Contents

Preface xxii

1 Military Communications 1
 1.1 Introduction to Military Communications 1
 1.2 Communication Techniques 5
 1.2.1 Types of Information Signals 5
 1.2.2 Amplitude Modulation 6
 1.2.3 Frequency Modulation 13
 1.2.4 Pulse Communication Systems 21
 1.2.5 Analogue Pulse Communication Systems 21
 1.2.6 Digital Pulse Communication Systems 24
 1.2.7 Sampling Theorem 27
 1.2.8 Shannon–Hartley Theorem 28
 1.2.9 Digital Modulation Techniques 28
 1.2.10 Multiplexing Techniques 33

1.3 Communication Transmitters and Receivers 35
 1.3.1 Elements of the Communication System 35
 1.3.2 Classification of Transmitters 36
 1.3.3 Continuous-Wave (CW) Transmitter 38
 1.3.4 CW Receiver 39
 1.3.5 Amplitude Modulated (AM) Transmitter 40
 1.3.6 AM Receiver 41
 1.3.7 Single Side Band (SSB) Transmitter 42
 1.3.8 SSB Receiver 43
 1.3.9 Frequency Modulated (FM) Transmitter 44
 1.3.10 FM Receiver 45
 1.3.11 Phase Modulated (PM) Transmitter and Receiver 46
 1.3.12 Amplitude Shift Keying (ASK) Transmitter 46
 1.3.13 ASK Receiver 47
 1.3.14 Frequency Shift Keying (FSK) Transmitter and Receiver 47
 1.3.15 Phase Shift Keying (PSK) Transmitters and Receivers 49

1.4 Antennas, Transmission Media and Propagation Modes 52
 1.4.1 Transmission Line Fundamentals 52
 1.4.2 Types of Transmission Lines 54
 1.4.3 Impedance Matching using Transmission Lines 55
 1.4.4 Waveguide Fundamentals 57
 1.4.5 Antenna Fundamentals 60
 1.4.6 Types of Antennas 65
1.4.7 Propagation Modes 73
1.5 Optical Communication 77
1.5.1 Advantages and Limitations 77
1.5.2 Free-Space Communication 78
1.5.3 Fibreoptic Communication 80
1.6 Software-Defined Radio 82
1.6.1 Different Tiers of SDR 83
1.6.2 Advantages of SDR 84
1.6.3 SDR Hardware Architecture 84
1.6.4 SDR Security 86
1.7 Network-Centric Warfare 87
1.7.1 OODA Loop 87
1.7.2 Advantages and Shortcomings 88
1.8 C4ISR 89
1.8.1 Command and Control 90
1.8.2 Communications 90
1.8.3 Intelligence, Surveillance and Reconnaissance 90
1.8.4 Cyber Security and EW Systems 90
1.9 Representative Military Communications Equipment 91
1.9.1 Smart Phones 91
1.9.2 Tactical Radios 93
1.9.3 C4ISR Systems 97
Illustrated Glossary 101
Bibliography 111

