Index

2-times-20 principle, 32

3-times-50 principle, 31

50-year extreme gust, 88, 117
50-year extreme wind, 117
50-year extreme wind speed, 88

absolute energy rose, 87
access roads, 268
accuracy of a regression fit, 134
accuracy of turbine and mast coordinates, 169
acoustic intensity, 276
acoustic power, 273
acoustic pressure, 273
Acoustic pulses, 207
active repair time, 154
actual lapse rate, 214
actual wind speed, 185
added turbulence wake models, 78
addition of two sound levels, 276
adiabatic lapse rate, 244, 245
adiabatic process, 243
administrative time, 154
advection, 238, 259
AEP predictions, 157
aerodynamic efficiency of blades, 72
aerodynamic noise, 272
aerosol particles, 208
Ainslie wake model, 77, 82
air density, 72, 88, 155, 194, 219
air density at standard sea level, 216
air density over sea, 261
air parcel, 221
air pollution, 280
air pressure, 182, 219
air temperature, 182, 194
air-sea interactions, 259
air-sea temperature difference, 261
air-terrain interactions, 253
ambient roughness, 82
ambient turbulence, 79
ambient turbulence intensity, 75, 80
analytical wake model, 74
anemometer calibration reports, 199
anemometer uncertainty, 165
angle of sunlight, 271
Annual Energy Production (AEP), 152
annual mean wind speed, 67, 86, 88, 107, 175
annual variations of MABL, 261
anti-cyclone, 229
Artificial Neural Networks (ANNs) MCP, 142
artificial neurons, 142
artificial reefs, 269
Askervein hill, 21
astronomical shadow, 271
atmospheric boundary layer (ABL), 214, 243
atmospheric circulation, 225
atmospheric effects on sounds, 275
atmospheric stability, 5, 11, 13, 14, 16, 18, 20,
21, 49, 55, 77, 78, 107, 130, 149, 167,
182, 194, 243, 245, 250
atmospheric surface layer, 253, 254
atmospheric thermal stratifications, 45
atmospheric variables, 229
attached flow, 26, 28
Index

attenuation of sound, 276
automated layout optimisation tools, 263
automated screening process, 202
availability analysis, 154
availability losses, 154
average turbulence intensity at hub-height, 88
averaging interval, 124
averaging time, 103
aviation restriction zones, 175
AWS Truepower, 53, 58, 82, 95, 152, 179, 212
background baseline noise, 277
background sound, 273
background surface roughness, 183
backscattering, 207
balance of forces, 221, 254
Baroclinic, 225
baroclinic instability, 227, 228
barometric pressure, 194
barrier effects, 267
bats, 267
behaviour of cup anemometer, 184
Betz’ limit, 68
binned MCP method, 138
bird collision, 267
bird species, 267
bird’s annual cycle, 267
birds and bats, 266
bi-static sodar, 208
bivariate normal distribution, 141
blade drop/throw, 280
Body Fitted Coordinates (BFC), 56
Bohemian Wind, 237
boom, 193
boom and mounting effects, 165
boom direction, 198
boom-mounted anemometer, 192
bootstrapping, 136
bora wind, 236
borders of the contour map, 49
boudary layer meteorology, 237
boundary conditions, 43
boundary conditions of turbine wake, 78
boundary layer, 45
Bouyant thermal plumes, 239
buoyancy, 245
buoyancy forces, 244
buoyant production of TKE, 246
buoyant thermals, 237
butterfly effect, 60
BZ flow model, 48
calculate air density, 220
calculate shadow flicker impacts, 270
calibration, 199
calibration certificate, 189
calibration characteristics, 189
calibration in a wind tunnel, 189
calibration uncertainty, 165
canopy, 17
canopy sublayer, 254
capacity factor, 86, 88
capture vertical profile of wind, 196
cascade of wind regime, 3
categorising terrain, 26
central limit theorem, 118
Central Research Institute of Electric Power Industry, 147
centreline velocity, 75
centrifugal force, 222, 223
certified power curve, 73
CFD based wind resource assessment application, 55
CFD model, 54, 77, 169
CFD wind flow models, 56
CFX, 54
channelling, 28
channelling effects, 249
chaos, 60
characteristic length scales, 23
Charnock parameter, 260
Charnock relation, 260
circular data, 104
cirrus clouds, 231
clamping arrangements, 193
classical least-square method, 122
clear skies, 226, 229, 236
clear sky daytime conditions, 256
cleared areas, 268
climate change, 164, 279
climate conditions, 175
closely packed roughness elements, 17
cloud correction algorithm, 209
cloud microphysics, 57
coal-generated electricity, 279
coastline, 15, 16
coefficient of determination, 115, 129, 144
cold air advections, 261, 262
cold front, 229
Index

