Contents

Preface to the Second Edition XV
Glossary XVII
List of Abbreviations XXXIII

I General Concepts 1

1 Introduction 3
1.1 Devices and Machines at the Molecular Level 3
1.2 Nanoscience and Nanotechnology 5
1.3 Supramolecular (Multicomponent) Chemistry 7
1.4 Top-Down (Large-Downward) Approach 10
1.5 Bottom-Up (Small-Upward) Approach 10
1.6 Bottom-up Molecule-by-Molecule Approach 11
1.7 Self-Organization and Covalent Synthetic Design 13
1.8 Energy and Signals 15

2 Processing Energy and Signals by Molecular and Supramolecular Systems 23
2.1 Introduction 23
2.2 Molecular Electronics 25
2.3 Molecular Photonics 27
2.4 Molecular Chemionics 28
2.5 Molecular Electrophotonics 29
2.5.1 Solution Systems 30
2.5.2 Solid State 31
2.6 Molecular Electrochemionics 31
2.7 Molecular Photoelectronics 33
2.7.1 Photoinduced Electron Transfer in Homogeneous Systems 33
2.7.2 Photoinduced Potential Generation in Heterogeneous Systems 33
2.8 Molecular Photochemionics 34
2.8.1 Proton Release or Uptake 35
2.8.2 Metal Ion Release 35
2.8.3 Anion Release 36
2.8.4 Molecule Release 36
2.8.5 Configurational Changes 37
2.9 Molecular Chemiophotonics 38
2.10 Molecular Chemioelectronics 38
2.11 Multiple Input/Processes 39
2.11.1 A Sequence of Two Chemical and a Photonic Inputs Generating Photon Emission 39
2.11.2 Two Electrochemical Inputs in Parallel Generating a Chemical and a Photonic Process in a Sequence 39
2.11.3 A Photonic Input Generating Parallel and Serial Processes 40

II Molecular Devices for Processing Electrons and Electronic Energy 47

3 Fundamental Principles of Photoinduced Electron and Energy Transfer 49
3.1 Molecular and Supramolecular Photochemistry 49
3.1.1 Molecular Photochemistry 49
3.1.2 Supramolecular Photochemistry 51
3.2 Electron Transfer 53
3.2.1 Marcus Theory 53
3.2.2 Quantum Mechanical Theory 56
3.2.2.1 The Electronic Factor 56
3.2.2.2 The Nuclear Factor 58
3.2.2.3 Optical Electron Transfer 59
3.3 Energy Transfer 60
3.3.1 Coulombic Mechanism 61
3.3.2 Exchange Mechanism 62
3.4 Role of the Bridge 63

4 Wires and Related Systems 69
4.1 Introduction 69
4.2 Conductivity Measurements 69
4.3 Electron-Transfer Processes at Electrodes 72
4.4 Wire-Type Systems Based on Photoinduced Charge Separation 73
4.4.1 Introduction 73
4.4.2 Dyads, Triads, and Larger Systems 73
4.4.3 Covalently Linked Systems Containing Metal Complexes 75
4.4.4 Covalently Linked Systems Containing Porphyrins 79
4.4.5 Covalently Linked Systems Based on Organic Compounds 83
4.4.6 DNA and Related Systems 86
4.5 Heterogeneous Photoinduced Electron Transfer 88
4.6 Energy Transfer 89
4.6.1 Covalently Linked Systems Containing Metal Complexes 89
4.6.2 Covalently Linked Systems Containing Porphyrins 93
4.6.3 Covalently Linked Systems Based on Organic Compounds 95
4.6.4 DNA and Related Systems 97

5 Switching Electron- and Energy-transfer Processes 107
5.1 Introduction 107
5.2 Switching of Electron-Transfer Processes 108
5.2.1 Photon Inputs 108
5.2.1.1 Long-Lived Switching 109
5.2.1.2 Fast and Ultrafast Switching 112
5.2.2 Redox Inputs 116
5.2.3 Acid–Base Inputs 117
5.2.4 Other Factors 121
5.3 Switching of Energy-Transfer Processes 122
5.3.1 Photon Inputs 122
5.3.2 Redox Inputs 125
5.3.3 Acid–Base Inputs 125
5.3.4 Other Factors 127

