text{HXeCl}\), and \(\text{HKrCl}\).

This assignment, supported by theoretical calculations, was inspired also by a previous computational study by Last and George (1988), who had predicted the existence of an ionic molecule \((\text{HXe})^+\text{Cl}^-\) for impurity centres in rare gases. The family of the \(\text{HNgY}\) was progressively enlarged to include other related species, and it is, certainly, of major interest in modern noble gas chemistry. The most celebrated member is \(\text{HArF}\), reported in 2000 as the first (and to date unique) neutral covalent argon compound (Khriachtchev et al., 2000). In this regard, it is of interest to note the very last sentence of the early paper by Turner and Pimentel (1963, p. 975): ‘It is significant, perhaps, that no evidence could be obtained for an argon-fluorine compound by this method.’ They were attempting to prepare \(\text{ArF}_2\) starting from Ar and the most reactive \(\text{F}_2\): a choice no doubt in line with chemical intuition! However, the right (and, probably, counterintuitive) way to solve the problem was to react Ar with the much more stable HF!

1.2.3 Molecules in Liquid and Supercritical Noble Gases

The cold solid matrices are not the only condensed environments which favour the fixation of noble gas atoms. In 1983, Poliakoff, Turner, and coworkers reported the formation of \([\text{Cr(CO)}_5\text{Xe}]\) in liquid xenon, and in liquid krypton doped with xenon. They wrote (Simpson et al., 1983, p. 1356):

Here, we present evidence which shows that in liquid noble gas solution at \(-100^\circ\text{C}\) the solvated species \([\text{Cr(CO)}_5\text{Xe}]\) is sufficiently stable to be detected by conventional Fourier-transform i.r. interferometry.

The limitations arising from low temperature were subsequently gone over in 1996 by George and coworkers (Sun et al., 1996, p. 10526):
In this paper, we report the use of time-resolved infrared measurements in supercritical fluids, a new technique, which offers a general route to studying the interaction of weakly coordinating ligands in solution at, or above, ambient temperature.

The employed supercritical fluids included, in particular, Ar, Kr, and Xe; and, under these conditions, stable complexes of these elements with Cr(CO)$_5$, Mo(CO)$_5$, and W(CO)$_5$ were detected. The chemistry in liquid and supercritical noble gases was pursued in further detail, but it did not enjoy the astonishing progress of the studies performed in cold matrices.

1.2.4 Chemistry Under High Pressures

The synthesis of certain noble gas compounds demands pressures higher than the ordinary one. For example, the quinol clathrates mentioned in Section 1.2.1 are prepared at noble gas pressures of several tens of atmospheres. However, the term *chemistry under high pressures* is, typically, used to denote processes that occur at the ultra-high pressures of (up to) millions of atmospheres (hundreds of gigapascal). Under these conditions, it is possible to open the doors of noble gas chemistry that, otherwise, would remain definitely locked (Grochala, 2007). These studies actually commenced by addressing an intriguing problem lying in between chemistry and physics, namely, the conditions required to convert the solid noble gases from insulators to metals. An inert gas solid has a filled valence band, as well as lowest excited states which are from 8 to 12 eV higher in energy. Thus, a conceivable mode to convert it into a metal is to compress until the energy gap between the valence and the conduction bands become small or disappear, resulting in a transition to a metallic state. This strategy was initially pursued using high temperatures (*shock compression*), and evidence was actually obtained in 1965 (Keeler, van Thiel, and Alder, 1965, p. 1437) ‘which could be traced to large-scale thermal excitation of electrons in xenon to the conduction band across a pressure-narrowed energy gap’. A subsequent theoretical paper by Ross (1968) supported this interpretation, and described the phenomenon in chemical terms. Ross (1968, p. 777) wrote:

> The present report will show that as a result of high temperatures and compressions, compressed xenon is converted to a metal-like state in which electrons from the filled 5p valence band have been promoted to an unfilled 5d-like conduction band, resulting in a material which is similar to cesium at very high pressure.