collision mortality rates, 267
colour of turbines, 268
combined noise levels, 276
combined uncertainty, 159
combining uncertainties, 172
common regional wind climate, 46, 47
community concerns, 175
compact-beam sodar systems, 208
comparison of various CFD models, 57
COMPLEX, 53
complex hilly terrain, 28
complex propagation models, 275
complex terrain, 26, 29, 33, 155, 182, 208, 210, 250
compressible flow, 38
computational domain, 43
computational domain inlet, 56
Computational Fluid Dynamics (CFD), 54, 238
computational resources, 43
concurrent data length, 146
condensation, 57, 225, 232
confidence level, 158
conservation equations, 53
conservation of energy, 40, 69
conservation of mass, 40, 68
conservation of momentum, 40, 70, 76, 77, 93
consistency, 112
consistency of the reference data, 130
constant turbulent flux assumption, 248
constant-flux layer, 254
constraint of power law, 20
cumulative distribution function (CDF), 98
correlation analysis, 128
correlation coefficient, 129, 144
cosine vertical sensitivity profile, 188
critical slope, 29
crossing over a hill, 21
cross-interpolations, 18
cross-over height, 256
crosswind direction, 154
danish recommendation, 80
data assimilation system, 146, 147
data collection, 196
data consistency, 143
data loggers, 196
data processing accuracy, 165
data quality, 197, 207
data recovery, 207, 209
data recovery rate, 204
data resampling, 136
data validation, 202, 203
deadband, 193
decibel A filter, 273
deduce wind conditions, 37
degradation of anemometer, 166
degradation of sensors, 202
cumulus cloud, 232
cumulonimbus clouds, 232
cylinderic coordinates, 77
cylindrical coordinates, 77
deduce wind conditions, 37
depth array wake models, 80
depth array wakes, 154
deflection, 28, 249
density, 38
density of the streamlines, 21
dependent of the user’s experience, 55
depressions, 117
depth of ABL, 255
depth of averaging volume, 210
depth of Ekman layer, 255
depth of the SBL, 256
De-rating wind turbine, 92
DES model, 42
description of boundary layer, 76
deserts, 226
Detached Eddy Simulation, 42
detrending turbulence intensity, 102
development of Internal Boundary Layer, 80
development of low-level jets, 258
development of nocturnal SBL, 257
development of roughness elements, 92
DIBt, 78
difference in surface temperature, 182
differential equations, 40
diffusive transport, 41
digital contour map, 169
digital height contour, 89
Direct Numerical Simulation, 41
direction of boom, 193
direction of Coriolis force, 222
directional components, 185
directional overshoot, 206
discrete random variable, 97
discretization, 60
displacement, 267
displacement height, 12, 17, 254
dissipating effects, 238
dissipation, 41
dissipation of turbulence kinetic energy, 42
Distance between met mast and turbine location, 181
distance constant, 188
distance from the source of sound, 275
distance to roughness change, 16
distance to the mast, 169
distance-weighted method, 171
distribution function, 98
disturbance to birds, 268
disturbance to terrestrial animals, 268
diurnal variations, 255, 261
divergence, 229
documentation, 197
dominating extreme wind mechanism, 117
dophins, 269
Doppler frequency shift, 207
Doppler shift of optical signal, 208
downburst, 233
downdraft, 232, 256
downdraft wind, 49, 58, 236
downdraft windstorms, 236, 252
downtime, 154
downward heat flux, 246
downward shortwave radiation, 239
downwind direction, 17
drainage wind, 236
drive chain, 72
driving forces governing winds, 218
driving torque, 188
dry adiabatic lapse rate, 244
dry air, 219
dynamic equilibrium of momentum in the boundary layer, 80
dynamic response, 185
earth’s rotation, 255
earth’s rotation, 222
easterlies, 226
east-west circulation, 227
echoes, 207
eddies, 41
eddy size, 240
Eddy-Viscosity Models, 41
effect of height variations, 21
effect of humidity, 220
effective rotor diameter, 82
effective roughness, 82
effective turbulence, 79
Ekman layer, 50, 254, 262
Ekman wind speed profile, 56
El Niño, 164
electrical efficiency of the generator, 72
electrical energy, 72
electrical losses, 156
electrical power coefficient, 72
elevation above mean sea level, 216
elliptic wake model, 78
energy balance over land surface, 239
energy efficiency, 69
energy production, 85
entrainment, 255, 256
Environmental Impact Assessment (EIA) Directive, 266
environmental lapse rate, 244, 245
environmental losses, 156
environmental noise, 276
Index

equation of motion, 45
Equation of State, 219
equilibrium inflow conditions, 55
equilibrium state, 253
equilibrium state of the wind, 58
ERA-40, 147
ERA-Interim, 147
error on turbulence kinetic energy, 57
errors, 157
escarpment, 25
estimate MCP uncertainty, 144
estimate Weibull parameters, 111
estimator, 110
EU environmental legislation, 266
European Centre for Medium-Range Weather Forecasts, 147
European Wind Atlas method, 46
evaporation, 57, 239
EVM model, 41
EWTS II model, 77
exceedance probabilities, 162
expected value, 98, 99
exponential distribution, 117
extrapolation of flow momentum, 74
extrapolation, 134
extrapolation of mean wind speeds, 19
extreme coherent gust with direction change (ECD), 125
extreme direction change (EDC), 125
extreme operation gust (EOG), 125
extreme turbulence intensity, 87, 103
extreme turbulence model (ETM), 125
extreme value distribution, 117
extreme value theory, 118
external wind conditions, 88, 89
external wind events, 117
external wind shear (EWS), 125
external wind speed, 117
extreme wind speed events, 260
extremely complex mountainous terrain, 28
eyewall, 231

failure probabilities, 154
far wake, 74
Ferrel cell, 225
filtering effect of cup anemometer, 188
financial horizon of wind energy project, 165
financial model of wind power project, 154
finite difference, 60
first law of thermodynamics, 40
first order closure, 41
first-order turbulence closure, 49
first-order velocity perturbation, 48
Fish and Wildlife Services, 267
Fisher-Tippett theorem, 118
fixed pressure, 56
fixed wall, 56
fixed-speed squirrel cage generators, 156
flickering shadows, 270
flight corridors, 267
flow concepts, 38
flow distortion, 175, 193
flow dynamics, 39
flow inclination, 185
flow interaction between cups, 188
flow separation, 22, 26, 29, 34, 50, 56, 252
FLOWSTAR model, 45
fluctuating value, 39
fluctuations in air density, 207
fluid dynamics, 38
fluid parcel, 38
fog, 230
force equilibrium, 255, 257
force majeure, 231
forced channelling, 249
forest, 17
Forests, 254
form parameter, 106
foundation cost, 263
Fourier components, 45
Fourier expansions, 45
Fourier modes, 44
Fourier space, 45, 48
Fourier transform, 45
Fourier transformation of velocity perturbations, 48
fractional speed-up, 23
fragmentations, 268
Frandsen model, 78
Frandsen wake model, 81
Frandsen wake turbulence model, 78
free atmosphere, 215, 223, 255
free convection, 232
free stream, 263
free stream wind speed, 82
free troposphere, 254
free wind flow, 74
free-stream velocity, 77
frequency distribution of turbulence, 87
Index

frequency distributions, 139
frequency rose, 87
friction on anemometer rotor shaft, 188
friction velocity, 14, 246, 248, 260
frictional force, 38, 221, 223, 257
front, 232
frontal uplift, 226
Frontal zone, 229
Froude number, 250
Gamma function, 108
gap winds, 249
Gaussian wake profile, 78
gearbox, 72
general safety issues, 280
Generalised Extreme Value (GEV) distribution, 118
Generalised Pareto Distribution, 123
general-purpose CFD packages, 55
geographic wind vector, 255
geographical location of wind farm, 175
geometric height, 216
depotential height, 216
depotential height contours, 216
degostrophic balance, 223, 255
degostrophic winds, 14, 216, 222, 254, 255
global effects, 279
global heat transport, 227
Global Modelling and Assimilation Office, 147
global warming emissions, 279
golden eagles, 267
governing equations, 37, 38, 39, 53, 55
GPS, 90
gradient wind, 224
dgraphical review, 202, 203
gravitational constant, 246
gravitational force, 222
gravitational waves, 252, 260
gravity-adjusted height, 216
grid, 53
grid regulations, 157
gross AEP, 152
ground absorption, 275
ground based acoustic antennas, 207
ground-based remote sensing, 7, 180, 209, 250, 258
Gumbel method, 117
gust factor, 125
gust front, 232
gustiness, 100