6 Light Harvesting Antennae 135
6.1 Introduction 135
6.2 Natural Antenna Systems 136
6.3 Dendrimers 138
6.3.1 Porphyrin-Based Arrays and Dendrimers 139
6.3.1.1 Arrays 139
6.3.1.2 Dendrimers 143
6.3.2 Dendrimers Containing Metal Complexes 145
6.3.2.1 Metal Complexes as Cores 145
6.3.2.2 Metal Complexes in Each Branching Center 147
6.3.3 Dendrimers Based on Organic Chromophores 150
6.3.3.1 Poly(arylether) Dendrimers 150
6.3.3.2 Phenylacetylene Dendrons 150
6.3.3.3 Polyphenylene and Oligo(p-Phenylen Vinylene) Dendrimers 152
6.3.4 Host–Guest Systems 153
6.3.4.1 Hosting Organic Molecules 153
6.3.4.2 Hosting Metal Ions 156
6.4 Other Systems 159
6.4.1 Multichromophoric Cyclodextrins 160
6.4.2 Phthalocyanines 160
6.4.3 Metallosupramolecular Squares 160
6.4.4 Rotaxanes 161
6.4.5 Zeolites 162
6.4.6 Polyelectrolytes 162
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.7 Polymers</td>
<td>162</td>
</tr>
<tr>
<td>6.4.8 Self-Assembly of Biological Structures</td>
<td>164</td>
</tr>
<tr>
<td>7 Solar Energy Conversion</td>
<td>171</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>171</td>
</tr>
<tr>
<td>7.2 Natural Photosynthesis</td>
<td>173</td>
</tr>
<tr>
<td>7.2.1 Introduction</td>
<td>173</td>
</tr>
<tr>
<td>7.2.2 Bacterial Photosynthesis</td>
<td>174</td>
</tr>
<tr>
<td>7.2.3 Photosystem II</td>
<td>177</td>
</tr>
<tr>
<td>7.3 Artificial Photosynthesis</td>
<td>179</td>
</tr>
<tr>
<td>7.3.1 Introduction</td>
<td>179</td>
</tr>
<tr>
<td>7.3.2 Hydrogen Economy</td>
<td>179</td>
</tr>
<tr>
<td>7.3.3 Photochemical Water Splitting</td>
<td>180</td>
</tr>
<tr>
<td>7.3.4 Coupling Artificial Antennas and Reaction-Center Building Blocks</td>
<td>182</td>
</tr>
<tr>
<td>7.3.4.1 Introduction</td>
<td>182</td>
</tr>
<tr>
<td>7.3.4.2 Systems Based on Organic Compounds and Porphyrins</td>
<td>183</td>
</tr>
<tr>
<td>7.3.4.3 Systems Based on Metal Complexes</td>
<td>188</td>
</tr>
<tr>
<td>7.3.5 Coupling Single-Photon Charge-Separation with Multi-Electron Redox Processes</td>
<td>189</td>
</tr>
<tr>
<td>7.3.5.1 Introduction</td>
<td>189</td>
</tr>
<tr>
<td>7.3.5.2 Coupling Electron and Proton Transfer for Oxygen Evolution</td>
<td>190</td>
</tr>
<tr>
<td>7.3.5.3 Other Systems</td>
<td>193</td>
</tr>
<tr>
<td>7.3.6 Assembly Strategies</td>
<td>193</td>
</tr>
<tr>
<td>7.3.6.1 Introduction</td>
<td>193</td>
</tr>
<tr>
<td>7.3.6.2 Self-Assembly</td>
<td>193</td>
</tr>
<tr>
<td>7.3.6.3 Bilayer Membranes</td>
<td>195</td>
</tr>
<tr>
<td>7.4 Hybrid Systems</td>
<td>195</td>
</tr>
<tr>
<td>7.4.1 Hybrid Photosynthetic Reaction Center</td>
<td>195</td>
</tr>
<tr>
<td>7.4.2 Conversion of Light to a Proton-Motive Force</td>
<td>196</td>
</tr>
<tr>
<td>7.4.3 Light-Driven Production of ATP</td>
<td>198</td>
</tr>
<tr>
<td>7.5 Conversion of Light into Electricity by Photoelectrochemical Cells</td>
<td>199</td>
</tr>
</tbody>
</table>

III Memories, Logic Gates, and Related Systems	209
8 Bistable and Multistable Systems	211
8.1 Introduction	211
8.2 Energy Stimulation	212
8.2.1 Stimulation by Photons: Photochromic Systems	213
8.2.2 Stimulation by Electrons: Electrochromic Systems	216
8.3 Bistable Systems	217
8.3.1 Modulation of Host–Guest Interactions	217
8.3.2 Fluorescent Switches	218
8.3.3 Chiroptical Switches	219
14.3.3 Electrochemically Driven Movements 411

14.3.4 Photochemically Driven Movements 414

14.4 Linear Motions in Rotaxanes 418

14.4.1 Introduction 418

14.4.2 Chemically Driven Movements 420

14.4.2.1 Rotaxanes Based on Metal Complexes 420

14.4.2.2 Rotaxanes Based on Hydrogen Bonds and Donor-Acceptor Interactions 422

14.4.2.3 Rotaxanes Based on Cucurbituril 425

14.4.2.4 Rotaxanes Based on Cyclodextrins 426

14.4.2.5 Other Systems 427

14.4.3 Electrochemically Driven Movements 427

14.4.4 Photochemically Driven Movements 431

14.4.4.1 Rotaxanes Based on Metal Complexes 431

14.4.4.2 Systems Based on Photoisomerization Reactions 431

14.4.4.3 Systems Based on Photoinduced Electron Transfer 433

14.4.5 Allowing/Preventing Ring Motion 437

15 Rotary Motions 453

15.1 Introduction 453

15.2 Natural Rotary Motors 453

15.3 Hybrid Rotary Motors 455

15.4 Rotary Movements in Artificial Systems 457

15.4.1 Chemically Driven Processes 458

15.4.1.1 Rotation Around a –C–C– Single Bond 458

15.4.1.2 Ring Switching Processes in Rotaxanes and Catenanes 460

15.4.1.3 Control of Rotation Around a Metal Ion in Sandwich-Type Compounds 464

15.4.2 Electrochemically Driven Processes 466

15.4.2.1 Ring Switching Processes in Rotaxanes 466

15.4.2.2 Ring-Switching Processes in Catenanes 467

15.4.2.3 Control of Rotation Around a Metal Ion in Sandwich-Type Compounds 471

15.4.3 Photochemically Driven Processes 472

15.4.3.1 Unidirectional Rotation Around a –C=C– Double Bond 472

15.4.3.2 Ring Switching Processes in Catenanes 476

15.4.3.3 Unidirectional Rotation in Catenanes 477

16 From Solution to Heterogeneous Systems 489

16.1 Introduction 489

16.2 Rotary Motors on Surfaces 490

16.3 Molecular Valves 492

16.4 Molecular Muscles 493

16.5 Molecular Motion Driven by STM 495

16.6 Hybrid Bio-Nanodevices 498