Breakthrough advances were, however, achieved only in 1979, when the conducting state of xenon was produced by the application of high pressure on a solid sample at 32 K (Nelson and Ruoff, 1979; Yakovlev, Timofeev, and Vinogradov, 1979). This achievement was made possible by the use of the *diamond-anvil cell* that became, since then, the selection device to investigate the noble gas chemistry at the ultra-high pressures. Definite evidence for the metallisation of xenon was simultaneously reported in 1989 by two groups (Goettel et al.,
1989; Reichlin et al., 1989), who estimated, in particular, as 132 and 150 GPa, respectively, the previously controversial value of the pressure demanded to achieve the insulator-to-metal transition. The field of noble gas chemistry under high pressure is, currently, enjoying a significant expansion, and promises to offer exciting opportunities of investigation.

1.2.5 Gaseous Neutral Complexes

The group 18 elements have the distinct ability to form gaseous complexes with neutral atoms and molecules. These systems constitute a relevant part of the gas-phase chemistry of the noble gases, and are commonly described as van der Waals complexes. This term recognises occurring interactions that are, in general, much weaker than typical 'chemical' bonds, and best described as long-range 'physical' dispersion forces (London, 1936). The bonding situation of neutral noble gas complexes may be, however, more complex than this simplest model, and its description poses challenging problems even to accurate methods of bonding analysis. Various examples in this regard are discussed, in particular, in Chapter 4.

Like other interatomic and intermolecular complexes, the neutral noble gas complexes were, initially, only postulated, and related, in particular, to physical phenomena occurring in gases and liquids. Using the interaction potential \(V \) as the bridging concept, these systems were initially studied by fitting the parameters involved in the potential, particularly the geometry and the depth of the energy minimum, to benchmark bulk-phase data such as the second virial coefficient, and transport coefficients of the pure dilute gas (shear viscosity, thermal conductivity, and self-diffusion coefficient). For example, already in 1937, studying the equation of state and the critical parameters of different gases, including helium, neon, and argon, Lennard-Jones reported, in the paper accounting the explicit formulation of the celebrated two-terms potential (Lennard-Jones, 1937), the equilibrium distance \((R_e) \) and the interaction energy \((\varepsilon) \) of He\(_2\), Ne\(_2\), and Ar\(_2\). The derived values of 2.92 Å and 0.59 meV, 3.05 Å and 3.05 meV, and 3.82 Å and 10.30 meV, respectively, are, indeed, reasonably close to the currently accepted values of 2.97 Å and 0.95 meV, 3.09 Å and 3.64 meV, and 3.76 Å and 12.34 meV! Even higher accuracy was, subsequently, achieved using more flexible potentials, and benchmark data that included experimental results of different types (an approach that is usually referred to as a multiproperty analysis). For example, the accurate numerically tabulated potential of Ar\(_2\), obtained in 1969 by Dymond and Alder (1969) from properties of the dilute gas \((R_e = 3.81 Å \text{ and } \varepsilon = 12.05 \text{ meV}) \), was also capable of predicting the heat of sublimation, and the atomic separation of its solid phase (Burton, 1970). Meanwhile, between 1965 and 1966, mass spectrometric experiments furnished direct evidence for the actual existence of noble gas complexes such as Ar\(_2\), Xe\(_2\), Ar(CO\(_2\)), and Ar(N\(_2\)) (Robbins and Leckenby, 1965; Leckenby and Robbins, 1966). In their preliminary report, Robbins and Leckenby (1965) wrote:

We have observed double molecules, for example \((\text{CO}_2)_2\), in carbon dioxide, nitrous oxide, nitrogen, oxygen, argon and xenon. It is believed
that these double molecules exist in all gases at temperatures where the attractive van der Waals interaction is important, and where the pressure is sufficiently high to produce a significant fraction of three-body collisions. Their existence has been predicted for many years.