2 Radar Fundamentals 113
2.1 Introduction to Radar 113
2.1.1 Basic Radar System 114
2.1.2 Radar Classification 117
2.2 Basic Radar Functions 118
2.2.1 Target Detection 118
2.2.2 Target Location 120
2.2.3 Target Velocity 122
2.3 Accuracy and Resolution 123
2.3.1 Accuracy 124
2.3.2 Range Accuracy 124
2.3.3 Angular Position Accuracy 124
2.3.4 Resolution 126
2.3.5 Range Resolution 126
2.3.6 Cross-Range Resolution 127
2.3.7 Doppler Resolution 128
2.4 Radar Cross-Section 129
2.4.1 RCS Concept 129
2.4.2 Factors Determining RCS 131
2.4.3 Radar Cross-Sections of Typical Targets 133
2.4.4 RCS Measurement 133
2.4.5 RCS Reduction and Enhancement 136
2.5 Radar Clutter 137
2.5.1 Surface Clutter 137
2.5.2 Volume Clutter 142
2.5.3 Clutter from Point Objects 144
2.6 Radar Range Equation 144
2.6.1 Evaluation of Range Parameters 147
2.7 Radar Waveforms 148
2.7.1 Continuous Wave (CW) 148
2.7.2 Gated CW Pulsed Waveform 149
2.7.3 Linear Frequency Modulated (LFM) Gated Pulse 151
2.7.4 Nonlinear FM Gated Pulse 152
2.7.5 V-FM Gated Pulse 153
2.7.6 Phase Coded Waveforms 154
2.8 Radar Transmitters 155
2.8.1 Coherent Transmitters 155
2.8.2 Quasi-Coherent (Coherent-on-Receive) Transmitter 156
2.8.3 Non-Coherent Transmitters 157
2.8.4 Transmitter Parameters 157
2.9 Radar Receivers 159
2.9.1 Receiver Parameters 162
2.9.2 Signal Processor 165
2.10 Radar Displays 167
2.10.1 A-Scope 167
2.10.2 B-Scope 167
2.10.3 F-Scope 168
2.10.4 Plan Position Indicator (PPI) 168
2.11 Radar Antennas 168
2.12 Types of Radar 169
2.12.1 Continuous-Wave (CW) Radar 169
2.12.2 FM-CW Radar 170
2.12.3 Moving Target Indicator (MTI) 173
2.12.4 Pulse Doppler Radar 177
2.12.5 Tracking Radar 179
2.12.6 Pulse-Compression Radar 187
2.12.7 Synthetic Aperture Radar 190
2.12.8 Inverse Synthetic Aperture Radar (ISAR) 192
2.12.9 Over-the-Horizon Radar (OTH) 192
2.12.10 Monostatic and Bistatic Radars 195
2.12.11 Primary and Secondary Surveillance Radar 195
2.12.12 Laser Radar 197
2.12.13 Millimetre-Wave Radar 198
Illustrated Glossary 199
Bibliography 201

3 Military Radars 203
3.1 Military Applications of Radar Systems 203
3.1.1 Surveillance-Based Applications 203
3.1.2 Tracking Radar-Based Applications 208
3.1.3 Multifunction Radar 211
3.2 Ground (or Area) Surveillance Radar Systems 212
3.2.1 Design Considerations 213
3.2.2 Representative Ground Surveillance Radar Systems 213
3.3 Air Surveillance Radar Systems 224
3.3.1 Airport Surveillance Radar 225
3.3.2 Multilateration System 226
3.3.3 Automatic Dependent Surveillance 228
3.3.4 Representative Air Surveillance Radar Systems 228
3.4 Ground Penetrating Radar Systems 240
3.4.1 Operational Principle 240
3.4.2 Design Considerations 242
3.4.3 Representative GPR Systems 244
3.5 Weapon Locating Radar Systems 253
3.5.1 Operational Principle 254
3.5.2 Representative Weapon Locating Radar Systems 256
3.6 Fire-Control Radar Systems 265
3.6.1 Representative Fire-Control Radar Systems 266
3.7 Space-Based Radar Systems 272
3.7.1 Representative Space-Based Radar Systems 275
3.8 Police Radar 278
3.8.1 Representative Police Radar Systems 280
Illustrated Glossary 285
Bibliography 294

