Contents

List of Contributors xvii
Preface xxi
Acknowledgments xxiii

1 Recycling and Sustainable Utilization of Precious and Specialty Metals 1
Reed M. Izatt and Christian Hagelüken

1.1 Introduction 1
1.2 How did we come to this Situation? 4
1.3 Magnitude of the Waste Problem and Disposal of End-of-Life Products 7
1.4 Benefits Derived by the Global Community from Effective Recycling 8
1.5 Urban Mining 13
1.6 Technologies for Metal Separations and Recovery from EOL Wastes 16
 1.6.1 Collection, Conditioning, and Pre-processing of Waste 16
 1.6.2 Separation and Recovery Technologies 17
 1.6.2.1 Integrated Smelter and Advanced Refining Technologies 17
 1.6.2.2 Informal Recycling 18
1.7 Conclusions 19
References 21

2 Global Metal Reuse, and Formal and Informal Recycling from Electronic and Other High-Tech Wastes 23
Ian D. Williams

2.1 Introduction 23
2.2 Metal Sources 24
2.3 E-waste 28
2.4 Responses to the E-waste Problem 29
2.5 Reuse of Metals from High-tech Sources 31
 2.5.1 Reuse by Social Enterprises 33
 2.5.2 Reuse in the Private Sector 35
 2.5.3 Reuse Research 35
2.6 Recycling of Metals from High-tech Sources 36
 2.6.1 Ferrous and Non-ferrous Metals 36
 2.6.2 Speciality and Precious Metals 37
 2.6.3 Formal Recycling 39
 2.6.3.1 Collection and Sorting of Metals for Recycling 39
 2.6.3.2 Role of the Third Sector 40
 2.6.3.3 Technical Aspects of Formal Recycling 40

COPYRIGHTED MATERIAL
4.3 Technosphere, Demand and Mobility of Metals 89
4.4 Waste Dumpsites and Treasures of Heavy Metals 92
 4.4.1 African Countries 92
 4.4.2 Latin American Countries 94
 4.4.3 Asian Countries 94
 4.4.4 Metals and Global Business 94
4.5 Scrap Metal and Consumer Markets 96
4.6 Export of Metal Scrap 99
4.7 E-waste Scavenging and End-of-Life Management 102
4.8 Scrap Metal Theft 105
4.9 Conclusions 106
References 106

5 Metal Sustainability from Global E-waste Management 109
 Jinhui Li and Qingbin Song
 5.1 Introduction 109
 5.2 E-Waste Issues 109
 5.3 E-Waste Management in China 112
 5.3.1 Generation and Flows 112
 5.3.2 Policies 113
 5.3.3 Formal and Informal Sectors 115
 5.3.3.1 Formal Sectors 115
 5.3.3.2 Informal Sectors 116
 5.4 Recycling of Metals Found in E-waste 119
 5.4.1 Base or Major Metals (Fe, Al, Cu, Pb, etc.) 119
 5.4.2 Toxic Metals 120
 5.4.2.1 Lead 120
 5.4.2.2 Cadmium and Chromium(VI) 120
 5.4.3 Precious Metals 123
 5.4.4 Rare Earth Elements (REEs) 123
 5.5 Challenges and Efforts in Metal Sustainability in China 124
 5.5.1 Challenges 124
 5.5.2 Efforts 124
 5.6 Summary 127
 5.7 Acknowledgment 130
References 131

 Martin Streicher-Porte, Xinwen Chi, and Jianxin Yang
 6.1 Introduction 134
 6.2 Formal E-waste Collection and Recycling System in China 135
 6.2.1 The Policy Framework of E-waste Management 135
 6.2.2 E-waste flow in China 137
 6.2.3 The Mechanism and Practice of WEEE Recycling in China 137
6.3 Informal E‐waste Collection and Recycling 139
 6.3.1 Informal Sector and E‐waste Management 139
 6.3.2 Informal E‐waste Collection and Recycling in China 140
 6.3.2.1 Casual Waste Workers and Recycling Jobs 141
 6.3.2.2 Organization of Manual Sorting and Dismantling 143
 6.3.3 Interactions between the Formal and Informal Sectors 145
6.4 Conclusions 146
References 147