They could also rule out the formation of these species by the adiabatic cooling of the gas, or as the products of ion–molecule or excited-state reactions in the mass spectrometer. In addition, at least for Ar₂ in argon, the measured concentrations at 300 K and 100 torr agreed reasonably well with the predictions based on a Lennard-Jones potential, thus ascribing the stability of these systems to typically dispersive interactions. Mass spectrometry, however, did not give insights into the structure and stability of the neutral complexes, and bulk-phase data provided only an indirect probe of the interaction potential. Much more information in this regard unravelled – in particular, spectroscopic measurements (under various spectral regions) and molecular beam scattering experiments. As a matter of fact, during the 1960s and early 1970s, these techniques became established tools to probe the structure, stability, and interaction potential of gaseous complexes, including systems containing noble gas atoms. The first spectroscopic achievements include, for example, the measurement of the vibrational energy levels of Ar₂ in vacuum UV absorption (Tanaka and Yoshino, 1970), the detection of the IR spectrum of Ar(H₂) (McKellar and Welsh, 1971) and Ar(N₂) (Henderson and Ewing, 1974), and the recording of the microwave and radiofrequency transitions of Ar(HCl) (Novick et al., 1973) and Ar(CIF) (Harris et al., 1974). The number of experimentally investigated species soon increased and, already in 1980, in his benchmark review article, Klemperer (1980) could compile all the diatomic Ng₂ and NgNg’ (Ng, Ng’ = He – Xe), and the complexes of various Ng, particularly Ar, Kr, and Xe, with Na, F, Cl, H₂, N₂, O₂, HX (X = F, Cl, Br, I), CIF, I₂, CO₂, COS, N₂O, BF₃, and SO₃. Meanwhile, different groups started to perform high-resolution scattering experiments on systems containing noble gas atoms. Under these conditions, it is possible to measure effects that are highly informative about the interaction potential. The first illustrative reports include, for example, the measurement of the ‘glory’ structure in the integral cross section for the scattering of Li by Xe (Rothe et al., 1962), and the measurement of ‘rainbow’ and ‘diffraction’ oscillations in the differential cross sections for the scattering of Ne by Ar, Kr, and Xe (Parson et al., 1970), of Ar by Ar (Cavalli et al., 1970; Searcy et al., 1971) and of Ar by N₂ (Bickes and Bernstein, 1969).

During the 1960s and 1970s, parallel to the progress made in the experimental investigation, neutral noble gas complexes were also attracting the interest of the theoreticians, who used these simplest systems also as reference tests for developing computational methods and codes. Thus, already in 1976, a review article by Blaney and Ewing (1976) could account the major role of neutral noble gas complexes in the experimental and theoretical study of van der Waals molecules. After 40 years, the field has impressively expanded, and some recent achievements are discussed, in particular, in Chapter 4.
1.2.6 Gas-Phase Ion Chemistry

The gas-phase ion chemistry of the noble gases is a fascinating field of experimental and theoretical research. It features distinct peculiarities that clearly emerge also by studying its origins.

The very first reports date back to 1925. As part of their investigation on the ionisation of hydrogen by electron impact, Hogness and Lunn (1925, p. 50) noticed:

With mixtures of helium and hydrogen in the tube two particularly interesting intensity peaks of \(m/e = 5 \) and a less definite one at about \(m/e = 6 \) were observed repeatedly. Although the small amount of these ions did not permit of a study of their origin, there is little doubt that the \(m/e = 5 \) ion is the ion of helium hydride, \(\text{HeH}^+ \), while the other may be \(\text{HeH}_2^+ \).