habitat loss, 267, 268
Hadley cell, 225
hail, 232
Hailstones, 232
half width, 23
health impacts from noise, 277
heat balance, 43
heat capacity of the ocean, 261
heat flux, 16, 245
Heat flux parameter in WAsP, 49
heated wind sensor, 196
height above ground level, 26
height contour, 29
hidden layers, 143
high pressure systems, 228
higher central moments of the Weibull distribution, 108
higher order closure, 41
High-resolution CFD flow modelling, 210
homogeneous Poisson process, 118
homogeneous topography, 14
homogenous surface property, 182
horizontal axis wind turbine, 74
horizontal component of wind speed, 184
horizontal dimensions of the hills, 28
horizontal flow instabilities, 231
horizontal plane, 185
horizontal pressure gradient, 219, 223, 227
horizontal propeller anemometer, 206
horizontal speed-up profiles, 22
horizontal synoptic pressure gradient, 258
horizontal temperature gradients, 225
horizontal wind, 185
horizontal wind speed, 238
horizontally extrapolation, 168
Horn’s Rev, 73, 74
hub height, 17, 25, 196
human activity, 268
human perception of sound levels, 277
humid air, 220
humidity, 246
hurricane, 229, 230, 231
hydrostatic equation, 43, 219

ice build-up, 280
icing of blades, 156
ideal gas, 219
ideal gas law, 39, 219
IEC 61400–1, 10, 88, 96, 101, 117, 124, 125, 126
IEC Class I anemometer, 188
IEC standards, 88, 155, 191, 274
impacts of wind turbines on wildlife, 266
impacts on marine wildlife, 269
impacts on regional weather and climate, 279
impacts on terrestrial animals, 268
impacts on vegetation, 269
inaccurate blade pitching, 156
incompressible flow, 38
inconsistency of reference data, 143, 146
increased turbulence intensity, 34
Independent Storm Method, 117
independent uncertainties, 159
inertial forces, 38
inertial oscillation of the horizontal wind speed, 258
inertial torque, 188
inflow angle, 55, 84, 88, 93, 155, 176
infrasounds, 274
inherent uncertainties, 37
inherent uncertainties in wind flow modelling, 60
initial expansion region of wake, 76
initial wake expansion, 82
inner layer, 44
input layer, 143
insectivorous birds, 268
insects, 268
instabilities, 41
installation cost, 84
installation of met mast, 191
inter-annual variability of wind speed, 163
interference with radar, 280
interference with telecommunication facilities, 280
intermediate wake, 74
internal boundary layer (IBL), 15, 171, 182, 259
internal boundary layer growth, 53
International Civil Aviation Organization (ICAO), 216
International Organization for Standardization (ISO), 216
International Standard Atmosphere (ISA), 216
interpolation, 134
Inter-Tropical Convergence Zone (ITCZ), 225
inversion, 214, 229, 236, 245, 251, 258
inversion layer, 256
inverter losses, 156
inviscid flow, 38
inward valley wind, 235
ionization, 215
iron losses, 156
island of Bolund, 57
ISO 9613–2:1996, 276
isobars, 224
Isothermal, 214
Jack-knife, 136
Jack-knife estimate of variance, 145
Jackson-hunt Model, 44
Japan Meteorological Agency, 147
Jensen wake model, 76
joint sample distributions, 140
JRA-55, 147
KAMM, 58
KAMM-WAsP model, 58
Karman constant, 82
katabatic wind, 236
kinetic energy, 66, 69, 220
kinetic energy in the atmosphere, 228
kurtosis, 99
La Niña, 164
laminar flow, 26, 40, 260
land and sea breezes, 5, 49, 53, 58, 233, 261
land breeze, 235
land surface, 11
landscape, 271
landscaping, 271
lapse rate, 214, 229, 232
large planetary waves, 217
large scale weather systems, 227
larger-scale winds, 249
Larsen wake model, 77
Larsen wake turbulence model, 80
laser beam, 208
latent heat, 225, 230, 232, 239
latent heat flux, 280
lateral boundary condition, 56
laws of conservations, 40
layered structure, 143
layout adjustment, 92
layout optimisation, 176
Least Absolute Error regression, 135
least disturbance direction, 192
Least Square Regression, 134
lee-slope, 22
length of the fetch, 259
length of far wake, 75
length of intermediate wake, 75
length of near wake, 74
length of overlapping period, 143
LES model, 42
lidar, 208, 209
lightning, 232, 233
lightning protection, 196
LINCOM model, 46
line segments, 29
linear advection, 49
linear regression MCP, 137
Linear Regression Method, 111
linearised flow model, 24, 28, 29, 44, 51
linearised Navier-Stokes equations, 48
linearised perturbations, 45
linearising the equations of motion, 44
local flight paths, 267
local topographic features, 130
local wind circulation, 217
logarithmic law, 15, 19, 55
logarithmic wind profile, 14, 50, 82, 168, 247, 254, 260
logger system, 198
logistic time, 154
logistics for construction and maintenance, 263
long wave-length waves, 259
long-term reference data, 163
long-term reference wind data, 146
long-term wind variations, 134
long-term windiness, 164
long-wave radiation flux, 245
longwave radiation of the surface, 239
loss factors, 153
loudness, 273
low hill, 25
low pressure system, 224, 228, 245
low Reynolds number $k-\varepsilon$ model, 42
low-frequency sound, 273, 274
low-level jet, 58, 257, 262
low-level wave-driven wind jet, 259
low-Reynolds models, 56