7 Metallurgical Recovery of Metals from Waste Electrical and Electronic Equipment (WEEE) in PRC 151
 Xueyi Guo, Yongzhu Zhang, and Kaihua Xu
 7.1 Introduction 151
 7.2 Major Sources of E‐Waste in China 152
 7.3 Strategies and Regulations for WEEE Management and Treatment 153
 7.3.1 Strategies for WEEE Management 153
 7.3.2 European Regulations 154
 7.3.3 Regulations for WEEE Management in China 154
 7.3.4 Implementation of Regulations Related to E‐Waste 156
 7.3.5 Collection System of WEEE Materials 157
 7.3.6 WEEE Materials Processing Companies 158
 7.3.7 International Cooperation 158
 7.4 Recycling and Processing of WEEE 159
 7.4.1 Operational Strategies 159
 7.4.2 General Processing Technology 160
 7.4.3 Disassembly 161
 7.4.4 Upgrading
 7.4.4.1 Comminuting 161
 7.4.4.2 Separation 162
 7.4.5 Metal Refining
 7.4.5.1 Copper Smelting Route 164
 7.4.5.2 Lead Smelting Route 165
 7.4.5.3 Industrial Practices for the Recovery of Metals from E‐Waste 166
 7.5 Current Issues in WEEE Treatment in China 167
 7.6 Conclusions 167
References 168

8 Metal Pollution and Metal Sustainability in China 169
 Xiaoyun Jiang, Shengpei Su, and Jianfei Song
 8.1 Introduction 169
 8.2 Heavy Metal Pollution in China 170
 8.2.1 Heavy Metal Pollution Status 170
 8.2.1.1 Heavy Metal Pollution in Water 171
 8.2.1.2 Heavy Metal Pollution of Soil 174
 8.2.1.3 Heavy Metal Pollution of Atmosphere 175
8.2.2 Heavy Metal Pollution in China: Prevention and Control 177
 8.2.2.1 Laws and Regulations for Heavy Metal Pollution Prevention and Control 177
 8.2.2.2 Policies for Heavy Metal Pollution Prevention and Control 181
8.3 Metal Sustainability in China 185
 8.3.1 Metal Recycling in China 185
 8.3.2 Metal Recycling from Wastewater, Solid Waste and Flue Gas 186
 8.3.2.1 Metal Recycling from Wastewater 186
 8.3.2.2 Metal Recycling from Solid Waste 187
 8.3.2.3 Metal Recycling from Flue Gas 189
 8.3.2.4 Metal Recycling from E-waste 191
8.4 Metal Sustainability in China: Future Prospects 192
References 193

9 Mercury Mining in China and its Environmental and Health Impacts 200
 Guangle Qiu, Ping Li, and Xinbin Feng
9.1 Introduction 200
9.2 Mercury Mines and Mining 201
 9.2.1 Mercury Mines 201
 9.2.2 Mercury Production 201
 9.2.3 Mercury Usage 202
9.3 Mercury in the Environment 202
 9.3.1 Air 203
 9.3.1.1 Levels 203
 9.3.1.2 Emission Sources 204
 9.3.2 Mine-waste Tailings (Calcines) 204
 9.3.3 Soil 205
 9.3.3.1 Levels 205
 9.3.3.2 Spatial Distribution 205
 9.3.3.3 Bioavailability 208
 9.3.4 Water 208
 9.3.5 Biota 209
 9.3.5.1 Fish 209
 9.3.5.2 Rice 210
 9.3.5.3 Other Crops 210
9.4 Human Exposure and Health Risk Assessment 211
 9.4.1 Human Exposure 211
 9.4.1.1 Hair 212
 9.4.1.2 Blood 213
 9.4.1.3 Urine 214
 9.4.2 Health Risk Assessment 215
 9.4.2.1 IHg Exposure 215
 9.4.2.2 MeHg Exposure 215
9.5 Summary 216
References 216
10 Effects of Non-Essential Metal Releases on the Environment and Human Health