Meanwhile, Lind and Bardwell (1925, 1926) were reporting that, when ionised by added radioactive radon, all the noble gases accelerated the polymerisation of acetylene, cyanogens, and hydrogen cyanide. Whether arising from electron-transfer reactions, or involving the formation of activated intermediate complexes between \(\text{Ng}^+ \) and \(\text{C}_2\text{H}_2, \text{C}_2\text{N}_2 \) or HCN, this observed ‘catalytic’ role of the \(\text{Ng}^+ \) clearly established the ability of the noble gases to participate in gas-phase ionic processes. As a matter of fact, the \(\text{Xe(C}_2\text{H}_2)_n^+ \) and \(\text{Xe(CN)}_2^+ \) were, actually, detected more than 30 years later (Melton and Rudolph, 1960; Rudolph, Lind, and Melton, 1962). In 1933, Pauling (1933b) calculated that the previously reported \(\text{He}_2^+ \) (Weizel, 1931, pp. 255–270) was stable by nearly 58 kcal mol\(^{-1}\), and predicted also the conceivable existence of \(\text{He}_2^{2+} \). Thus, already in the early 1930s, while chemists were still debating about the conceivable existence of xenon compounds, various covalent ions containing helium had been detected, and evidence had emerged for ionic reactions involving all the noble gases! But the interest for this chemistry strongly increased during the 1950s and 1960s, when processes involving noble gas atoms emerged as exemplary cases of gas-phase ion–molecule reactions (Stevenson, 1957).

In the early studies, particular attention was focused on the diatomic \(\text{Ng}_2^+ \). They were first detected by Tüxen (1936), and Hornbeck and Molnar (1951) subsequently established that they formed by electron excitation of \(\text{Ng} \), followed by a bond-forming collision:

\[
\text{Ng} + e \rightarrow \text{Ng}^* + e \quad (1.1)
\]

\[
\text{Ng}^* + \text{Ng} \rightarrow \text{Ng}_2^+ + e \quad (1.2)
\]

Ten years later, Dahler et al. (1962) unravelled that, under higher pressures, the \(\text{Ng}_2^+ \) could be also obtained from the termolecular addition of \(\text{Ng}^+ \) to \(\text{Ng} \):

\[
\text{Ng}^+ + 2\text{Ng} \rightarrow \text{Ng}_2^+ + \text{Ng} \quad (1.3)
\]

Meanwhile, it was ascertained that the \(\text{Ng}^+ \) could participate in different types of ion–molecule reactions, including electron transfer, dissociative electron transfer, and abstraction reactions, even with robust substrates such as \(\text{CH}_4 \) and \(\text{H}_2 \). Exemplary processes involving \(\text{Ar}^+ \) (Melton, 1960; Stevenson and Schissler, 1958) are reported here:
1.2 The Emerging of Different Chemistries

\[
\begin{align*}
\text{Ar}^+ + \text{CH}_4 & \rightarrow \text{Ar} + \text{CH}_4^+ \\
\text{Ar}^+ + \text{CH}_4 & \rightarrow \text{Ar} + \text{CH}_3^+ + \text{H} \\
\text{Ar}^+ + \text{H}_2 & \rightarrow \text{ArH}^+ + \text{H}
\end{align*}
\]

(1.4)
(1.5)
(1.6)

The first evidence was also obtained for ion–molecule reactions involving neutral Ng atoms. For example (Giese and Maier, 1961):

\[
\text{H}_2^+ + \text{Ar} \rightarrow \text{ArH}^+ + \text{H}
\]

(1.7)

As a matter of fact, we currently know that Equations (1.1)–(1.7) exemplify the main different modes to activate the Ng atoms by ionic processes, namely, (i) excitation to Ng* followed by bond-forming collisions with a neutral (the Hornbeck–Molnar mechanism), (ii) ionisation to Ng+ and subsequent charge-transfer or bond-forming reaction(s), and (iii) ion–molecule reactions involving the neutral Ng. As a matter of fact, already in the early 1960s, all these mechanistic routes had been successfully employed to prepare a variety of noble gas ionic species, including, for example, all the heteronuclear NgNg′+ (Ng, Ng′ = He − Xe) (Munson, Franklin, and Field, 1963), ArN+ (Kaul and Fuchs, 1960), the NgN2+ and NgCO+ (Ng = Ar, Kr, Xe) (Munson, Field, and Franklin, 1962), the ArI+ and KrI+ (Henglein and Muccini, 1960) and various Ng–C cations (Ng = Ar, Kr, Xe) (Field, Head, and Franklin, 1962; Field and Franklin, 1961). Other interesting bond-forming reactions emerged a few years later by studying the reactivity of the Ng2+ (Bohme et al., 1970; Adams, Bohme, and Ferguson, 1970), that were observed to undergo, in particular, ligand displacement and abstraction reactions. Meanwhile, argon was observed to undergo the termolecular addition to H3+ to form Ar(H3+) (Fehsenfeld, Schmeltekopf, and Ferguson, 1967), and the study of ion mobility in noble gases had already stimulated interest in the complexes of metal cations with Ng atoms (Dalgarno, McDowell, and Williams, 1958; Mason and Schamp, 1958).