MABL development, 261
machine learning, 142
macroburst, 233
macro-siting, 6
magnetic declination, 194, 198
magnetic north, 193, 198
manoeuvrability of birds, 267
marcositing, 59
Mardia method, 104
marine atmospheric boundary layer (MABL), 259
marine atmospheric stability, 262, 263
marine mammals, 269
mass continuity principle, 40
mass-consistent, 53
mass-consistent model, 53
MASS-WindMap model, 58
MATHEW, 53
matrix, 140
Matrix MCP, 138
Maximum Likelihood Estimate Method, 112
maximum speed-up effect, 23
MCP, 163, 198
MCP methodologies, 136
MCP uncertainty, 143
micrositing, 84
mean flow equations, 39
mean of a random variable, 97
mean of squared residuals, 142
mean term, 39
mean wind speed, 84, 105
mean wind vector, 40
Mean-Standard Deviation Method, 111
Measure-Correlate-Predict (MCP), 59
measurement cone, 211
measurement of vertical wind speeds, 206
measurement uncertainties of remote sensing, 210
mechanical eddies, 237, 244
mechanical efficiency, 72
mechanical shear, 246, 258
mechanical shear turbulence production, 262
median value of wind speed, 106
Medians Method, 113
meso-scale Numerical Weather Prediction (NWP) models, 57
meridional distribution of energy on Earth, 227
MERRA, 147
meshing, 43, 54
meshing elements, 43
meso-cyclones, 228
mesoscale, 218
mesoscale convective systems, 233
mesoscale NWP model, 5, 6, 56
mesoscale NWP models, 148
mesoscale wind climate, 49
mesoscale wind systems, 231
mesosphere, 215
<table>
<thead>
<tr>
<th>Index</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>met mask verification, 91</td>
<td></td>
</tr>
<tr>
<td>met mast, 91, 180</td>
<td></td>
</tr>
<tr>
<td>met mast description, 197</td>
<td></td>
</tr>
<tr>
<td>met mast installation, 195</td>
<td></td>
</tr>
<tr>
<td>met mast monitoring, 202</td>
<td></td>
</tr>
<tr>
<td>met mast operation and maintenance, 197</td>
<td></td>
</tr>
<tr>
<td>Meteodyn WT, 55</td>
<td></td>
</tr>
<tr>
<td>meteorological mast, 50</td>
<td></td>
</tr>
<tr>
<td>meteorological stations, 146</td>
<td></td>
</tr>
<tr>
<td>meteorological towers, 180</td>
<td></td>
</tr>
<tr>
<td>meteorological variable, 39</td>
<td></td>
</tr>
<tr>
<td>Method of Independent Storms (MIS), 124</td>
<td></td>
</tr>
<tr>
<td>microburst, 233</td>
<td></td>
</tr>
<tr>
<td>micrometerology, 237</td>
<td></td>
</tr>
<tr>
<td>microscale, 46</td>
<td></td>
</tr>
<tr>
<td>microscale eddies, 240</td>
<td></td>
</tr>
<tr>
<td>micro-scale flow models, 28</td>
<td></td>
</tr>
<tr>
<td>microscale topographical influences, 148</td>
<td></td>
</tr>
<tr>
<td>microscale wind climate, 47, 182</td>
<td></td>
</tr>
<tr>
<td>microscale winds, 237</td>
<td></td>
</tr>
<tr>
<td>micrositing, 2, 6, 31, 34, 48, 250, 272</td>
<td></td>
</tr>
<tr>
<td>middle transient layer, 45</td>
<td></td>
</tr>
<tr>
<td>midlatitude cyclones, 227</td>
<td></td>
</tr>
<tr>
<td>mid-latitude depressions, 228</td>
<td></td>
</tr>
<tr>
<td>midlatitude onshore conditions, 253</td>
<td></td>
</tr>
<tr>
<td>midlatitude synoptic scale cyclones, 228</td>
<td></td>
</tr>
<tr>
<td>MIGAL solver, 55</td>
<td></td>
</tr>
<tr>
<td>migratory flyways, 267</td>
<td></td>
</tr>
<tr>
<td>MINERVE, 53</td>
<td></td>
</tr>
<tr>
<td>minimise uncertainties, 20</td>
<td></td>
</tr>
<tr>
<td>minimum offshore turbulence intensity, 262</td>
<td></td>
</tr>
<tr>
<td>misalignment, 206</td>
<td></td>
</tr>
<tr>
<td>missing data, 50, 166</td>
<td></td>
</tr>
<tr>
<td>Mitsuta methodology, 104</td>
<td></td>
</tr>
<tr>
<td>mixed climate, 117</td>
<td></td>
</tr>
<tr>
<td>mixing length, 41, 247</td>
<td></td>
</tr>
<tr>
<td>mixing-length model, 41, 45</td>
<td></td>
</tr>
<tr>
<td>MLE estimator, 112</td>
<td></td>
</tr>
<tr>
<td>MM5, 58</td>
<td></td>
</tr>
<tr>
<td>molecular friction, 218</td>
<td></td>
</tr>
<tr>
<td>molecular mass, 219</td>
<td></td>
</tr>
<tr>
<td>molecular viscosity, 42</td>
<td></td>
</tr>
<tr>
<td>momentum equations, 40</td>
<td></td>
</tr>
<tr>
<td>momentum loss, 260</td>
<td></td>
</tr>
<tr>
<td>momentum recovery of turbine wake, 75</td>
<td></td>
</tr>
<tr>
<td>momentum sink, 246, 259</td>
<td></td>
</tr>
<tr>
<td>Monin-Obukhov length, 78, 246</td>
<td></td>
</tr>
<tr>
<td>monsoon trough, 230</td>
<td></td>
</tr>
<tr>
<td>Monte-Carlo simulation, 136</td>
<td></td>
</tr>
<tr>
<td>Mortimer MCP method, 138, 140</td>
<td></td>
</tr>
<tr>
<td>motality of birds, 267</td>
<td></td>
</tr>
<tr>
<td>motions induced by temperature gradient, 56</td>
<td></td>
</tr>
<tr>
<td>mountain wind, 236</td>
<td></td>
</tr>
<tr>
<td>mountainous terrain, 21</td>
<td></td>
</tr>
<tr>
<td>mountain-plain winds, 235</td>
<td></td>
</tr>
<tr>
<td>mountain-valley circulation, 53, 58</td>
<td></td>
</tr>
<tr>
<td>mountain-ward plain wind, 235</td>
<td></td>
</tr>
<tr>
<td>Moutain-valley winds, 235</td>
<td></td>
</tr>
<tr>
<td>moving atmospheric pressure systems, 261</td>
<td></td>
</tr>
<tr>
<td>MS3DJH model, 45</td>
<td></td>
</tr>
<tr>
<td>MSFD model, 45</td>
<td></td>
</tr>
<tr>
<td>MS-MICRO, 45</td>
<td></td>
</tr>
<tr>
<td>MS-Micro/3 model, 45</td>
<td></td>
</tr>
<tr>
<td>multiple beams, 211</td>
<td></td>
</tr>
<tr>
<td>multiple masts, 171</td>
<td></td>
</tr>
<tr>
<td>multiple wake, 76</td>
<td></td>
</tr>
<tr>
<td>narrower path, 249, 252</td>
<td></td>
</tr>
<tr>
<td>NASA Goddard Space Flight Centre, 147</td>
<td></td>
</tr>
<tr>
<td>National Centre for Atmospheric Research (NCAR), 147</td>
<td></td>
</tr>
<tr>
<td>National Centre for Environmental Prediction (NCEP), 147</td>
<td></td>
</tr>
<tr>
<td>National Oceanic and Atmosphere Administration, 194</td>
<td></td>
</tr>
<tr>
<td>Natura 2000, 266</td>
<td></td>
</tr>
<tr>
<td>Natural England, 267</td>
<td></td>
</tr>
<tr>
<td>natural gass generated electricity, 279</td>
<td></td>
</tr>
<tr>
<td>natural variability of the wind, 171</td>
<td></td>
</tr>
<tr>
<td>Navier-Stokes equations, 40</td>
<td></td>
</tr>
<tr>
<td>NCAR data, 217</td>
<td></td>
</tr>
<tr>
<td>NCEP/NCAR dataset, 147</td>
<td></td>
</tr>
<tr>
<td>near wake, 74, 75, 76, 78, 93</td>
<td></td>
</tr>
<tr>
<td>near-coast, 261</td>
<td></td>
</tr>
<tr>
<td>near-coast low level jets, 262</td>
<td></td>
</tr>
<tr>
<td>near-ground turbulent fluxes, 237</td>
<td></td>
</tr>
<tr>
<td>near-surface wind field of a tropical storm, 230</td>
<td></td>
</tr>
<tr>
<td>negative buoyancy force, 232, 245</td>
<td></td>
</tr>
<tr>
<td>negative speed-up effect, 22</td>
<td></td>
</tr>
<tr>
<td>neighbouring wind turbines, 79</td>
<td></td>
</tr>
<tr>
<td>nested grid, 58</td>
<td></td>
</tr>
<tr>
<td>net AEP, 153, 176</td>
<td></td>
</tr>
<tr>
<td>net heat flux, 239</td>
<td></td>
</tr>
<tr>
<td>neutral offshore conditions, 263</td>
<td></td>
</tr>
<tr>
<td>neutral stratification, 244</td>
<td></td>
</tr>
<tr>
<td>neutrally stratified atmosphere, 26, 46, 240, 244, 247, 248, 250</td>
<td></td>
</tr>
<tr>
<td>neutrally stratified atmosphere, 55</td>
<td></td>
</tr>
<tr>
<td>Newtonian fluid, 40, 221</td>
<td></td>
</tr>
<tr>
<td>Newton’s second law of motion, 40, 221</td>
<td></td>
</tr>
</tbody>
</table>
Index

