Index

Page numbers in *italics* refer to figures; page numbers in **bold** refer to tables.

activated sludge 85–6, 91
Agent Orange 142
air see atmosphere; indoor air
Arctic ecosystem
 biomagnification of PFCs 39
 food webs 100, 103–4, 105
 levels of BFRs 11, 15
 POPs in Polynya invertebrates 94
 sources of PFCs 50, 51
atmosphere
 see also indoor air; volatilization
 air-surface exchange 85, 111–16, 175, 185, 189
 downwind contamination, from cities 190, 191, 246–7, 258
 long-range POP transport 11, 15, 50–1, 185
 observed BFR concentrations 218–19
 observed PFC concentrations 51–2, 222
 rural and urban contamination 177, 179–82, 185–6, 247–8
 sampling and analysis 41, 42, 148–50
BDEs see polybrominated diphenyl ethers (PBDEs)
bioaccumulation
 food chain/web magnification 13, 39, 244, 249–50
 and metabolic debromination (PDBEs) 258
 in human milk 12–13, 13, 109, 155
 from plants 92
 potential estimation, by lipophilicity 10–11, 11
 in wildlife 14–15, 38–9, 56–8, 100, 101
biotransformation 73, 258
 by macroorganisms
 aquatic mammals 100–5
 birds and eggs 98–100
 fish 38, 95–8
 invertebrates 94–5
 plants 91–2
 terrestrial mammals 105–9
microbial
 in natural waters 83–5
 in soils and sediments 86–91, 92–3, 111, 191
 in wastewater/activated sludge 85–6
 rate determination 109–11
birds
 detoxification of POPs 98–9
 POP residue composition in eggs 57, 58, 99–100
bivalves
 biotransformation abilities 94–5
 Mussel Watch programmes (POP monitoring) 154–5, 157
breast milk
 bioaccumulation of POPs 12–13, 13, 109, 155
 geographical analysis of POPs 158, 158–9, 258–9
brominated flame retardants (BFRs)
 see also hexabromocyclododecane (HBCD/HBCDD); polybrominated diphenyl ethers (PBDEs);
tetabromobisphenol-A (TBBP-A)
bioaccumulation 10–11, 11, 12–15, 103, 258
chirality 78–9, 80
brominated flame retardants (BFRs) (Continued) contamination
air 218–19
indoor dust 220–1, 259
emission mechanisms 216
human intake 15–17, 224–5, 258–60
measurement and analysis 8–10, 9, 215
pollutant sources 7, 15, 215–17, 230–1
production and demand 5, 6, 254–7, 256
regulation of 5–7, 12–13, 260–1
toxicity 12, 17, 260
types and applications 5, 10, 215, 254
method of product incorporation 212–13
butter, for POP assessment 150, 150–1
carcinogenic activity 12, 32
cetaceans (porpoises/whales), POP metabolism capacity 103–5
chemical interactions, in urban environment 188–91, 197
chirality
composition reporting metrics (ER/EF) 81–2
effect on toxicity 72
enantioselective measurement 72, 79–81
extent, in POPs 71
for identifying pollutant source 111–16
in measurement of biotransformation 109–11, 117–18
chlordanes 73–4
environmental contamination 86–7, 87, 148, 177, 178
in seal tissues 100–1
soil persistence, variability 92, 92–3
stereoisomer structures 76
uptake by plants 91–2
Clausius-Clapeyron equation 186
combustion emissions
landfill and urban open fires 143, 145, 175
residential heating 174
vehicle fuel 174, 194
consumer products, as emissions source 174–5, 215–17, 245, 254–7
cytochrome P450 (CYP) activity, in biotransformation 97, 103, 106, 107
debromination to toxic congeners 18, 260
determination and analysis 8
dust contamination mechanisms 216
molecular structure 6
degradation of POPs 11, 83, 116–17, 188–91, 213
see also biotransformation
developing countries
continuing emission of legacy POPs 138
data on environmental contamination 147–8, 161
industrialization 138, 173
POP problems (compared to developed countries)
effective regulation 160
financial and technical constraints 159–60
information and understanding 160–1
stockpiled pesticides 139–40, 160
working standards, environmental 145, 258
dichlorodiphenyltrichloroethane (DDT)
chemical structure 74
continuing use
detected by mussel monitoring 155
for public health 139, 148
environmental contamination 177, 182
persistence in soils and sediments 88, 112, 113, 154
dietary intake
of BFRs, from fish/shellfish 15–16, 259
estimates of PFCs 227
from food processing/packaging 48–9, 259–60
rate of decline, after POP ban 250–3
dioxins/furans (PCDD/Fs) 141–2
from vehicles 174, 194
from waste combustion 145, 159, 175, 176
dumping, illegal 141, 146