But other strategies were also pursued during the 1960s to prepare gaseous noble gas ions. The first employed route was the electron ionisation of available xenon compounds, used, in particular, as precursors of Xe−F and Xe−O cations (Studier and Sloth, 1963; Svec and Flesch, 1963; Huston, Studier, and Sloth, 1964), and Xe−F anions (Begun and Compton, 1969). Noble gas ions were also obtained by the radioactive decay of molecules labelled with T, 82Br, and 131I. These isotopes undergo β−-decay to form 3He+, 82Kr+, and 131Xe+, respectively. Starting from a tritiated compound R−T, the ensuing R−He+ is, actually, a R+(He)) complex, which is unstable with respect to the loss of He. Only HT produces an abundant HeH+ (Snell and Pleasonton, 1958). On the other hand, the (R−82Kr)+ and (R−131Xe)+ arising from the decay of R−82Br and R−131I, respectively, are, in general, more stable, and, in fact, various C−Kr and C−Xe cations were obtained in this way (Carlson and White, 1962, 1963a,b). This mode of preparation, however, did not receive further attention in the subsequent years, and the structure, stability, and reactivity of noble gas ions were typically investigated nearly exclusively by mass spectrometric and spectroscopic techniques. Since the early 1980s, a relevant contribution to noble gas ion chemistry came also from theoretical calculations. The first systematic investigation was performed,
in particular, by Cooper and Wilson (1981), who examined noble gas molecular ions of different composition and charges, and also made comparisons with previously reported results. But decisive progress was made, during the 1980s, by Frenking and coworkers, who performed an extensive study of noble gas compounds, and reported, *inter alia*, a deep scrutiny of exemplary noble gas ions, with special attention to species containing helium, neon, and argon (Koch et al., 1987; Frenking et al., 1989a,b). Any current investigation of noble gas ion chemistry is, indeed, typically accomplished by experiments and theory working in concert; numerous illustrative examples await the reader in Chapter 5.

1.3 The Development of the Diverse Fields

Over the years, the diverse fields of noble gas chemistry enjoyed a continuing expansion, marked by countless experimental and theoretical advances. Some salient events, which are also of relevance for the chemistry mainly discussed in this book, are briefly surveyed in this section.