nighttime noise level, 277
no friction boundary condition, 56
NOAA-CIRES, 147
NOABL, 53
noise, 269
noise impacts, 272
noise regulations, 277
nonlinear system, 60
nonlinear transport equations, 56
nonlinearity, 44
nonlinearity of calibration, 189
normal distribution, 99, 124, 134, 158, 161
normal operation conditions, 154
normal wind profile model (NWP), 263
normalised fourth central moment, 99
normalised standard deviation, 101
normalized third central moment, 99
North Atlantic Oscillation (NAO), 164
Northeast Trades, 226
northern hemisphere, 222, 224
noise propagation, 275
NRG Symphonie logger, 105
nth central moment, 99
number of neighbouring wind turbines, 79
number of radii, 29
Numerical Weather Prediction (NWP) models, 214
numerical wind flow modelling, 166
NWP model, 58, 148, 216, 218
obstacle, 30
obstacle sheltering model, 46
occluded front, 229
offset, 198
offshore conditions, 260
offshore surface layer, 262
offshore tornadoes, 233
offshore turbine power curves, 264
offshore turbine wanes, 263
offshore turbulence intensity, 262
offshore turbulent momentum mixing, 263
offshore wind farm, 76
offshore wind monitoring campaign, 182
offshore wind power project, 259
offshore wind resource, 259
offshore wind shear, 263
offshore wind turbine layout optimisation, 263
offshore wind turbines, 280
onshore surface roughness, 260
on-site measurement, 163, 250
open ocean, 260
OpenFOAM, 54
openWind, 53, 64, 78, 82, 83, 94, 95, 152
openWind model, 53
operating time, 154
operation and maintenance cost, 84
operation environment, 194
optic conditions of the atmosphere, 271
optimal distance between wind turbines, 75
optimal mechanical conditions, 156
optimised layout, 90, 176
orientation of wind vane, 193
orographic effects, 248
orographic model, 46
orographic speed-up effect, 28
orography, 26
orthogonal coordinate system, 185
orthogonal regression, 135
outdoor recreation, 268
outer layer, 45
outliers in data, 135
output layer, 143
outward valley wind, 235
over-detection, 202
overestimation of the speed-up effect, 50
overlapping period, 145
over-speeding, 188
over-speeding of anemometer, 206
ozone, 215
P10, 162
P50, 161
P75, 161
P90, 161
Pacific Decadal Oscillation (PDO), 164
panorama view, 92, 198
parameter estimation, 110
park efficiency, 85
PARK model, 76
Partially independent uncertainty components, 160
passage of weather fronts, 103
passage of weather systems, 5
PDF, 98
peak velocity in low-level jets, 257
Peak-Over-Threshold (POT) method, 117, 123
percentage uncertainty component, 172
permanent-magnet generators, 156
perturbation shear stress, 45
perturbations of terrain, 46
Index

phase speed of waves, 259
PHOENICS, 54, 56
photosensitive epilepsy, 270
pitch, 273
pitching strategy of blades, 88
pitch-regulated turbine, 155
pitch-regulated variable speed wind turbine, 274
placement of offshore wind turbines, 263
planetary boundary layer (PBL), 243
planetary rotation, 225
plant system availability, 154
plotting position, 119
Poisson process, 117
Polar cell, 225
polar coordinate system, 29
polar front, 226, 228
polar high, 226
polar jet stream, 227
polar vortex, 226
polynomial surfaces, 141
population, 110
porosity of the obstacle, 30
porosity of the roughness elements, 12
Portugal project, 52
positive buoyancy force, 232, 244
post-calibration of the cup anemometer, 189
post-processing, 56
potential wind turbine location, 37
power cable cost, 263
power coefficient, 69
power curve, 71, 87
power curve warranty, 155
Power Density Method, 113
power law wind profile, 20, 263
power lines, 268
power performance measurements, 155
power performance of wind turbines, 156
power spectra, 240
Prandtl layer, 254
Prandtl’s mixing length theory, 77
precipitation, 207, 230, 232
predicted site, 49, 51
prediction error, 51
preliminary layout, 90
pressure, 38, 74
pressure gradient, 77
pressure gradient force, 221, 222, 223, 228, 240, 254, 255
pressure level, 216
pressure perturbation, 45
pressure-driven channelling, 249
prevailing warm air advections, 263
prevailing weather systems, 175
prevailing wind direction, 75, 175, 183, 192, 193
primary anemometer, 204
probabilistic dependence, 129
probability, 161
probability density function, 98
production estimate, 89
production loss, 85, 153
propeller anemometer, 206
pulsed Doppler lidar, 208
qualities of input data, 169
quality control of wind measurement campaign, 166
quality of the wind data, 50, 53
Quarton/TNO models, 80
radiation, 57
radiation inversion, 245
radiative cooling, 256
RAMS, 58
RAMSIM model, 46
random error, 133, 159
random variable, 97
range tests, 202
RANS equations, 54, 55, 57, 77
RANS two-equation models, 57
raptors, 267
rare plant field survey, 269
rate of pulse repetition, 207
rated power, 72, 73, 86, 88, 157, 262, 274
ratio of driving torque to rotational inertia, 188
ratios of concurrent target and reference wind speeds, 140
raw wind data, 100
Rayleigh distribution, 67, 106, 110
reactive power, 156
reanalysis data, 146
receptor, 275
rectangular distribution, 159
recurrence period, 117
reduce bird and bat deaths, 268
reduced velocity wake model, 76
redundant sensors, 196
reference mast, 167, 211
reference point, 193
reference site, 49, 51, 129
region specific, 156
regional weather station, 195
Index