4 Satellite Technology 295
4.1 Basic Principles of Orbiting Satellites 295
4.1.1 Newton's Laws 296
4.1.2 Kepler's Laws 298
4.1.3 Orbital Parameters 301
4.1.4 Injection Velocity and Satellite Trajectory 308
4.1.5 Types of Satellite Orbits 310
4.2 Satellite Launch and In-Orbit Operations 317
4.2.1 Acquiring the Desired Orbit 317
4.2.2 Satellite Launch Sequence 328
4.2.3 Orbit Perturbations 331
4.2.4 Satellite Stabilization 333
4.2.5 Satellite Eclipses 335
4.2.6 Look Angles of a Satellite 337
4.2.7 Earth Coverage 340
4.3 Satellite Hardware 341
4.3.1 Satellite Subsystems 341
4.3.2 Mechanical Structure 342
4.3.3 Propulsion Subsystem 343
4.3.4 Thermal Control Subsystem 348
4.3.5 Power Supply Subsystem 349
4.3.6 Attitude and Orbit Control Subsystem 353
4.3.7 Tracking, Telemetry and Command (TT&C) Subsystem 354
4.3.8 Payload 355
4.3.9 Antenna Subsystem 357
4.4 Multiple Access Techniques 358
4.4.1 Transponder Assignment Modes 358
4.4.2 Frequency Division Multiple Access (FDMA) 359
4.4.3 Time Division Multiple Access (TDMA) 361
4.4.4 Code Division Multiple Access (CDMA) 364
4.4.5 Space Division Multiple Access (SDMA) 364
4.5 Satellite Link Design 367
4.5.1 Transmission Equation 367
4.5.2 Satellite Link Parameters 368
4.5.3 Frequency Considerations 370
4.5.4 Propagation Considerations 372
4.5.5 Noise Considerations 377
4.5.6 Interference-Related Issues 381
4.5.7 Antenna Gain-to-Noise Temperature (G/T) Ratio 384
4.5.8 Link Budget 385
4.6 Networking Concepts 387
4.6.1 Network Characteristics 387
4.6.2 Network Topologies 389
4.6.3 Network Technologies 394
4.6.4 Network Protocols 396
4.6.5 Satellite Constellations 401
4.6.6 Internetworking with Terrestrial Networks 406
Illustrated Glossary 408
Bibliography 417

5 Military Satellites 419
5.1 Military Applications of Satellites 419
5.1.1 Application Areas of Military Satellites 420
5.2 Military Communication Satellites 420
5.3 Military Satellite Communication Systems 421
5.3.1 American Systems 422
5.3.2 Russian Systems 426
5.3.3 Satellites Launched by Other Countries 427
5.3.4 Frequency Spectrum Utilized by Space Systems 427
5.3.5 Dual-Use Military Satellite Communication Systems 428
5.4 Major International Military Communication Satellites 429
5.4.1 Defence Satellite Communication Systems (DSCS) Series 429
5.4.2 Geizer (Potok Series) 430
5.4.3 Globus Series 430
5.4.4 Leasat Series (Syncom-4) 431
5.4.5 MILSTAR Series 432
5.5 Reconnaissance Satellites 433
5.5.1 Image Intelligence (IMINT) Satellites 433
5.5.2 SIGINT Satellites 437
5.5.3 Early Warning Satellites 440
5.5.4 Nuclear Explosion Detection Satellites 443
5.6 Major International Reconnaissance Satellites 443
5.6.1 Defence Support Programme (DSP) Series 443
5.6.2 Oko Series 444
5.6.3 Geosat Follow-On Series 445
5.6.4 Okean-O 1 445
Contents

5.6.5 Advanced Orion Series 445
5.6.6 Arkon-1 Series 446
5.6.7 Helios Series 446
5.6.8 KH Series 447
5.6.9 Lacrosse Series 448
5.6.10 Neman Series (Yantar-4KS1M) 448
5.6.11 Tselina Series 449
5.6.12 US-PM Series 449
5.7 Military Weather Forecasting Satellites 449
5.8 Military Navigation Satellites 450
5.8.1 Military Applications of Navigation Satellites 451
5.8.2 Principle of Satellite Navigation 451
5.9 Major International Navigation Satellites 454
5.9.1 GLONASS Satellite System 454
5.9.2 Global Positioning System (GPS) 456
5.10 The Future of Satellite Navigation Systems 458
5.11 Space-Based Weapons 458
5.11.1 Classification of Space Weapons 459
5.11.2 Strategic Defence Initiative 464
5.11.3 Directed-Energy Laser Weapons 470
Illustrated Glossary 470
Bibliography 473