dust, indoor
BFR contamination 7, 220–1, 259
dust loading and dilution 227–8, 229
human exposure 224–5, 226
disposal pathways 244
microspatial variation 231, 232–3, 233
PCB contamination 214, 214–15, 226
PFC contamination 223, 226–7
sampling methods 210–12
education, for POP obligations 160–1
eggs, as biomonitoring tool 99–100
Index

273

electrochemical fluorination (ECF process) 28–9, 50
electronic equipment
BFR emissions during use 215–16
e-waste (WEEE), as source of BFR pollution 7, 144–5, 146–7, 254–5, 258
production rate 246, 254
emissions from additive and reactive products 212–13
mechanisms of BFR release 216
point and diffuse sources 173, 228–31
rate studies, for risk assessment 197
urban sources 173–5, 189, 192, 246–7
enantiomer ratio/fraction (ER/EF) 81–2
used for pollutant source signatures 111, 186–7
endocrine effects of PDBEs 12, 17
of PFCs 32
endosulfan, geographical distribution 148
environmental contamination see also bioaccumulation; persistence
accidental spillage 39, 49–50, 53
aquatic sediment records 13–14, 55–6, 86–91, 151
biochemical weathering 73, 82, 93, 109–11
data comparison problems 147–8
long-range transport 11, 15, 50–1, 185
monitoring long-term POP removal 15, 118
near municipal dumpsites 145–6, 146
in oceans, variation with depth 85
remediation 197–8
sources of BFRs 7, 15
sources of PFCs 49–51
transfer from indoor sources 243–4
urban areas 172–5, 185–7, 189, 191–3, 192

fish
biotransformation capability 95–8
as dietary BFR source 15–16, 259
as dietary PCB source 253
health, and POP contamination 191, 193
fluorinated polymers, structure 28
fluorine
atomic and bonding properties 33–4
measurement, total organic 46
fluorotelomer alcohols (FTOHs) analysis 44–5, 55
bioaccumulation and persistence 38, 40, 41, 50–1
environmental sources and levels 49–50, 57
atmosphere 51–2
production 30
properties 34, 35–6, 37, 38, 39
structure 25, 27
toxicity 32
fluorotelomer carboxylic acids (/carboxylates) (FTCAs)
analysis 42, 43, 45
environmental presence 38, 52–3, 55, 57
structure 27–8
toxicity 33
unsaturated (FTUCAs) 27–8
fluorotelomer sulfonic acids (/sulfonates) (FTSs)
analysis 42, 44, 47
environmental contamination 53
structure 28
forensics, detection of illegal chemical use 91
furs see dioxins/furans (PCDD/Fs)