Peter G.C. Campbell and Jürgen Gailer

10.1 Introduction

10.2 Metal Biogeochemical Cycles
10.2.1 Natural and Anthropogenic Sources
10.2.2 Notions of Metal Speciation
10.2.3 Environmental Fate of Metals

10.3 Metal Environmental Toxicology
10.3.1 How Do Metals Interact with Aquatic Freshwater Organisms?
10.3.2 The Biotic Ligand Model (Chemical Equilibrium Approach)
10.3.3 The Dynamic Multi-Pathway Bioaccumulation Model (Chemical Kinetics Approach)
10.3.4 Metal Detoxification

10.4 Case Study: Cadmium
10.4.1 Bioaccumulation (BLM vs. DYM-BAM)
10.4.2 Subcellular Partitioning
10.4.3 Evidence for Cd-Induced Effects in Aquatic Organisms

10.5 Chronic Low-Level Exposure of Human Populations to Non-Essential Metals
10.5.1 Historical Perspective
10.5.2 Assessment of Human Exposure to Non-Essential Metals
10.5.3 Bioavailability of Non-Essential Metal Species
 10.5.3.1 Respiratory System
 10.5.3.2 Gastrointestinal System
 10.5.3.3 Skin
10.5.4 Metabolism of Non-Essential Metals
 10.5.4.1 Blood Circulation
 10.5.4.2 Organs
10.5.5 Linking Non-Essential Metal Exposure to the Etiology of Human Diseases
10.5.6 Global Ecosystem Contamination by Arsenic, Cadmium, Lead and Mercury as an Underestimated Threat to Human and Ecosystem Health: A Summary

References

11 How Bacteria are Affected by Toxic Metal Release

Mathew L. Frankel, Sean C. Booth, and Raymond J. Turner

11.1 Introduction to Bacteria in the Environment

11.2 Bacterial Interactions with Metals
11.2.1 Essential Metals
11.2.2 Non-essential Metals

11.3 Bacterial Response to Toxic Metals
11.3.1 What Are the Toxicity Levels of Metals to Bacteria?
11.3.2 Resistance Mechanisms of Bacteria to Metals
11.4 How Are Metals Toxic to Bacteria? 261
 11.4.1 Reactive Oxygen Species 261
 11.4.1.1 Disruptive Reactions of ROS. 261
 11.4.2 Thiol Chemistry 262
 11.4.3 Replacement of Co-factor Metals in Metalloproteins 263
 11.4.4 Mutagenic Effects 263
 11.4.5 Other Mechanisms for Metal Toxicity 264
11.5 Conclusions 265
References 265

12 Application of Molecular Recognition Technology to Green Chemistry: Analytical Determinations of Metals in Metallurgical, Environmental, Waste, and Radiochemical Samples 271
Yoshiaki Furusho, Ismail M.M. Rahman, Hiroshi Hasegawa, and Neil E. Izatt
12.1 Introduction 271
12.2 Technologies Used for Green Chemistry Trace Element Analysis 272
12.3 Elemental Analysis Instrumentation 273
12.4 Arsenic Speciation in Food Analysis 275
12.5 Metal Separation Resins and Their Application to Elemental Analyses 275
 12.5.1 Ion Exchange Resins 277
 12.5.2 Chelating Resins 278
 12.5.3 Molecular Recognition Technology Resins 279
12.6 Green Chemistry Analytical Applications of Metal Separation Resins 279
 12.6.1 Analysis of Trace Levels of Rare Earth Elements in Rainwater in Suburban Tokyo, Japan 279
 12.6.2 Analysis of Metal Pollutants in Aqueous Environmental Samples 279
 12.6.3 Analysis of Trace Levels of Lead in High Matrix Plating Solutions 280
 12.6.4 Analysis of Trace Levels of Precious Metals in Recycled Materials 282
 12.6.5 Analysis of Radioactive Strontium and Other Radionuclides using MRT Rad Disks 286
12.7 Conclusions 288
References 290