regression, 52
regression analysis, 132
regression equation, 133
regression function, 133
regression model, 133
relational tests, 202
relative humidity, 195
reliability, 154, 196
remote sensing, 210
remotely generated swell, 259
representative meteorological station, 146
representative wind data, 180
representativeness, 50
residual, 134
residual layer (RL), 256
resistance losses, 156
resolution of mesoscale NWP model, 58
resolution of wind vane, 193
responsiveness of cup anemometers, 188
reversed wind direction, 252
Reynolds Averaged Navier-Stokes equations, 41
Reynolds decomposition, 39
Reynolds normal stresses, 40
Reynolds number, 38, 39, 41
Reynolds shear stresses, 40
Reynolds stress, 40, 238
Reynolds-Stress Transport Models, 41
risk of icing falling, 280
Risø National Laboratory, 46
RIX, 29, 51, 210
robust estimators, 113
Root mean square error, 115
root mean square errors, 144
rotation of the Earth, 43
rotation speed, 270
rotor diameter, 50, 77, 89, 103, 175, 280, 281
rotor speed, 272
rough flow, 260
roughness change, 17
roughness class, 13
roughness element, 12, 31, 260
roughness length, 11, 248
roughness length change, 15
roughness length of open water surface, 260
roughness map, 169
roughness model, 46
roughness sublayer, 254
round-robin method, 145
RSTM model, 42
Ruggedness Index, 29
rural areas, 273
safety concern, 270
sample mean wind direction, 104
sample mean wind speed, 100
sample standard deviation, 98, 100
sampling space, 110
satellite images, 92
satellite measurements, 146
saturated humid air, 220
SCADA system, 74
scalar average of the horizontal wind, 210
scalar-averaged direction, 211
scale parameter, 106
scatter plot, 203
scattering volumes, 210
scenic and aesthetic impacts, 271
scheduled on-site inspection, 199
sea breeze, 234
sea surface, 15, 230, 259
sea surface roughness length, 260
sea-breeze front, 234
seasonal variations of the wind climate, 50
second order closure, 41, 42
secondary anemometer, 204
sector wise wind speed bins, 108
seizure, 270
sensitivity analysis, 160
sensitivity to user input, 57
setbacks, 280
shadow flash frequency, 270
shadow flicker, 270
shape parameter, 106
shear production of turbulence, 260
sheared flow effect on anemometers, 189
shearline, 229
shelter effect, 31, 34, 92, 183
sigma height, 217
signal-to-noise ratio (SNR), 207
similarity in topography, 182
similarity in wind climate, 181
similarity principle, 170, 181
simple terrain, 45
single wake, 76, 81
sink of turbulent momentum flux, 248
site boundaries, 175
site hunt, 6, 59
site specific, 154
site specific air density, 72, 220
site specific wind conditions, 88
site survey, 89
site visit, 34, 169
size of roughness map, 16
Index

skewness, 99
slope, 198
slope of isobaric surfaces, 225
slope of the turbine wake, 76
slope wind, 236
small height variations, 250
small perturbation, 45, 49
small perturbation assumption, 45, 54
smooth flow, 260
sodar, 207, 209
solar radiation, 239
solar radiation flux, 245
solid tubular tower, 191
sonic anemometers, 207
sound absorption coefficient, 275
sound intensity, 276
sound meters, 273
sound power level, 273, 275
sound pressure, 273
sound pressure level, 273, 275, 276
Southeast Trades, 226
southern hemisphere, 222, 224
Southern Oscillation (ENSO), 164
spatial variations of surface properties, 253
specific gas constant, 219
specific humidity, 220
spectral distribution of wind speed fluctuations, 104
spectrum, 217
speed-up effect, 6, 21, 32, 46, 49, 250
spread of wind direction, 104
stability function, 247
stability parameter, 248
stable atmospheric conditions, 251
stable boundary layer (SBL), 256
stable conditions, 248
stable offshore conditions, 261
stable stratification, 245
stability parameter, 246
stably stratified, 20
stall regulated wind turbine, 274
standard air density, 88
Standard Atmosphere, 216
standard deviation, 99, 105
standard deviation of normal distribution, 158
standard deviation of streamwise wind velocity, 248
standard deviation of the Weibull distribution, 108
standard deviation of the wind components, 240
standard temperature lapse rate, 216
STAR CCM+, 54
state of equilibrium, 244
static stability, 250
stationary front, 229
statistical analysis, 97
statistical independence, 122
statistical properties, 39
statistical significance, 167
statistical turbulence intensity, 238
statistically stationary flow, 39
steady-state flow, 39, 49, 55
steady-state wind field, 53
Stokes flow, 38
Strategic Environmental Assessment (SEA) Directive, 266
stratiform clouds, 230
stratosphere, 215
stray losses, 156
streamlines, 45
streamwise turbulence intensity, 248
structure of atmospheric boundary layer, 239
structured meshing, 43
subsidence inversion, 229
substation system, 156
substituted anemometer, 203
substituted data, 203
subtropical high pressure zone, 226
subtropical jet stream, 226
subtropics, 225
sudden change in air pressure, 267
supercomputer clusters, 55
surface convergence, 228
surface energy balance, 239
surface friction, 43, 228, 245
surface friction force, 254, 255
surface layer, 20, 183, 239, 246, 247, 254
surface roughness, 45, 56, 75, 92, 183, 262
surface shear stress, 246
surface temperature inversion, 229
surface tension of water surface, 260
surface types, 13
surrounding environment, 198
synoptic scale meteorology, 228
synoptic scale wind regime, 5
synoptic scale wind systems, 5, 227
systematic errors, 159, 172
tail vane, 206
target site, 128
Index