6 Electronic Warfare 475
6.1 Introduction to Electronic Warfare 475
6.2 Types of Electronic Warfare Systems 476
6.2.1 Electronic Support Measures (ESM) or Electronic Warfare Support (ES) 476
6.2.2 Electronic Countermeasures (ECM) or Electronic Attack (EA) 476
6.2.3 Electronic Counter-Countermeasures (ECCM) or Electronic Protection (EP) 477
6.3 Electronic Support Measures 477
6.3.1 Electronic Reconnaissance 478
6.3.2 Signal Intelligence (SIGINT) 478
6.3.3 Representative SIGINT Equipment 481
6.3.4 ESM/Radar Warning Receivers (RWR) 484
6.3.5 Representative ESM/Radar Warning Receivers 487
6.3.6 Laser-Warning Receivers 490
6.3.7 Representative Laser-Warning Sensors 492
6.3.8 Missile Approach Warning Receivers 496
6.3.9 Representative Missile Approach Warning Receivers 498
6.4 Electronic Countermeasures (ECM) 503
6.4.1 Jamming Techniques 503
6.4.2 Chaff 507
6.4.3 Flares 508
6.4.4 decoys 509
6.4.5 Representative ECM Systems 510
6.5 Electro-Optic Countermeasures 519
6.5.1 Need and Relevance 520
6.5.2 Passive and Active Countermeasures 520
6.5.3 Types of EOCM Equipment 521
6.5.4 Representative EOCM Equipment 522
6.5.5 Active Protection Systems 526
6.6 Infrared Countermeasures 526
6.6.1 Active IRCM Systems 527
6.6.2 Some Representative IRCM Systems 528
6.7 Electronic Counter-Countermeasures 533
6.7.1 Antenna Related ECCM Features 533
6.7.2 Transmitter Related ECCM Features 534
6.7.3 Radar Receiver and Signal Processing Related ECCM Features 535
6.8 Stealth Technology 535
6.8.1 Reduction of Radar Cross-Section 536
6.8.2 Radar Absorbent Materials 536
6.8.3 Examples of Stealthier Platforms 537
6.9 Current and Future Trends in Electronic Warfare 542
Illustrated Glossary 544
Bibliography 554

7 Laser Fundamentals 555
7.1 Operational Basics 555
7.1.1 Principles of Laser Operation 555
7.1.2 Two-, Three- and Four-Level Lasers 560
7.1.3 Constituent Parts of a Typical Laser 564
7.1.4 Longitudinal and Transverse Modes 573
7.2 Laser Characteristics 576
7.2.1 Monochromaticity 576
7.2.2 Coherence 577
7.2.3 Directionality 579
7.3 Laser Parameters 579
7.3.1 Wavelength 579
7.3.2 Pulse Energy 580
7.3.3 Continuous-Wave, Peak and Average Power 580
7.3.4 Pulse Width 581
7.3.5 Pulse Repetition Frequency (PRF) 582
7.3.6 Duty Cycle 582
7.3.7 Rise and Fall Times 582
7.3.8 Irradiance 582
7.3.9 Radiance 583
7.3.10 Beam Divergence 583
7.3.11 Spot Size 584
7.3.12 M^2-Value 584
7.3.13 Wall Plug Efficiency 585
7.4 Measurement of Laser Parameters 585
7.4.1 Measurement of Power, Energy and Repetition Rate 585
7.4.2 Measurement of Spot Size 587
7.4.3 Measurement of Divergence 587
7.4.4 Measurement of M^2 Value 588
7.5 Laser Beam Diagnostic Equipment 589
7.5.1 Wavelength Meter 590
7.5.2 Laser Spectrum Analyser 590
7.5.3 Laser Beam Profiler 591
7.5.4 Beam Propagation Analyser 592
7.6 Types of Lasers 592
7.7 Solid-State Lasers 593
7.7.1 Active Medium 593
7.7.2 Operational Modes 594
7.7.3 Ruby Lasers 601
7.7.4 Neodymium-Doped Lasers 601
7.7.5 Erbium-Doped Lasers 608
7.7.6 Vibronic Lasers 610
7.8 Fibre Lasers 613
7.8.1 Basic Fibre Laser 613
7.8.2 Operational Regimes 616
7.8.3 Photonic Crystal Fibre Lasers 617
7.8.4 Applications 619
7.9 Gas Lasers 621
7.9.1 The Active Media 621
7.9.2 Pumping Mechanism 622
7.9.3 Helium-Neon Lasers 623
7.9.4 Carbon Dioxide Lasers 626
7.9.5 Metal Vapour Lasers 630
7.9.6 Rare Gas Ion Lasers 632
7.9.7 Excimer Lasers 634
7.9.8 Chemical Lasers 635
7.9.9 Carbon Dioxide Gas Dynamic Lasers 635
7.9.10 Dye Lasers 636
7.9.11 Free Electron Lasers 638
7.9.12 X-Ray Lasers 638
7.10 Semiconductor Lasers 639
7.10.1 Operational Basics 639
7.10.2 Types of Semiconductor Lasers 642
7.10.3 Characteristic Parameters 655
7.10.4 Gain-Guided and Index-Guided Diode Lasers 658
7.10.5 Handling Semiconductor Diode Lasers 659
Illustrated Glossary 659
Bibliography 667