13 Ionic Liquids for Sustainable Production of Actinides and Lanthanides 295
Paula Berton, Steven P. Kelley, and Robin D. Rogers
13.1 Introduction 296
13.2 f-Element Chemistry in Ionic Liquids 297
13.3 Applications of Ionic Liquids in f-Element Isolation 298
 13.3.1 Liquid-Liquid Extractions 298
 13.3.2 Processing of Ore, Spent Fuel, and Recycling 304
 13.3.2.1 Use of ILs for Dissolution of Metals and Metal Salts 304
 13.3.2.2 Strategies for Isolating f-Elements from Solid Resources 306
13.3.3 Uranium from Seawater: A Case Study 307
13.4 Summary 308
13.5 Acknowledgments 308
References 309

14 Selective Recovery of Platinum Group Metals and Rare Earth Metals from Complex Matrices Using a Green Chemistry/Molecular Recognition Technology Approach 317
Steven R. Izatt, James S. McKenzie, Ronald L. Bruening, Reed M. Izatt, Neil E. Izatt, and Krzysztof E. Krakowiak
14.1 Introduction 317
14.2 Molecular Recognition Technology 319
14.3 Strengths of Molecular Recognition Technology in Metal Separations 320
14.3.1 Significant Improvement in Process Conditions 320
14.3.2 Short Process Time 320
14.3.3 High Selectivity for Target Species 320
14.3.4 Availability of SuperLig® Products for a Wide Range of Species 321
14.3.5 Significant Operating Advantages 321
14.3.6 Environmentally and Ecologically Friendly Processes 322
14.3.7 Cost Effectiveness 322
14.4 Applications of Molecular Recognition Technology to Separations Involving Platinum Group Metals 322
14.5 Applications of Molecular Recognition Technology to Separations Involving Rare Earth Elements 327
14.6 Comparison of Opex and Capex Costs for Molecular Recognition Technology and Solvent Extraction in Separation and Recovery of Rare Earth Metals 330
14.7 Conclusions 331
References 331

15 Refining and Recycling Technologies for Precious Metals 333
Tetsuya Ueda, Satoshi Ichiishi, Akihiko Okuda, and Koichi Matsutani
15.1 Introduction 333
15.2 Precious Metals Supply and Demand 334
15.2.1 Supply 334
15.2.1.1 Platinum 334
15.2.1.2 Palladium 335
15.2.1.3 Gold 336
15.2.2 Demand 336
15.2.2.1 Platinum 336
15.2.2.2 Gold 337
15.2.3 Outlook for Supply and Demand 337
15.3 Autocatalysts (Pt, Pd, Rh) 337
15.3.1 Demand for Autocatalysts by Region 337
15.3.2 Recycling System for Autocatalysts 341
15.3.3 Extraction and Refining Technologies for End-of-Life Autocatalysts 342
15.3.4 Outlook for Recycling 343
15.4 Electronic Components 344
15.4.1 Demand for Electronic Components 344
15.4.2 Recycling System for Electronic Components 345
15.4.3 Extraction and Refining Technologies for Electronic Waste 347
15.4.4 Outlook for Recycling 348
15.5 Catalysts for Fuel Cell Application 349
15.5.1 Platinum, Platinum/Cobalt Alloy/Carbon and Platinum Ruthenium Alloy/Carbon Catalysts for Polymer Electrolyte Membrane Fuel Cells 349
15.5.1.1 Fuel Cells 349
15.5.1.2 Highly Active Platinum and Platinum Alloy Catalysts for Cathodes (Air Poles) 350
15.5.1.3 Highly Durable Platinum Catalysts and Platinum Alloy Catalysts for Cathodes (Air Poles) 351
15.5.1.4 Platinum/Ruthenium Alloy Catalysts 352
15.5.2 Outlook for Recycling 354
15.6 Extraction and Refining Technologies for Precious Metals 355
15.6.1 Extraction Technologies 355
15.6.1.1 Dissolving Precious Metals 356
15.6.1.2 Chemistry Behind Precious Metal Aqueous Solutions 356
15.6.1.3 Ion Exchange Resin and Activated Carbon 357
15.6.2 Refining Technologies 357
15.6.2.1 Precipitation Crystallization 357
15.6.2.2 Solvent Extraction 358
15.6.2.3 Molecular Recognition Technology (MRT) 359
15.6.2.4 Electrolytic Refining 359
15.7 Conclusions 359