GC-MS analysis
for measurement of BFRs 8–9
for volatile PFC measurement 44–5

Global Atmospheric Passive Samplers (GAPS) study 148–50, 149, 150

health quality, in urban areas 196
hepatic metabolism, effects of PFCs 31–2
heptachlor epoxide 74, 76

hexabromocyclododecane (HBCD/HBCDD) additive product incorporation 212–13
determination and analysis 9–10, 117
environmental persistence 11, 86, 114, 213
metabolism, in higher organisms 98, 100, 104–5
molecular structures 6, 79, 80
hexachlorobenzene (HCB) 142–3
hexachlorocyclohexane (HCH) α-HCH atmospheric sources 85, 115–16, 148
bioaccumulation, in seals 101, 102
enantioselective blood-brain transfer 98, 101, 106
microbial degradation 83–5, 86
γ-HCH (lindane) 73, 139, 148
soil concentrations 154
structures, chirality 75
technical, isomeric composition 73

household dust see dust, indoor
perfluoroalkyl compounds see perfluorinated chemicals (PFCs)

perfluoroalkylsulfonic acids (/sulfonates) (PFSAs)

see also perfluorooctane sulfonate (PFOS)

bioaccumulation 39, 47, 48, 49, 56–7
environmental presence and persistence 38, 40, 50–1, 52, 56
water contamination 38, 53–5
extraction and analysis 41, 42, 43, 45, 47
production 29, 30–1
properties 34, 35–6, 36–7, 38, 44
structure 27
toxicity 31–2

perfluorocarboxylic acids (/carboxylates) (PFCAs)

see also perfluorooctane carboxylic acid (PFOA)

analysis 41, 42, 43, 45, 46
bioaccumulation 39, 47, 48, 49, 56–7
environmental presence
persistence 40, 57–8
water contamination 38, 53–5
production 29, 30, 31
properties 34, 35–6, 36–7
structure 27
toxicity 31–2

perfluorooctane carboxylic acid (PFOA)

environmental presence 50, 51, 52, 53–5
human exposure 47, 48, 49
production 29, 30, 31
properties 34, 36, 37, 38
structure 27
toxicity 31–2

perfluorooctane sulfonate (PFOS)

analysis 44, 45, 47
bioaccumulation 39, 47–8, 49, 56, 57–8
environmental presence 40, 51, 52, 53–5, 143
production 29, 30–1
properties 36, 37
structure 27
toxicity 31–2

persistence
in body tissues (PFCs) 31–2
environmental reservoirs of POPs 242, 262
environmental stability (PFCs) 40, 50
monitoring, using enantiomers 110, 113–16