The synthetic advances achieved in the early 1960s suggested that krypton and xenon could combine exclusively with the most electronegative fluorine and oxygen. It took nearly three decades to establish that at least three additional elements, namely, nitrogen, carbon, and chlorine, could form isolable compounds with xenon. The first Xe–N compound, FXeN(SO₂F)₂, was reported in 1974 (LeBlond and DesMarteau, 1974), and Kr–N compounds were obtained in 1988 (Schrobligen, 1988a,b). The first Xe–C compounds were prepared in 1989 as salts of C₆F₅Xe⁺ and boron anions (Frohn and Jakobs, 1989; Naumann and Tyrra, 1989), and the Xe–Cl compounds C₆F₅XeCl and [(C₆F₅Xe)₂Cl][AsF₆] were prepared in 1999 (Frohn, Schroer, and Henkel, 1999). A Xe–Br compound was also obtained in 2006 (Bock et al., 2006), and novel Xe–Cl and Xe–Br compounds were quite recently synthesised (Goettel, Haensch, and Schrobligen, 2017). As a matter of fact, more than 50 years after the first achievements, we currently know that, in its typical oxidation states (II, IV, VI, and VIII), xenon combines particularly with fluorine, oxygen, carbon, and nitrogen to form a large variety of compounds and bonding motifs. Compounds of krypton (II) with fluorine, oxygen, and nitrogen are also well established. The reactivity of synthesised noble gas compounds has attracted as well continuing experimental and theoretical interest; the versatility of XeF₂ as a fluorinating agent is an outstanding example in this regard (Betz and Schrobligen, 2012). Exhaustive accounts of this more ‘traditional’ synthetic chemistry of xenon and krypton are given in benchmark review articles and book chapters (Holloway and Hope, 1998; Gerken and Schrobligen, 2000; Frohn and Bardin, 2001; Christie, 2001; Lehmann, Mercier, and Schrobligen, 2002; Grochala, 2007; Calladine et al., 2009; Brock, Schrobligen, and Žemva, 2013b; Haner and Schrobligen, 2015). But xenon can also form isolable compounds with metal atoms, particularly gold and mercury. At the beginning of the millennium, the synthesis of [AuXe₄][Sb₂F₁₁]₂, a salt of the square-planar cation AuXe₄²⁺ (Seidel and Seppelt, 2000) was, indeed, one of the most astonishing achievements in noble
gas chemistry: a really unpredictable marriage between noble elements! And other Au–Xe, as well as Hg–Xe compounds, were soon reported (Seppelt, 2003). Interestingly, the synthesis of Au–Xe and Hg–Xe compounds had connections with nearly contemporary gas-phase experiments. Thus, in 1998, the ionic AuXe+, previously investigated by theoretical calculations (Pyykkö, 1995), was actually detected by mass spectrometry (Schröder et al., 1998a), and, in 2000, microwave experiments unravelled the neutral Ar–AuCl and Kr–AuCl (Evans, Lesarri, and Gerry, 2000a). In 2006, the accounted species included nearly all the NgMX (Ng = Ar, Kr, Xe; M = Cu, Ag, Au; X = F, Cl, Br) (Michaud and Gerry, 2006, and references cited therein), and other gaseous complexes with coinage metal compounds are still intensively investigated. The related complexes of xenon fluorides, particularly XeF2, with metal cations, had already emerged in 1991, when Bartlett and coworkers synthesised a salt of Ag+(XeF2)2 (Hagiwara et al., 1991). The field remained, actually, silent for nearly 10 years, but it truly exploded since 2000, and currently includes an impressive variety of synthesised compounds and bonding motifs (Tavčar et al., 2004; Tramšek and Žemva, 2006a,b). But noble gas-metal compounds can be also obtained in cold matrices. The first detected species were the triatomic Ar–BeO, Kr–BeO, and Xe–BeO, reported in 1994 (Thompson and Andrews, 1994), but heralded by a previous prediction by Frenking et al. (1988) about the capability of helium, neon, and argon to form adducts with BeO whose binding energies were much higher than those of typical van der Waals complexes. Just first episodes of a subsequently emerged very rich beryllium-noble gas chemistry that includes, inter alia, the recent detection in cold matrices of remarkable neon complexes such as the Ne–BeS (Wang and Wang, 2013), Ne–BeCO3 (Zhang et al., 2015), Ne–BeSO2 (Yu et al., 2016), and Ne–Be2O2 –Ne (Zhang et al., 2017). The cold matrices favour also the formation of metal oxide–noble gas complexes (Zhao and Zhu, 2010; Hope, 2013, and references cited therein), including those with CUO and other uranium compounds: their first detection (Li et al., 2002) opened the gate to the unprecedented noble gas-actinide chemistry.