References 360

16 The Precious Metals Industry: Global Challenges, Responses, and Prospects 361
Michael B. Mooiman, Kathryn C. Sole, and Nicholas Dinham

16.1 Introduction: The Precious Metals Industry 361
16.1.1 Structure of the Industry 362
16.1.2 Precious Metal Demand and Prices 364
16.2 Current and Emerging Challenges 365
16.2.1 Increased Demand 365
16.2.2 Increasing and Volatile Prices 366
16.2.3 Decreasing Grades and Increasingly Complex Mineralogy 368
16.2.4 Increasing Production Costs 369
16.2.5 Deleterious Byproducts 370
16.2.6 Geopolitics, Public Perception, and Regulations 371
 16.2.6.1 Government–Mining Company Interactions 371
 16.2.6.2 Safety in Mining and Processing 373
 16.2.6.3 Environmental Impacts 373
 16.2.6.4 Fungibility of Precious Metals 374
16.2.7 Labor Relations 374
16.2.8 Artisanal and Illegal Mining 375
16.2.9 Sustainability and Sustainable Development 376
16.2.10 Water and Energy Use 379
16.2.11 Technology Cycles 380
16.3 Responding to the Challenges: Mitigating Approaches and New Developments 380
 16.3.1 Recycling of Precious Metals 381
 16.3.1.1 Recycling of High-Grade Materials 381
 16.3.1.2 Recycling of Low-Grade Materials 382
 16.3.1.3 Trends and Efficiencies in Precious Metals Recycling 383
 16.3.2 Thrifting and Substitution 384
 16.3.3 Mining and Recovery from Lower-Grade Materials 385
 16.3.4 Improved Mining, Recovery, and Separation Technologies 386
16.4 Concluding Remarks: A Long-Term View of the Precious Metals Industry 388
References 389

17 Metal Sustainability from a Manufacturing Perspective: Initiatives at ASARCO LLC Amarillo Copper Refinery 397
Luis G. Navarro, Tracy Morris, Weldon Read, and Krishna Parameswaran

17.1 Introduction 397
17.2 General Overview of Sustainability from the Copper Industry Perspective 398
17.3 A Brief History of ASARCO LLC 399
 17.3.1 Asarco’s Footprint in Amarillo, Texas 399
17.4 How Refined Copper Is Produced 400
17.5 Introduction to Physical Chemistry of Copper Electrorefining 402
17.6 Electrolyte Purification 404
 17.6.1 Conventional Methods for Electrolyte Purification 404
 17.6.2 Molecular Recognition Technology (MRT) 406
 17.6.2.1 Use of MRT for Bismuth Removal at ACR 406
17.7 Recovery of Metals by Precipitation from Acidic Streams 409
 17.7.1 Nickel Carbonate Recovery 410
 17.7.1.1 Nickel Carbonate precipitation 410
 17.7.2 Tellurium Recovery 413
 17.7.2.1 Atmospheric Oxidizing Slimes Leaching Process 415
 17.7.2.2 Pressurized Leaching Process of Anodic Copper Slimes 416
 17.7.2.3 Detellurization Process 417
17.8 Other Sustainable Development Efforts at ACR 419
 17.8.1 Implementation of Quality Management System 421
17.9 Conclusions 421
References 422
18 Sustainability Initiatives at ASARCO LLC: A Mining Company Perspective