Persistent Organic Pollutants Review Committee (POPRC) 1–2

pesticides, urban use 174
photolysis 18, 83, 116–17, 213
plants see vegetation
polyaromatic hydrocarbons (PAHs) 138
environmental contamination 171, 178, 180
urban degradative loss 188–91, 190
polybrominated diphenyl ethers (PBDEs)
commercial formulations 6, 8, 14, 144
contamination pathways 18, 144–5, 192
decabromodiphenyl ether (BDE-209) 11, 15, 18, 216
human intake 226, 228, 258–60
indoor emissions sources 216–17
regulation and contamination trends 5–6, 12–15, 149–50, 255, 260–1
polychlorinated biphenyls (PCBs)
biotransformation, macrobiotic 96, 97, 99, 101–4, 106–7
chirality 74, 76, 77
congener/metabolite stability 74–6, 107–8
contamination
environmental levels and pathways 178, 179–80, 192, 249–50
following production ban 250–4
indoor and outdoor air 213–14, 214
indoor dust 214, 214–15
human intake 226, 227, 250–3
microbial degradation 88–9, 90, 93
enantiomer preference of bacterial strains 89–91
sources, pollutant
atmospheric 113–14, 177, 186–7, 249
in developing countries 141, 145, 149
types and history of uses 74, 140, 171, 248–9
indoor 213, 213–14
polychlorinated dibenzo-p-dioxins see dioxins/furans (PCDD/Fs)
polychlorinated dibenzofurans see dioxins/furans (PCDD/Fs)
polychlorinated naphthalenes (PCNs) 143–4, 171
polyfluorinated sulfonamides (FSAs)
analysis 44–5
bioaccumulation 38, 57
environmental presence 40, 48, 49–50
atmospheric 51–2
production 29
properties 34, 35–6, 37, 39
structure 25
toxicity 32
population density (human) 172, 173, 193, 197, 246
pyrethroids 77, 78
 abiotic isomerization 116–17
 in rat tissues 108
toxicity and microbial biotransformation 93
quality control, analytical 81
 BFR analysis 10
 PFC analysis 46–7
reference materials, analytical 10, 46–7, 81
regulation
 effectiveness 241–2, 245, 253–4, 260–1
 global variation 261–2
 information on chirality 72–3
 legislation 5, 160
 risk assessments 5–6, 197
residential development
 effects of density/sprawl
 energy use and output 195
 traffic emissions/VKT 193–4
 over localized contamination hotspots 196
rodents, detoxification of POPs 106–8
rural contamination, compared with urban 172, 176, 177–8
observed concentrations 179–84
sampling
 air, active and passive methods 148, 210, 210, 228
 indoor dust 210–12
seals, bioprocessing of POPs 100–3
sediments, aquatic
 BFR contamination 13–14
 microbial POP degradation 86–91
 OC pesticides, regional variation 151, 152
 PFC contamination 55–6
 urban and rural contamination 183
shellfish, dietary source of POPs 15, 16
 see also bivalves
soils
 geographical POP variation 153, 154, 183–4
 global survey of PCBs 140
 microbial degradation of legacy POPs 91–3
 OC pesticide volatilization, to air 111–13
 PFC sorption 38
 as POP sinks 151
urban and rural contamination 178, 183–4, 186, 191
solid-phase extraction (SPE) methods 41–2
solubility, aqueous, of PFCs 34, 35, 36–7
source identification, pollutant 111–16, 185–7, 215–16
Stockholm Convention
 listed chemicals 1–2, 2, 137–8
 ratification and objectives 1, 253–4
stormwater
 management 195–6
 runoff contamination 185, 187–8, 189, 192–3
surface film contamination, urban 178, 182–3, 187, 188–91, 249
telomerization 29–30
temperature
 and surface volatilization 186, 216
urban heat islands 195
tetrabromobisphenol-A (TBBP-A)
 determination and analysis 10
 molecular structure 6
 reactive product incorporation 212–13
toxaphene
 chemical structure 74
 microbial degradation 87–8
 in seal tissues 101
toxicology
 bioactivity of BFRs 12, 17
 bioactivity of PFCs 31–3
 differential, among enantiomers 72
 toxicokinetic mechanisms 105, 106–7, 108, 118–19
United Nations Environment Programme (UNEP) 1, 145, 156
urban environment
 see also residential development
 conceptual models of POP distributions 176, 189, 242–4, 243
 contamination gradients
 urban/rural 172, 176, 177–8, 247–8
 vertical 185
 efficiencies and benefits of population density 172, 197
 emissions
 dynamic transfer and fate of POPs 190, 192, 243–4, 257–8
 economic/demographic effects 173, 197
 sources 173–5, 185–7, 257–8
 observed POP concentrations 179–84
as POP reservoir 234, 246, 249
warming (‘heat islands’) 191, 195

vegetation
 enantiospecific tissue uptake 91–2
 radiant heat from, in suburbs 195
urban and rural contamination 178, 183
vehicles
 diesel freight transport 194
 fuel combustion products 174
 in-car emissions 174, 232, 233, 233–4
 vehicle kilometres travelled (VKT) 173, 193–4
volatilization
 effect of climate 141

seasonal variation 189, 229–30
temperature dependence 186, 195, 216

waste, hazardous
 see also electronic equipment
 illegal dumping 141, 146
 at landfill sites 145–6, 159, 175, 244
 sustainable disposal initiatives 261
water
 see also stormwater
 dynamic α-HCH exchange with air 115–16
 evidence of microbial POP degradation 83–5
 observed PFC contamination 52–5
 sampling and analysis 41, 42
 solubility of PFCs in 34, 35, 36–7
 wastewater treatment 86, 175, 191, 195, 244