Compounds with Xe—H bonds, still elusive in the bulk phase, were obtained in cold matrices, and this was one of the most exciting developments in noble gas chemistry. Thus, particularly between 1995 and 1999, the parent XeH2 and numerous other neutral hydrides were detected featuring H–Xe–X (X = Cl, Br, I), H–Xe–C, H–Xe–O, and even H–Xe–S connectivities; various krypton analogues were also obtained. Overview accounts of this chemistry are given in thematic review articles and book chapters (Pettersson, Lundell, and Räsänen, 1999a; Gerber, 2004; Khriachtchev, Räsänen, and Gerber, 2009; Grochala, Khriachtchev, and Räsänen, 2011; Kameneva, Kobzarenko, and Feldman, 2015). The field was further expanded in 2003, when a complex between HArF and N2 was detected (Lignell et al., 2003); this prompted a subsequent very active investigation of the complexes of the HNgY and XNgY with various ligands (Lignell and Khriachtchev, 2008; McDowell, 2006). Covalent xenon compounds are, instead, only rarely obtained in the gas phase. A few remarkable exceptions are the xenon hydrides HXeBr, HXeI, and HXeCCH prepared from the ionisation of HI and HCCH adsorbed on xenon clusters (Buck and Farnik,
2006; Poterya et al., 2008). Their investigation has also thrown light on the mechanism of formation of these compounds in cold matrices.

The isolated conditions of the gas phase favour the formation of connectivities that are undetected under other environments. The gaseous $F_3Si – Xe^+$ and $F_3Ge – Xe^+$ (Cipollini and Grandinetti, 1995; Antoniotti et al., 2010) are exemplary cases of molecular species featuring Xe—Si and Xe—Ge bonds. But even more interesting, the gaseous phase favours the formation of a large variety of neutral and ionic species containing helium, neon, and argon. The neutral systems are generally characterised as van der Waals adducts, but recent studies (Cappelletti et al., 2015; Bartocci et al., 2015) showed that chemical components may also contribute to the stability of neutral complexes of even He and Ne. Several bonding components are also, generally, occurring in the complexes of the noble gases with ionic (cationic but also anionic) species. Systems containing argon, krypton, and xenon are obtained relatively easily, but species containing neon and, especially, helium are only hardly achieved. Breakthrough advances were made, however, after the discovery of ultracold helium nanodroplets. These fascinating objects, made of up to thousands of He atoms, are able to ‘pick up’ atoms, molecules, and metal clusters at an isothermal low temperature of less than 1 K, lower than possible in most solid matrices. Under these conditions, a high spectroscopic resolution is achieved, which is comparable to that attained in the gas phase. In essence, the helium droplets are a ‘gentle’ matrix that combines the benefits of the gas phase with those of the classical matrix-isolation techniques. But the doped helium clusters can be also ionised, and this produces a variety of atomic and molecular ions solvated by He atoms. The superfluidity of helium, in fact, facilitates binary encountering and absorbing of the energy released upon recombination. Some illustrative aspects of this fascinating chemistry are accounted, for example, in thematic review articles (Toennies and Vilesov, 2004; Yang and Ellis, 2013).

The formation of ionic species solvated by the lightest noble gases, particularly helium and neon, is also intensively investigated in connection with the use of the ‘tagging’ technique, an elegant mode to explore the spectroscopic properties of ionic species. First employed in the 1980s to study the IR spectra of ionic water clusters (Okumura et al., 1986), the method enjoyed considerable expansion also by the use of Ng atoms as tagging species, and it was already applied to a variety of inorganic, organic, and biologically relevant species (Bieske and Dopfer, 2000; Polfer and Oomens, 2009). Reactive processes, particularly ionic, are also intensively investigated in the gas phase. In the early 1990s, the traditional interest focused on reactions involving singly charged species was also extended to reactions involving doubly charged cations (Price, Manning, and Leone, 1994). As a matter of fact, after the year 2000, this issue became a major chapter of the gas-phase ion chemistry of the noble gases (Grandinetti, 2011 and references cited therein).