Taylor’s hypothesis, 239, 240
telecommunication information, 198
temperate latitudes, 117
temperature, 38
temperature gradient, 164
temperature inversion, 254
temperatures in the thermosphere, 216
temporal variations of surface properties, 253
terrain, 26
terrain complexity, 169
terrain effects, 45, 167, 182, 275
Terrain effects, 20
terrain-following coordinate system, 46
test criteria, 202
thermal inertia of the sea water, 261
Thermal Internal Boundary Layer (TIBL), 16
thermal mixing from the surface, 255
thermal stability, 56, 260, 261
thermal stability classes, 56
thermal stratification of the boundary layer, 56
thermal wind, 225
thermally driven forces, 58
thermally induced circulations, 55
thermally induced orographic flow, 236
thermally induced wind systems, 53
thermally stable conditions, 245
thermodynamic equilibrium, 256
thermosphere, 215
three circulation cells, 225
three dimensional obstacle, 32, 50
three-dimensional computations, 22
three-dimensional flow models, 28
three-dimensional wind field, 53
three-dimensional wind velocity, 184
thrunders, 233
thrust coefficient, 70, 71, 77, 82, 83
thunderstorm, 229, 232, 234, 235
thunderstorm gusts, 233
thunderstorms, 117
time evolution of the atmospheric system, 58
time lags on the winds, 130
time series graph, 203
time zone, 198
topographical bottlenecks, 267
tornadoes, 224, 232, 233
total production loss, 153
tower shadow, 191, 196, 203
tower shadowing effects, 165
training algorithm, 142
transfer function, 49, 133
transmission cables, 156
transport equations, 42
transport of kinetic energy, 238
transportation noise, 273
treatment of wind direction, 137
tree screening, 271
trees, 31
trend tests, 202
trending effect, 102, 105
triangular lattice tower, 191
trigonometric functions, 104
tropical belt, 225
tropical convection, 225
tropical convection belt, 225
tropical cyclone, 117, 224, 230
tropical depression, 230
tropical hurricanes, 5
tropical storm, 230
tropical thunderstorms, 225
tropical wind systems, 230
troposphere, 214, 231
trend tests, 202
trend tests, 202
trend testing, 102, 105
true north, 193, 198
truncation error, 60
turbine availability, 154
turbine loads, 29, 176
turbine power performance test, 188, 209
Turbulence, 29
turbulence closure, 41, 45, 76, 77
turbulence dissipation, 238
turbulence eddies, 41, 207, 247
turbulence energy cascade, 41
turbulence flow, 185
turbulence fluctuations components, 40
turbulence in the atmospheric boundary layer, 237
turbulence intensity, 32, 41, 55, 84, 87, 88, 101, 124, 155, 176, 183, 210, 211
turbulence intensity curve, 101, 262
turbulence intensity in neutral surface layer, 248
turbulence kinetic energy (TKE), 41, 56, 237, 240
turbulence length scale, 155
turbulence model, 41
turbulence models, 41
turbulence production, 244, 246
turbulence spectra, 240
turbulence transport, 41
turbulent eddies, 238
turbulent flows, 39
turbulent flux, 40, 41, 221, 238, 241
turbulent heat fluxes in the marine surface layer, 260
turbulent mixing, 74, 75, 229, 238, 239, 245, 256

turbulent moisture fluxes, 261

turbulent momentum flux, 246, 247

turbulent motions, 101

turbulent shearing stress, 14

turbulent transport, 45

turbulent vortices, 218

turbulent-transfer coefficient, 255

turning of wind vector, 262

turning vertical wind profile, 255
	two dimensional obstacle, 30, 50

two-dimensional computations, 22

two-dimensional linear regression MCP, 138

two-dimensional turbulent air flow over low

hills, 44

two-equation \(\kappa-\varepsilon\) turbulence closures, 57

type A uncertainty, 159

type B uncertainty, 159

typhoon, 89, 117, 122, 230

U.S. Standard Atmosphere, 216

ultra-violet light, 215

uncertainty analysis, 2

uncertainties in production loss factors, 159

uncertainty, 8, 157

uncertainty analysis, 157

uncertainty analysis for offshore wind parks, 264

uncertainty components, 160

uncertainty estimate, 176

uncertainty in air density, 159

uncertainty in horizontally extrapolation, 168

uncertainty in power performance, 159

uncertainty in vertical extrapolation, 167

uncertainty in wake modelling, 159

uncertainty in Weibull fit, 159

uncertainty in wind flow modelling, 166

uncertainty in wind measurement, 165, 189

uncertainty in wind shear, 167

uncertainty of annual mean wind speed, 163

uncertainty of future wind resource, 164

uncertainty of lidar/sodar, 166

uncertainty of long-term corrected wind speed, 164

uncertainty-weighted method, 171

under the same wind climate, 45

under-detection, 202

under-speeding effect, 206

uneven local surface heating, 233

unidirectional wind, 192

unified vertical wind profile, 255

unscheduled on-site inspection, 199

unscheduled site visit, 196

unstable conditions, 244, 245, 260

unstable marine boundary layer, 261

unstable marine surface layer, 261

unstable offshore conditions, 261

unstable stratification, 247

unsteady flow, 39

unsteady turbulent flow, 39

unstructured meshing, 43

updraft, 229, 232, 256

UPMWAKE wake model, 78

upper layer, 45

up-slope winds, 236

upstream slope, 26

upstream velocity, 45

upward heat flux, 246

upward turbulent momentum flux, 259

urban area, 14

urban development, 12

urban surfaces, 254

utility-scale wind turbine, 92

UTM grid coordinates, 198

validation of CFD models, 56

valley, 249

Variable-speed double-fed generators, 156

Variance Ratio MCP model, 139

vector average wind speed, 210

vector averaging, 210

vector-to-scalar bias, 211

velocity gradients, 40

velocity of geostrophic winds, 224

Venturi effect, 252

vertical displacement of an air parcel, 244

vertical downward movement of precipitation, 209

vertical extrapolation, 167

vertical extrapolation of wind climate, 182

vertical mixing, 214, 245

vertical propeller anemometer, 206

vertical sensitivity of cup anemometer, 185

vertical structure of ABL, 253

vertical structure of the atmosphere, 214

vertical temperature difference, 194

vertical transport of a quantity, 238

vertical turbulent fluxes, 254

vertical velocity, 246

vertical wind profile, 14, 183, 210, 246, 254

vertical wind speed component, 185
vertical wind speed-up, 23
very stable conditions, 251
very stable stratification, 245
Vestas in-house CFD toolkit, 55
viewshed analysis, 272
virtual potential heat flux, 246
virtual potential temperature, 246
virtual surface, 26
virtual temperature, 220
viscosity, 38, 41, 77, 238, 260
viscous forces, 38
visual impact assessment, 272
visual impacts, 269
visualisation, 55
von Kármán constant, 246
von Kármán vortex street, 251
vortex wake flow, 74
vortexes, 26
Vortexes, 252