Dr. Krishna Parameswaran

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction</td>
<td>424</td>
</tr>
<tr>
<td>18.2 What is Sustainable Mining?</td>
<td>425</td>
</tr>
<tr>
<td>18.3 Exploration</td>
<td>427</td>
</tr>
<tr>
<td>18.3.1 Montana, USA</td>
<td>427</td>
</tr>
<tr>
<td>18.3.1.1 Troy Mine</td>
<td>427</td>
</tr>
<tr>
<td>18.3.1.2 Rock Creek</td>
<td>429</td>
</tr>
<tr>
<td>18.3.2 Camp Caiman Gold Exploration Project, French Guiana, South America</td>
<td>431</td>
</tr>
<tr>
<td>18.4 Innovative Reclamation Methods</td>
<td>436</td>
</tr>
<tr>
<td>18.4.1 Use of Biosolids</td>
<td>436</td>
</tr>
<tr>
<td>18.4.2 Use of Cattle</td>
<td>439</td>
</tr>
<tr>
<td>18.5 Reclamation of San Xavier Tailings Storage Facilities and Waste Rock Deposition Areas</td>
<td>441</td>
</tr>
<tr>
<td>18.6 Fostering Renewable Energy Projects on Disturbed Lands</td>
<td>442</td>
</tr>
<tr>
<td>18.7 Utilization of Mining Wastes</td>
<td>448</td>
</tr>
<tr>
<td>18.8 Conclusions</td>
<td>450</td>
</tr>
<tr>
<td>References</td>
<td>451</td>
</tr>
</tbody>
</table>

19 Recycling and Dissipation of Metals: Distribution of Elements in the Metal, Slag, and Gas Phases During Metallurgical Processing

Kenichi Nakajima, Osamu Takeda, Takahiro Miki, Kazuyo Matsubae, and Tetsuya Nagasaka

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Introduction: Background, Motivation, and Objectives</td>
<td>453</td>
</tr>
<tr>
<td>19.2 Method: Chemical Thermodynamic Analysis of the Distribution of Elements in the Smelting Process</td>
<td>454</td>
</tr>
<tr>
<td>19.3 Element Distribution Tendencies in Recycling Metals</td>
<td>456</td>
</tr>
<tr>
<td>19.3.1 Copper Smelting</td>
<td>456</td>
</tr>
<tr>
<td>19.3.2 Lead and Zinc Smelting</td>
<td>457</td>
</tr>
<tr>
<td>19.3.3 Aluminum Remelting</td>
<td>457</td>
</tr>
<tr>
<td>19.4 Metallurgical Knowledge for Recycling: Element Radar Chart for Metallurgical Processing</td>
<td>463</td>
</tr>
<tr>
<td>References</td>
<td>465</td>
</tr>
</tbody>
</table>

20 Economic Perspectives on Sustainability, Mineral Development, and Metal Life Cycles

Roderick G. Eggert

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Introduction</td>
<td>467</td>
</tr>
<tr>
<td>20.2 The Many Faces of Sustainability</td>
<td>468</td>
</tr>
<tr>
<td>20.3 Economic Concepts</td>
<td>469</td>
</tr>
<tr>
<td>20.3.1 Economic Efficiency and Equity</td>
<td>469</td>
</tr>
<tr>
<td>20.3.2 Discounting</td>
<td>470</td>
</tr>
<tr>
<td>20.3.3 Externalities</td>
<td>470</td>
</tr>
<tr>
<td>20.3.4 Capital</td>
<td>471</td>
</tr>
</tbody>
</table>