Over the years, continuing experimental and theoretical interest was also focused on the ability of the noble gases to interact with solid surfaces, or to enter into molecular cavities. Of major current interest is, in particular, the capturing of noble gas atoms by molecular sieves and metal–organic frameworks (MOFs). Studies like these are also driven by issues of applied interest, such as
the optimal separation of the noble gases from air or from gaseous matrices of
diverse origins. Few recent experimental advances (Wood et al., 2016; Banerjee
et al., 2016; Feng et al., 2016) exemplify the considerable progress made in
this area. There are also systems of more fundamental interest, including, in
particular, species obtained by encapsulating the Ng atoms (particularly He) into
fullerenes and other related cages. First unravelled in the early 1990s by mass
spectrometric experiments (Weiske et al., 1991, 1992a,b), these compounds were
soon obtained also in macroscopic amounts (Saunders et al., 1993), and became
of peculiar interest, especially after the discovery of ^3He NMR spectrometry
as a probe for fullerene structure (Saunders et al., 1994a, 1996). The eventually
resolved crystal structure of the prototype He@C$_{60}$ (Morinaka et al., 2013) is
just a recent episode of this long and fascinating story.

Impressive progress was also made by studies performed at high pressure. As
first suggested also by pioneering explorative calculations (Grochala, 2007), these
experimental conditions favour the formation of somewhat unique compounds
and bonding motifs. Besides their intrinsic interest, these species have impor-
tant ‘natural’ implications, as they are suggestive of processes occurring in the
interiors of the Earth, outer planets and other celestial bodies. A first relevant
achievement was the preparation of a van der Waals compound of composi-
tion He(N$_2$)$_{11}$, obtained by compression of helium–nitrogen mixtures (Vos et al.,
1992); an unprecedented bridging between gas-phase (the environment typical
of noble gas van der Waals complexes), and solid-phase chemistry. And turn-
ing to systems of terrestrial interest, high-pressure laboratory experiments sug-
gested that, under the conditions existing in the Earth’s inner core, xenon could
be covalently bonded to quartz (Sanloup et al., 2005). These findings were fur-
ther supported by the actually synthesised XeO$_2$ (Brock and Schrobilgen, 2011)
(the missing oxide of Xe(IV)), and appear as a plausible explanation for the still
challenging ‘missing xenon paradox’: the amount of xenon in the terrestrial atmo-
sphere is an order of magnitude less than it would be if all the xenon trapped into
the mantle would be degassed into the atmosphere (Andres and Owen, 1977).
Theoretical calculations have also recently highlighted that, under the conditions
of the Earth’s inner core, xenon could form chemically stable compounds with Fe
and Ni (Zhu et al., 2014). Interestingly, such reactivity seems to be made possible
by the pressure-induced generation of negatively charged Fe and Ni. And recent
calculations (Miao et al., 2015b) unravelled a truly unexpected effect of the pres-
sure, namely, the reduction by Mg of Xe atoms, which become negatively charged
and form Xe/Mg compounds. These findings somewhat heralded the very recent
synthesis at high pressure of Na$_2$He, the first stable compound containing helium
(Dong et al., 2017). Certainly, one of the most exciting achievements in noble gas
chemistry.

Theoretical calculations have invariably accompanied the development of
the diverse fields of noble gas chemistry. The already investigated species
are really countless, and numerous systems of current interest are discussed
in the subsequent chapters. Certain achievements are, however, particularly
relevant for their general and seminal character. First, during the 1980s,
electronic-structure calculations, and methods of bonding analysis (particularly
the atoms in molecules (AIM) theory) were extensively employed to investigate
the noble gas compounds, particularly species containing helium, neon, and argon. These results (Frenking and Cremer (1990), and references cited therein) gave considerable impetus to the field, and still remain of benchmark value. There are also more specific reports of peculiar interest. A recent study on the electronic structure of XeF$^+$ and XeF$_2$ (Braïda and Hiberty, 2013) highlighted the crucial role of charge shift (Shaik et al., 2005, 2009) in their stabilisation. These results reinforce the general validity of the three-centres/four-electrons bonding model used to discuss covalent noble gas compounds, and establish also novel connections with methods of bonding analysis. Turning to weak intermolecular interactions, one should note the recent discovery of the ‘aerogen bond’ (Bauzá and Frontera, 2015a), a bonding motif that, certainly, will attract future interest. Finally, predicted covalent compounds such as HHeF (Wong, 2000) and FHeO$^-$ (Li et al., 2005), while still experimentally undetected, unravelled of major interest to understand the factors affecting the chemistry of the lightest noble gases, particularly helium.