wake added turbulence, 80, 87
wake added turbulence intensity, 79
wake decay coefficient, 76
wake effect, 74
wake effect in complex terrain, 83
wake geometry, 84
wake length, 75
wake losses, 153
wake models, 76
wake of met mast, 192
wake probability, 79
wake structure, 74
wake superposition, 76
wake turbulence, 154
WAKEFARM, 78
Walker circulation, 227
wall friction, 189
warm air advections, 261
warm front, 229
warming effect, 279
warning lights, 267
WAsP, 12, 20, 28, 29, 30, 34, 35, 36, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 61, 62, 63, 64, 65, 76, 114, 152, 169, 170, 177
WAsP limitations, 49
WAsP-Engineering, 46
water surface, 14
Water surface, 12
water surface roughness, 260
watersprouts, 233

wave development, 259
weather, 214
weather balloons, 146
weather front, 229, 261
weather monitoring system, 146
weather systems, 217
Weibull distribution, 67, 106
Weibull parameters, 139
Weibull Scale MCP method, 139
weighted average, 98
weighted least-square method, 122
Westerlies, 226
westly winds, 261
wildlife, 91
wind data recovery, 50
Wind Atlas Analysis and Application Program, 46
wind backing, 225
wind climate, 28, 90
wind conditions, 86
wind data analysis, 91
wind data correlation, 129
wind data graphic tools, 203
wind data quality, 204
wind data regression, 133
wind direction, 104, 275
wind direction change, 249
wind direction measurement, 193
wind direction shift, 231
wind direction shift in complex terrain, 55
wind direction standard deviation, 104
wind direction variance, 211
wind energy meteorology, 1
Wind flow distortions, 32
wind flow modelling, 2, 37, 39, 202, 238
wind flow models, 37
wind gusts, 124
wind load cases, 88
wind load conditions, 55, 176, 183
wind measurement campaign, 166
wind monitoring campaign, 180
wind park optimization, 2
wind power density, 66, 67, 68, 105, 131, 132, 194
wind power density map, 176
wind profile, 18
wind regime, 3
wind resource assessment, 37
wind resource assessment report, 175, 202
Wind resource assessment software, 20
wind resource similarity, 170, 171
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>wind rose</td>
<td>87</td>
</tr>
<tr>
<td>wind sector management</td>
<td>92, 157</td>
</tr>
<tr>
<td>wind shear</td>
<td>18, 19, 55, 84, 88, 155, 176, 255, 260, 263</td>
</tr>
<tr>
<td>wind shear across the rotor</td>
<td>88</td>
</tr>
<tr>
<td>wind shear component</td>
<td>19</td>
</tr>
<tr>
<td>wind shear instability</td>
<td>237</td>
</tr>
<tr>
<td>wind speed</td>
<td>250</td>
</tr>
<tr>
<td>wind speed distribution</td>
<td>88, 106</td>
</tr>
<tr>
<td>wind speed reduction</td>
<td>31</td>
</tr>
<tr>
<td>wind speed-up</td>
<td>140</td>
</tr>
<tr>
<td>wind statistics</td>
<td>97, 175</td>
</tr>
<tr>
<td>wind turbine classification</td>
<td>88</td>
</tr>
<tr>
<td>wind turbine generator</td>
<td>72</td>
</tr>
<tr>
<td>wind turbine layout optimisation</td>
<td>84</td>
</tr>
<tr>
<td>wind turbine life-cycle global warming emissions</td>
<td>279</td>
</tr>
<tr>
<td>wind turbine load calculations</td>
<td>7, 78, 240, 262</td>
</tr>
<tr>
<td>wind turbine model</td>
<td>175</td>
</tr>
<tr>
<td>wind turbine noise</td>
<td>273</td>
</tr>
<tr>
<td>wind turbine power curve</td>
<td>72, 161, 216, 220</td>
</tr>
<tr>
<td>wind turbine power performance test</td>
<td>206</td>
</tr>
<tr>
<td>wind turbine selection</td>
<td>2, 88</td>
</tr>
<tr>
<td>wind turbine wake</td>
<td>55</td>
</tr>
<tr>
<td>wind turbine wake effect</td>
<td>74</td>
</tr>
<tr>
<td>wind vane</td>
<td>193</td>
</tr>
<tr>
<td>wind veer</td>
<td>140</td>
</tr>
<tr>
<td>wind veering</td>
<td>225</td>
</tr>
<tr>
<td>WindFarmer</td>
<td>46, 76, 271</td>
</tr>
<tr>
<td>WindFarmer wake model</td>
<td>83</td>
</tr>
<tr>
<td>WindMap</td>
<td>53</td>
</tr>
<tr>
<td>window orientation, size and tilt</td>
<td>271</td>
</tr>
<tr>
<td>WindPRO</td>
<td>20, 46, 73, 76, 77, 78, 94, 95, 122, 148, 152, 161, 170, 177, 217, 271, 272</td>
</tr>
<tr>
<td>WindPRO Matrix MCP</td>
<td>140</td>
</tr>
<tr>
<td>WindPro MCP module</td>
<td>164</td>
</tr>
<tr>
<td>WINDS</td>
<td>53</td>
</tr>
<tr>
<td>WindSim</td>
<td>55</td>
</tr>
<tr>
<td>wind-wave interaction</td>
<td>259</td>
</tr>
<tr>
<td>Wöhler-exponent</td>
<td>79</td>
</tr>
<tr>
<td>World Health Organisation</td>
<td>277</td>
</tr>
<tr>
<td>WRF</td>
<td>58</td>
</tr>
<tr>
<td>WRF ERA-Interim</td>
<td>148</td>
</tr>
<tr>
<td>WRF FNL</td>
<td>148</td>
</tr>
<tr>
<td>Yamartino method</td>
<td>104</td>
</tr>
<tr>
<td>Yap-correction</td>
<td>56</td>
</tr>
<tr>
<td>yaw misalignment</td>
<td>125, 156</td>
</tr>
<tr>
<td>yawing of wind turbines</td>
<td>155</td>
</tr>
<tr>
<td>zenith angle of acoustic beams</td>
<td>207</td>
</tr>
<tr>
<td>zero relative pressure</td>
<td>56</td>
</tr>
<tr>
<td>zero relative pressure boundary condition</td>
<td>56</td>
</tr>
<tr>
<td>zero-order equations</td>
<td>46</td>
</tr>
<tr>
<td>zooming grid</td>
<td>48</td>
</tr>
<tr>
<td>ZVI (Zones of Visual Influence) module</td>
<td>272</td>
</tr>
<tr>
<td>κ</td>
<td></td>
</tr>
<tr>
<td>κ-ϵ model</td>
<td>41, 56</td>
</tr>
<tr>
<td>κ-ϵ RNG model</td>
<td>42, 56</td>
</tr>
</tbody>
</table>