8 Laser Electronics 669
8.1 Basic Building Blocks of Laser Electronics 669
8.1.1 Linear Power Supplies 669
8.1.2 Switched Mode Power Supplies 682
8.1.3 Constant Current Sources 693
8.1.4 Transimpedance Amplifier 697
8.1.5 Peak Detector Circuits 699
8.1.6 Timer Circuits 700
8.1.7 High Voltage Trigger Circuits 706
8.1.8 Analogue-to-Digital Converter Circuits 706
8.1.9 Microcontrollers 717
8.1.10 Field Programmable Gate Arrays 720
8.2 Laser Electronics and Related Technologies 723
8.2.1 Solid-State Laser Electronics 723
8.2.2 Gas Laser Electronics 725
8.2.3 Semiconductor Diode Laser Electronics 726
8.2.4 Laser Sensors 727
8.2.5 Test and Evaluation of Lasers 729
8.3 Solid-State Laser Electronics 730
8.3.1 Electronics for Flash-Pumped Solid-State Lasers 731
8.3.2 Capacitor Charging Power Supply 733
8.3.3 Simmer Power Supply 735
8.3.4 Pulse Forming Networks 737
8.3.5 Flash Lamp Trigger Circuits 738
8.3.6 Receiver Electronics for a Laser Range Finder 739
8.4 Gas Laser Electronics 740
8.4.1 Gas Laser Electrical Discharge 741
8.4.2 Helium-Neon Power Supplies 742
8.4.3 Helium-Neon Power Supplies for a Ring Laser Gyro 747
8.4.4 Ballast Resistance 748
8.4.5 Carbon Dioxide Laser Power Supplies 749
8.4.6 Metal Vapour Power Supplies 751
8.4.7 Ion Laser Power Supplies 753
8.4.8 Excimer Laser Power Supplies 754
8.4.9 Frequency Stabilization of Carbon Dioxide and Helium-Neon Lasers 756
8.5 Semiconductor Diode Laser Electronics 758
8.5.1 Constant Current Mode 758
8.5.2 Constant Power Mode 759
8.5.3 Laser Diode Drive Circuit – Constant Current Mode 760
8.5.4 Laser Diode Drive Circuit – Constant Output Power Mode 764
8.5.5 Pulsed Mode Operation of Laser Diodes 764
8.5.6 Laser Diode Temperature Control Circuits 767
8.5.7 Laser Diode Protection 770
Illustrated Glossary 775
Bibliography 781

9 Photo Sensors and Related Devices 783
9.1 Classification of Photo Sensors 783
9.2 Radiometry and Photometry 785
9.2.1 Radiometric and Photometric Flux 785
9.2.2 Radiometric and Photometric Intensity 785
9.2.3 Irradiance and Illuminance 786
9.2.4 Radiance and Luminance 786
9.3 Characteristic Parameters 786
9.3.1 Responsivity 787
9.3.2 Noise Equivalent Power (NEP) 789
9.3.3 Detectivity and D-Star 790
9.3.4 Quantum Efficiency 790
9.3.5 Response Time 791
9.3.6 Noise 792
9.4 Photoconductors 793
9.4.1 Application Circuits 794
9.5 Photo Diodes 797
9.5.1 Types of Photo Diodes 797
9.5.2 Equivalent Circuit 800
9.5.3 V-I Characteristics 802
9.5.4 Application Circuits 802
9.6 Solar Cells 806
9.7 Photo Transistors 808
9.7.1 Application Circuits 809
9.8 Photo FET, Photo SCR and Photo TRIAC 810
9.8.1 Photo FETs 810
9.8.2 Photo SCR 810
9.8.3 Photo TRIAC 811
9.9 Image Sensors 812
9.9.1 Charge Coupled Device (CCD) 812
9.9.2 CMOS Sensors 817
9.9.3 CCD Sensors versus CMOS Sensors 817
9.10 Photo Emissive Sensors 818
9.10.1 Vacuum Photo Diodes 818
9.10.2 Photo Multiplier Tubes (PMTs) 818
9.10.3 Image Intensifiers 819
9.11 Thermal Sensors 820
9.11.1 Thermocouple and Thermopile 821
9.11.2 Bolometer 822
9.11.3 Pyroelectric Sensor 823
9.12 Light-Emitting Diodes (LEDs) 824
9.12.1 Characteristics 825
9.12.2 Parameters 827
9.12.3 Drive Circuits 827
9.13 Displays 829
9.13.1 Characteristics 829
9.13.2 Types of Displays 830
9.13.3 Liquid Crystal Displays 831
9.13.4 Cathode Ray Tube Displays 836
9.13.5 Emerging Display Technologies 837
9.14 Night Vision Technologies 838
9.14.1 Basic Approaches to Night Vision 838
9.14.2 Image Intensifier Tubes 839
9.14.3 Different Generations of Image Intensifiers 843
9.14.4 Intensified CCD 847
9.14.5 Thermal Imaging 849
9.14.6 Image Enhancement versus Thermal Imaging 851
9.14.7 Applications of Night Vision Equipment 851
Illustrated Glossary 856
Bibliography 862

10 Military Laser Systems 865
10.1 Military Applications of Lasers 865
10.2 Laser Aiming Devices 868
10.3 Laser Range Finders (LRF) 869
10.3.1 Time-of-Flight LRF 869
10.3.2 Triangulation Technique 870
10.3.3 Phase Shift Technique 871
10.3.4 FM-CW Range Finding Technique 872
10.3.5 Choice of Laser 874
10.3.6 Applications 876
10.3.7 Some Representative LRF Systems 876
10.4 Laser Target Designators 884
10.4.1 Deployment 884
10.4.2 Laser Designation and Munitions Delivery Considerations 886
10.4.3 Laser Designation Procedures 892
10.4.4 Representative Laser Designation Systems 895
10.5 Laser Proximity Sensors 901
10.6 Laser-Based Detection of Electro-Optic Targets 904
10.7 Laser Bathymetry Sensors 907
10.8 LADAR Sensors 909
10.9 Laser-Based Gyroscopic Sensors 912
10.9.1 Ring Laser Gyroscope 912
10.9.2 Fibreoptic Gyroscope 917
10.10 LIDAR For Detection of Chemical and Biological Warfare Agents 920
10.10.1 Detection of Chemical Warfare Agents – Differential Absorption LIDAR 920
10.10.2 Detection of Biological Warfare Agents – UV-LIF LIDAR 922
10.11 Laser-Based Detection of Explosive Agents 924
10.11.1 Laser-Induced Breakdown Spectroscopy 924
10.11.2 Raman Spectroscopy 925
Illustrated Glossary 926
Bibliography 931

11 Precision-Guided Munitions 933
11.1 Introduction 933
11.2 Types of Guided Weapons 934
11.2.1 Anti-Radiation Weapons 934
11.2.2 Radar-Guided Weapons 935
11.2.3 Laser-Guided Weapons 935
11.2.4 Infrared-Guided Weapons 936
11.2.5 Wire-Guided Weapons 936
11.2.6 Beam Riding Weapons 937
11.2.7 GPS/INS-Guided Weapons 938
11.3 Guidance Techniques 939
11.3.1 Beam Rider Guidance 939
11.3.2 Command Guidance 940
11.3.3 Homing Guidance 943
11.3.4 Navigation Guidance 945
11.4 Laser-Guided Munitions 947
11.4.1 Operational Basics 947
11.4.2 Important Parameters 951
11.4.3 Deployment Configurations 951
11.4.4 Laser-Guided Munitions Delivery Parameters 951
11.4.5 Capabilities and Limitations 958
11.5 Major Laser-Guided Weapon Systems 959
11.5.1 Laser-Guided Projectiles 959
11.5.2 Laser-Guided Bombs 960
11.5.3 Laser-Guided Missiles 962
11.5.4 New Developments 963
11.6 Testing Laser-Guided Munitions 964
11.6.1 International Test Systems 966
11.7 Infrared-Guided Weapons 968
11.7.1 Introduction 968
11.7.2 Infrared Homing Guidance 969
11.7.3 Capabilities and Limitations 971
11.7.4 Infrared-Guided Weapon Delivery Parameters 972
11.7.5 Infrared-Guided Missile Seekers 980
11.8 Major Infrared-Guided Weapon Systems 983
11.8.1 Anti-Tank-Guided Missiles 984
11.8.2 Surface-to-Air Missiles (SAM) 986
11.8.3 Air-to-Air Missiles 989
11.9 Testing Infrared-Guided Weapons 991
11.9.1 International Test Systems 993
11.10 Radar-Guided Weapons 994
11.10.1 Introduction 994
11.10.2 Semi-Active Radar Guidance 995
11.10.3 Active Radar Guidance 996
11.10.4 Track-via-Missile Radar Guidance 997
11.10.5 Missile Guidance and Control 998
11.11 Major Radar-Guided Weapon Systems 999
11.11.1 Surface-to-Air Radar-Guided Missiles 999
11.11.2 Air-to-Air Radar-Guided Missiles 1002
11.11.3 Anti-Ship Radar-Guided Missiles 1003
11.11.4 Future Trends 1004
11.12 GPS/INS-Guided Weapons 1004
Illustrated Glossary 1006
Bibliography 1011

12 Directed Energy Weapons 1013
12.1 Directed-Energy Weapons (DEWs) 1013
12.2 Types of DEWs 1015
12.3 Particle Beam Weapons 1016
12.3.1 Operational Principle 1016
12.3.2 Types of Particle Beam Weapons 1017
12.3.3 Involved Technology Areas 1018
12.3.4 Capabilities and Limitations 1023
12.3.5 Effects of Particle Beam Weapons 1024
12.4 High-Power Microwave (HPM) Weapons 1025
12.4.1 Types of HPM Weapons 1026
12.4.2 Components of HPM Weapon Systems 1026
12.4.3 HPM Sources 1030
12.4.4 HPM Weaponization 1037
12.4.5 Capabilities and Limitations 1039
12.4.6 E-Bomb 1040
12.4.7 Representative HPM Weapons 1044
12.5 Directed-Energy Laser Systems 1051
12.6 Less-Lethal Laser Dazzlers 1052
12.6.1 Operational Parameters 1053
12.6.2 Potential Applications 1053
12.6.3 Representative Systems 1055
12.6.4 Emerging Trends 1059
12.7 High-Power Lasers for Ordnance Disposal 1061
12.7.1 Application Scenarios 1061
12.7.2 Representative Laser Ordnance Neutralization Systems 1061
12.8 High-Power Directed-Energy Laser Weapons 1065
12.8.1 Operational Advantages and Limitations 1065
12.8.2 Application Potential 1066
12.8.3 Components of a Laser-Based Directed-Energy Weapon System 1067
12.9 High-Power Laser Sources 1071
12.9.1 Critical Requirements 1071
12.9.2 Gas Dynamic Lasers 1072
12.9.3 Chemical Lasers 1073
12.9.4 Free Electron Lasers 1077
12.9.5 Solid-State Lasers 1078
12.9.6 Fibre Lasers 1082
12.9.7 Beam Combination of Multiple Lasers 1084
12.10 Beam-Control Technologies 1086
12.11 Laser Propagation Effects 1087
12.12 Lethality 1091
12.13 Representative Directed-Energy Laser Weapon Systems 1092
12.14 Laser-Induced Plasma Channel (LIPC) Weapons 1098
Illustrated Glossary 1098
Bibliography 1105

Index 1107